Skip to main content
IUCrData logoLink to IUCrData
. 2022 Sep 2;7(Pt 9):x220869. doi: 10.1107/S2414314622008690

μ-Oxido-bis­[(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N,N′,N′′,N′′′)manganese(III)]

Wanjie Ren a, Jianfeng Li a,*
Editor: M Weilb
PMCID: PMC9635429  PMID: 36337454

The oxido-bridged dinuclear complex, [Mn(TPP)]2O, has an Mn—O distance of 1.7600 (3) Å, an Mn—O—Mn bridging angle of 176.1 (2)°, and exhibits point group symmetry 2.

Keywords: Manganese porphyrin, μ-oxido bridging mode, crystal structure

Abstract

In the crystal structure of the title oxido-bridged binuclear complex, [MnIII(TPP)]2O (TPP = tetra­phenyl­porphyrinate, C44H28N4) or [Mn2(C44H28N4)2O], the two penta­coordinate manganese(III) ions are bridged by a single oxido ligand, with an Mn—O distance of 1.7600 (3) Å and an Mn—O—Mn bridging angle of 176.1 (2)°. The bridging O2− ligand is located on a twofold rotation axis, resulting in point group 2 for the entire complex. The MnIII atom is displaced out of the 24-atom mean plane of the porphyrine entity by 0.52 Å. C—H⋯π and π–π inter­actions help to stabilize the mol­ecular packing within the crystal structure. graphic file with name x-07-x220869-scheme1-3D1.jpg

Structure description

Binuclear manganese species, including bridging oxido ligands, are an essential component in several metalloenzymes (Boal et al., 2012; Teutloff et al., 2005; Wieghardt, 1989). The protonation and deprotonation of the oxido bridge are thought to be important in the catalytic cycle of the redox enzymes (Chen & Yin, 2015; de Boer et al., 2007). Scheidt and co-workers previously reported that the manganese(III) μ-hydroxido derivatives {[Mn(OEP)]2(OH)}ClO4 (OEP = octa­ethyl­porphyrinate) and {[Mn(TPP)]2(OH)}ClO4 (TPP = tetra­phenyl­porphyrinate) can be prepared by controlled hydrolysis of corresponding monomeric precursor (Cheng et al., 1995, 1996). The {[Mn(OEP)]2(OH)}ClO4 and {[Mn(TPP)]2(OH)}ClO4 complexes exhibit an average Mn—O distance of 2.011 (18) and 2.026 (1) Å, and an Mn—O(H)—Mn bridging angle of 152.73 (11) and 160.4 (8)°, respectively. The two MnIII ions are displaced by 0.48 and 0.52 Å from their respective 24-atom mean plane. It is inter­esting to note that the μ-oxido species [Mn(OEP)]2O is very unstable in halocarbon solvents (Cheng et al., 1995). In the current report, a new manganese(III) μ-oxido porphyrin derivative, [Mn(TPP)]2O, is characterized.

In the crystal structure of the title complex, the asymmetric unit contains one deprotoanted porphyrin mol­ecule located in general position and an oxygen atom on a twofold rotation axis (Wyckoff position 4a). Figs. 1 and 2 graphically represent the mol­ecular structure of the title μ-oxido complex. As can be seen, the two penta­coordinate manganese(III) ions in [Mn(TPP)]2O are bridged by a single oxido ligand with an Mn—O distance of 1.7600 (3) Å and an Mn—O—Mn bridging angle of 176.1 (2)°. The Mn1⋯Mn1′ separation [symmetry code: (’) −x + 1, −y + 1, z) is 3.5180 (5) Å. More qu­anti­tative numerical information is given in Fig. 3, which contains the detailed displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. The average MnIII—Nporphyrin bond length in the porphinato core is 2.080 (1) Å. The manganese atom is displaced by 0.52 Å from its 24-atom mean plane toward the bridging oxido ligand. The average value for the O—Mn—Nporphyrin angle is 103 (2)°. The two porphyrin rings are found to be nearly parallel to each other with dihedral angles of 4.08 (8) and 3.68 (8)° between the mean planes of the 24-atom core and the core formed by the four coordinating nitro­gen atoms. In comparison with the reported structure of {[MnII(TPP)]2(OH)}ClO4, the title compound shows virtually the same metal displacement from the 24-atom mean plane (0.52 Å), while a larger Mn—O—Mn bridging angle [176.1 (2) versus. 160.4 (8)°] and a shorter Mn—O distance [1.7600 (3) versus. 2.026 (1) Å] is observed.

Figure 1.

Figure 1

Edge-view of the dinuclear complex of the title compound with displacement elliposids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 2.

Figure 2

Top-view of the of the dinuclear complex of the title compound with displacement elliposids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Primed atoms are generated by symmetry operation −x + 1, −y + 1, z.

Figure 3.

Figure 3

A formal diagram of the porphyrin core of the title compound. Averaged values of the chemically unique bond lengths (Å) and angles (°) are shown. The numbers in parentheses are the e.s.d.s calculated on the assumption that the averaged values were all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive numbers indicate a displacement toward the central metal atom.

C—H⋯π and π–π inter­actions are found between the packed mol­ecules, which is illustrated in Fig. 4. As can be seen, the inter­planar distance between the relevant centroids of the rings in the π–π stacking inter­actions is 4.3548 (19) Å, with a slippage of 2.139 Å. The distance between H18 and the relevant centroids of the rings in the C—H⋯π inter­actions is 2.89 Å with an angle of 161°. The mol­ecular packing of the title compound is shown in Fig. 5.

Figure 4.

Figure 4

Relevant inter­molecular C—H⋯π and π–π inter­actions in the crystal structure of the title compound.

Figure 5.

Figure 5

A view of the mol­ecular packing in the crystal structure of the title compound, as seen in a projection along [001]. H atoms are omitted for clarity.

Synthesis and crystallization

Unless otherwise noted, all experimental manipulations were performed under argon atmosphere using double-manifold vacuum lines, Schlenk ware and cannula techniques. Except for the solvent used in column chromatography, all solvents used in the experimental process were treated under anhydrous and anaerobic conditions with the pump–freeze–thaw method three times before use. Chloro­benzene and n-hexane were distilled over P2O5 and potassium-sodium alloy, respectively. H2TPP and [Mn(TPP)]Cl were prepared according to literature protocols (Adler et al., 1967; Fleischer et al., 1971).

The title compound was prepared following a reported procedure (He et al., 2016). Solid [Mn(TPP)]Cl was dissolved in di­chloro­methane and then shaken vigorously three times with 3 M KOH solution. To remove the alkali, the above system was washed with water for an additional two times. To grow single crystals, [Mn(TPP)]2O (10 mg) was dissolved in 4 ml of chloro­benzene and cannula-transferred into 8 mm glass tubes, then carefully layered with hexa­nes before sealing the tubes. X-ray quality crystals were obtained several weeks later.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystal studied was refined as an inversion twin.

Table 1. Experimental details.

Crystal data
Chemical formula [Mn2(C44H28N4)2O]
M r 1351.28
Crystal system, space group Orthorhombic, A e a2
Temperature (K) 100
a, b, c (Å) 17.7931 (6), 24.9494 (10), 15.0943 (6)
V3) 6700.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.41 × 0.23 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.678, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21252, 7046, 6344
R int 0.032
(sin θ/λ)max−1) 0.633
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.062, 1.05
No. of reflections 7046
No. of parameters 449
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.25
Absolute structure Refined as an inversion twin
Absolute structure parameter −0.059 (15)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015), OLEX2 Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622008690/wm4172sup1.cif

x-07-x220869-sup1.cif (661.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622008690/wm4172Isup2.hkl

x-07-x220869-Isup2.hkl (560.2KB, hkl)

CCDC reference: 2204345

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Mn2(C44H28N4)2O] Dx = 1.339 Mg m3
Mr = 1351.28 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aea2 Cell parameters from 9989 reflections
a = 17.7931 (6) Å θ = 2.7–26.7°
b = 24.9494 (10) Å µ = 0.43 mm1
c = 15.0943 (6) Å T = 100 K
V = 6700.8 (4) Å3 Block, black
Z = 4 0.41 × 0.23 × 0.17 mm
F(000) = 2792

Data collection

Bruker APEXII CCD diffractometer 6344 reflections with I > 2σ(I)
φ and ω scans Rint = 0.032
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.8°, θmin = 2.0°
Tmin = 0.678, Tmax = 0.745 h = −19→22
21252 measured reflections k = −31→27
7046 independent reflections l = −18→19

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0273P)2 + 0.6595P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029 (Δ/σ)max = 0.001
wR(F2) = 0.062 Δρmax = 0.23 e Å3
S = 1.05 Δρmin = −0.25 e Å3
7046 reflections Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
449 parameters Extinction coefficient: 0.00274 (19)
1 restraint Absolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sites Absolute structure parameter: −0.059 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.59854 (2) 0.49435 (2) 0.50101 (3) 0.01028 (9)
O1 0.5000 0.5000 0.5050 (2) 0.0183 (5)
N1 0.61443 (11) 0.45594 (8) 0.38016 (14) 0.0163 (5)
N2 0.63778 (12) 0.56330 (8) 0.43879 (14) 0.0166 (4)
N3 0.63396 (11) 0.52824 (8) 0.61960 (14) 0.0160 (4)
N4 0.61553 (12) 0.42032 (8) 0.56135 (14) 0.0169 (5)
C1 0.57883 (14) 0.30639 (10) 0.40144 (17) 0.0200 (6)
C2 0.63612 (16) 0.26904 (11) 0.3961 (2) 0.0341 (7)
H2 0.6862 0.2796 0.4095 0.041*
C3 0.62179 (19) 0.21669 (13) 0.3716 (2) 0.0403 (8)
H3 0.6620 0.1917 0.3679 0.048*
C4 0.55011 (18) 0.20063 (12) 0.3525 (2) 0.0349 (7)
H4 0.5404 0.1647 0.3351 0.042*
C5 0.49248 (19) 0.23687 (14) 0.3588 (3) 0.0510 (10)
H5 0.4423 0.2257 0.3476 0.061*
C6 0.50693 (16) 0.28986 (13) 0.3815 (3) 0.0426 (9)
H6 0.4668 0.3149 0.3833 0.051*
C7 0.63425 (14) 0.55338 (10) 0.18751 (18) 0.0196 (6)
C8 0.68001 (14) 0.52864 (11) 0.12510 (16) 0.0213 (6)
H8 0.7108 0.4993 0.1422 0.026*
C9 0.68110 (15) 0.54645 (12) 0.03763 (18) 0.0259 (6)
H9 0.7119 0.5288 −0.0047 0.031*
C10 0.63767 (15) 0.58949 (11) 0.0123 (2) 0.0271 (6)
H10 0.6387 0.6016 −0.0473 0.033*
C11 0.59247 (16) 0.61507 (11) 0.07395 (18) 0.0264 (6)
H11 0.5629 0.6450 0.0568 0.032*
C12 0.59039 (14) 0.59682 (10) 0.16089 (17) 0.0211 (6)
H12 0.5587 0.6141 0.2027 0.025*
C13 0.66755 (14) 0.67787 (10) 0.59981 (17) 0.0192 (6)
C14 0.61128 (17) 0.71615 (12) 0.5948 (2) 0.0371 (8)
H14 0.5629 0.7065 0.5735 0.045*
C15 0.6253 (2) 0.76868 (12) 0.6209 (3) 0.0487 (10)
H15 0.5865 0.7947 0.6166 0.058*
C16 0.69473 (18) 0.78319 (11) 0.6529 (2) 0.0357 (7)
H16 0.7039 0.8190 0.6714 0.043*
C17 0.75077 (17) 0.74531 (10) 0.6578 (2) 0.0296 (6)
H17 0.7990 0.7550 0.6796 0.036*
C18 0.73730 (15) 0.69298 (10) 0.63100 (18) 0.0252 (6)
H18 0.7766 0.6672 0.6342 0.030*
C19 0.63196 (15) 0.43060 (10) 0.81157 (17) 0.0174 (5)
C20 0.57065 (16) 0.43678 (11) 0.86761 (18) 0.0259 (6)
H20 0.5252 0.4514 0.8451 0.031*
C21 0.57487 (17) 0.42202 (12) 0.95577 (19) 0.0305 (7)
H21 0.5328 0.4271 0.9936 0.037*
C22 0.64033 (16) 0.39993 (11) 0.9886 (2) 0.0279 (6)
H22 0.6432 0.3891 1.0489 0.034*
C23 0.70126 (16) 0.39374 (12) 0.93393 (19) 0.0326 (7)
H23 0.7465 0.3790 0.9567 0.039*
C24 0.69735 (15) 0.40887 (12) 0.84570 (18) 0.0285 (6)
H24 0.7399 0.4043 0.8084 0.034*
C(A1 0.59878 (14) 0.40270 (11) 0.36534 (17) 0.0169 (6)
C(A2 0.61536 (14) 0.48008 (11) 0.29787 (17) 0.0175 (5)
C(A3 0.64614 (14) 0.57202 (10) 0.34861 (17) 0.0172 (6)
C(A4 0.65444 (13) 0.61138 (10) 0.47894 (16) 0.0178 (6)
C(A5 0.64461 (14) 0.58203 (11) 0.63499 (16) 0.0175 (6)
C(A6 0.63481 (14) 0.50402 (10) 0.70127 (17) 0.0163 (6)
C(A7 0.61839 (14) 0.41017 (11) 0.65087 (17) 0.0173 (6)
C(A8 0.60215 (13) 0.37132 (10) 0.52147 (17) 0.0177 (6)
C(B1 0.58917 (14) 0.39337 (10) 0.27237 (17) 0.0206 (6)
H(B1 0.5787 0.3599 0.2450 0.025*
C(B2 0.59773 (14) 0.44095 (11) 0.23092 (18) 0.0216 (6)
H(B2 0.5930 0.4474 0.1691 0.026*
C(B3 0.67141 (14) 0.62609 (10) 0.33387 (17) 0.0205 (6)
H(B3 0.6830 0.6418 0.2782 0.025*
C(B4 0.67566 (13) 0.65027 (10) 0.41336 (17) 0.0193 (5)
H(B4 0.6900 0.6864 0.4241 0.023*
C(B5 0.65163 (15) 0.59149 (11) 0.72899 (17) 0.0214 (6)
H(B5 0.6588 0.6252 0.7571 0.026*
C(B6 0.64606 (15) 0.54341 (10) 0.76930 (18) 0.0212 (6)
H(B6 0.6490 0.5368 0.8312 0.025*
C(B7 0.60762 (14) 0.35390 (10) 0.66730 (18) 0.0219 (6)
H(B7 0.6077 0.3368 0.7235 0.026*
C(B8 0.59734 (15) 0.33004 (11) 0.58816 (18) 0.0212 (6)
H(B8 0.5886 0.2930 0.5781 0.025*
C(M1 0.59397 (13) 0.36267 (10) 0.43050 (17) 0.0181 (5)
C(M2 0.63186 (14) 0.53413 (10) 0.28190 (18) 0.0171 (5)
C(M3 0.65360 (14) 0.62145 (10) 0.56998 (17) 0.0176 (5)
C(M4 0.62837 (14) 0.44908 (10) 0.71700 (17) 0.0171 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.01042 (14) 0.01132 (17) 0.00910 (15) 0.00002 (12) −0.00037 (17) −0.00131 (17)
O1 0.0170 (10) 0.0199 (11) 0.0180 (11) 0.0008 (9) 0.000 0.000
N1 0.0180 (10) 0.0171 (11) 0.0137 (12) 0.0010 (8) 0.0005 (9) −0.0010 (9)
N2 0.0175 (11) 0.0181 (11) 0.0142 (11) −0.0016 (9) −0.0006 (9) −0.0026 (9)
N3 0.0174 (10) 0.0150 (11) 0.0156 (12) −0.0016 (9) −0.0009 (9) −0.0011 (9)
N4 0.0172 (11) 0.0193 (11) 0.0142 (11) 0.0015 (8) −0.0007 (8) −0.0015 (9)
C1 0.0250 (13) 0.0190 (14) 0.0160 (13) −0.0013 (11) −0.0002 (11) −0.0011 (11)
C2 0.0252 (14) 0.0251 (15) 0.052 (2) 0.0011 (12) −0.0058 (15) −0.0135 (14)
C3 0.0412 (19) 0.0241 (16) 0.056 (2) 0.0065 (14) −0.0102 (16) −0.0148 (15)
C4 0.0436 (18) 0.0206 (15) 0.0406 (18) −0.0059 (13) 0.0022 (14) −0.0093 (13)
C5 0.0302 (18) 0.043 (2) 0.080 (3) −0.0106 (15) 0.0043 (17) −0.0316 (19)
C6 0.0236 (15) 0.0313 (17) 0.073 (3) −0.0005 (12) 0.0015 (16) −0.0262 (17)
C7 0.0182 (13) 0.0219 (14) 0.0187 (15) −0.0048 (11) −0.0009 (11) −0.0011 (11)
C8 0.0174 (12) 0.0272 (14) 0.0193 (14) −0.0031 (11) −0.0009 (11) −0.0014 (11)
C9 0.0250 (14) 0.0357 (16) 0.0168 (13) −0.0059 (12) 0.0049 (11) −0.0036 (11)
C10 0.0327 (15) 0.0347 (15) 0.0140 (15) −0.0077 (11) −0.0023 (13) 0.0040 (13)
C11 0.0289 (15) 0.0268 (15) 0.0236 (15) −0.0019 (12) −0.0068 (12) 0.0020 (12)
C12 0.0207 (13) 0.0246 (14) 0.0180 (14) −0.0011 (10) −0.0003 (11) −0.0002 (11)
C13 0.0235 (13) 0.0192 (14) 0.0150 (12) −0.0020 (11) −0.0006 (10) −0.0012 (10)
C14 0.0287 (16) 0.0281 (17) 0.054 (2) 0.0050 (13) −0.0121 (15) −0.0153 (15)
C15 0.047 (2) 0.0242 (17) 0.075 (3) 0.0119 (15) −0.0185 (19) −0.0161 (18)
C16 0.0488 (19) 0.0177 (14) 0.0405 (18) −0.0043 (13) −0.0099 (15) −0.0064 (13)
C17 0.0316 (15) 0.0279 (16) 0.0294 (15) −0.0100 (13) −0.0027 (12) −0.0039 (12)
C18 0.0265 (15) 0.0236 (14) 0.0255 (14) −0.0024 (11) −0.0008 (12) −0.0022 (11)
C19 0.0198 (13) 0.0182 (13) 0.0142 (13) −0.0024 (10) 0.0005 (10) −0.0017 (10)
C20 0.0201 (13) 0.0352 (17) 0.0224 (15) 0.0035 (12) 0.0018 (11) 0.0039 (12)
C21 0.0295 (16) 0.0397 (17) 0.0224 (15) 0.0003 (14) 0.0100 (12) 0.0039 (13)
C22 0.0382 (16) 0.0288 (15) 0.0168 (16) 0.0017 (11) 0.0005 (13) 0.0035 (12)
C23 0.0291 (16) 0.0488 (19) 0.0199 (14) 0.0099 (14) −0.0055 (12) 0.0044 (13)
C24 0.0232 (14) 0.0415 (17) 0.0207 (14) 0.0047 (13) 0.0017 (11) 0.0021 (12)
C(A1 0.0164 (13) 0.0188 (14) 0.0156 (14) 0.0014 (10) 0.0002 (10) −0.0030 (11)
C(A2 0.0174 (13) 0.0204 (14) 0.0146 (14) 0.0022 (11) 0.0010 (10) −0.0024 (11)
C(A3 0.0152 (12) 0.0221 (15) 0.0143 (13) 0.0001 (10) 0.0015 (10) 0.0002 (11)
C(A4 0.0147 (12) 0.0181 (13) 0.0205 (15) −0.0006 (10) −0.0002 (10) −0.0023 (10)
C(A5 0.0187 (13) 0.0202 (14) 0.0137 (13) −0.0002 (11) −0.0010 (10) −0.0033 (11)
C(A6 0.0168 (13) 0.0197 (15) 0.0125 (13) −0.0003 (10) 0.0004 (10) −0.0030 (10)
C(A7 0.0186 (13) 0.0182 (14) 0.0151 (14) 0.0039 (11) −0.0014 (10) 0.0001 (10)
C(A8 0.0174 (12) 0.0139 (12) 0.0217 (16) 0.0021 (9) −0.0014 (10) −0.0036 (10)
C(B1 0.0233 (14) 0.0209 (14) 0.0177 (13) −0.0017 (11) −0.0015 (10) −0.0053 (11)
C(B2 0.0226 (14) 0.0270 (15) 0.0151 (14) −0.0004 (11) −0.0005 (11) −0.0030 (11)
C(B3 0.0202 (13) 0.0215 (14) 0.0198 (14) −0.0008 (11) 0.0014 (11) 0.0035 (11)
C(B4 0.0193 (12) 0.0176 (13) 0.0209 (14) −0.0031 (10) −0.0003 (10) 0.0009 (11)
C(B5 0.0254 (14) 0.0205 (14) 0.0184 (14) −0.0016 (11) 0.0002 (11) −0.0066 (11)
C(B6 0.0274 (14) 0.0220 (15) 0.0141 (14) −0.0008 (12) 0.0000 (11) −0.0019 (11)
C(B7 0.0261 (14) 0.0193 (14) 0.0205 (14) 0.0021 (11) −0.0017 (11) 0.0003 (11)
C(B8 0.0267 (14) 0.0151 (14) 0.0217 (14) 0.0004 (11) −0.0020 (11) 0.0005 (11)
C(M1 0.0167 (13) 0.0197 (14) 0.0179 (14) 0.0021 (10) −0.0007 (10) −0.0040 (11)
C(M2 0.0150 (12) 0.0210 (14) 0.0152 (14) 0.0004 (11) 0.0002 (10) 0.0011 (11)
C(M3 0.0138 (12) 0.0181 (13) 0.0211 (14) 0.0002 (10) −0.0005 (11) −0.0033 (11)
C(M4 0.0152 (12) 0.0198 (14) 0.0162 (14) 0.0006 (10) −0.0007 (10) 0.0002 (11)

Geometric parameters (Å, º)

Mn1—O1 1.7600 (3) C16—H16 0.9500
Mn1—N1 2.080 (2) C16—C17 1.376 (4)
Mn1—N2 2.081 (2) C17—H17 0.9500
Mn1—N3 2.078 (2) C17—C18 1.388 (3)
Mn1—N4 2.081 (2) C18—H18 0.9500
O1—Mn1i 1.7599 (3) C19—C20 1.389 (4)
N1—C(A1 1.375 (4) C19—C24 1.383 (4)
N1—C(A2 1.380 (3) C19—C(M4 1.502 (4)
N2—C(A3 1.386 (3) C20—H20 0.9500
N2—C(A4 1.376 (3) C20—C21 1.383 (4)
N3—C(A5 1.375 (3) C21—H21 0.9500
N3—C(A6 1.373 (3) C21—C22 1.381 (4)
N4—C(A7 1.376 (3) C22—H22 0.9500
N4—C(A8 1.383 (3) C22—C23 1.371 (4)
C1—C2 1.384 (4) C23—H23 0.9500
C1—C6 1.377 (4) C23—C24 1.386 (4)
C1—C(M1 1.495 (4) C24—H24 0.9500
C2—H2 0.9500 C(A1—C(B1 1.433 (4)
C2—C3 1.381 (4) C(A1—C(M1 1.404 (4)
C3—H3 0.9500 C(A2—C(B2 1.440 (4)
C3—C4 1.367 (4) C(A2—C(M2 1.401 (4)
C4—H4 0.9500 C(A3—C(B3 1.439 (4)
C4—C5 1.370 (5) C(A3—C(M2 1.404 (4)
C5—H5 0.9500 C(A4—C(B4 1.436 (3)
C5—C6 1.390 (4) C(A4—C(M3 1.397 (4)
C6—H6 0.9500 C(A5—C(B5 1.444 (4)
C7—C8 1.390 (4) C(A5—C(M3 1.399 (4)
C7—C12 1.395 (4) C(A6—C(B6 1.435 (4)
C7—C(M2 1.504 (4) C(A6—C(M4 1.396 (3)
C8—H8 0.9500 C(A7—C(B7 1.438 (4)
C8—C9 1.393 (4) C(A7—C(M4 1.404 (4)
C9—H9 0.9500 C(A8—C(B8 1.443 (4)
C9—C10 1.377 (4) C(A8—C(M1 1.398 (4)
C10—H10 0.9500 C(B1—H(B1 0.9500
C10—C11 1.385 (4) C(B1—C(B2 1.351 (4)
C11—H11 0.9500 C(B2—H(B2 0.9500
C11—C12 1.390 (4) C(B3—H(B3 0.9500
C12—H12 0.9500 C(B3—C(B4 1.345 (4)
C13—C14 1.386 (4) C(B4—H(B4 0.9500
C13—C18 1.380 (3) C(B5—H(B5 0.9500
C13—C(M3 1.499 (3) C(B5—C(B6 1.349 (4)
C14—H14 0.9500 C(B6—H(B6 0.9500
C14—C15 1.391 (4) C(B7—H(B7 0.9500
C15—H15 0.9500 C(B7—C(B8 1.347 (4)
C15—C16 1.375 (4) C(B8—H(B8 0.9500
O1—Mn1—N1 101.66 (12) C24—C19—C20 118.5 (2)
O1—Mn1—N2 106.46 (8) C24—C19—C(M4 120.7 (2)
O1—Mn1—N3 103.90 (12) C19—C20—H20 119.5
O1—Mn1—N4 101.59 (8) C21—C20—C19 120.9 (3)
N1—Mn1—N2 86.53 (8) C21—C20—H20 119.5
N1—Mn1—N4 87.44 (8) C20—C21—H21 120.1
N2—Mn1—N4 151.94 (9) C22—C21—C20 119.9 (3)
N3—Mn1—N1 154.41 (8) C22—C21—H21 120.1
N3—Mn1—N2 87.17 (8) C21—C22—H22 120.1
N3—Mn1—N4 86.56 (8) C23—C22—C21 119.7 (3)
Mn1i—O1—Mn1 176.1 (2) C23—C22—H22 120.1
C(A1—N1—Mn1 124.06 (16) C22—C23—H23 119.7
C(A1—N1—C(A2 106.1 (2) C22—C23—C24 120.5 (3)
C(A2—N1—Mn1 126.14 (17) C24—C23—H23 119.7
C(A3—N2—Mn1 127.51 (17) C19—C24—C23 120.5 (3)
C(A4—N2—Mn1 126.46 (17) C19—C24—H24 119.8
C(A4—N2—C(A3 105.8 (2) C23—C24—H24 119.8
C(A5—N3—Mn1 125.77 (17) N1—C(A1—C(B1 109.9 (2)
C(A6—N3—Mn1 126.71 (16) N1—C(A1—C(M1 125.8 (2)
C(A6—N3—C(A5 106.0 (2) C(M1—C(A1—C(B1 124.3 (2)
C(A7—N4—Mn1 126.77 (17) N1—C(A2—C(B2 109.5 (2)
C(A7—N4—C(A8 105.7 (2) N1—C(A2—C(M2 125.3 (2)
C(A8—N4—Mn1 124.67 (16) C(M2—C(A2—C(B2 125.3 (2)
C2—C1—C(M1 121.1 (2) N2—C(A3—C(B3 109.4 (2)
C6—C1—C2 118.0 (3) N2—C(A3—C(M2 125.4 (2)
C6—C1—C(M1 120.8 (2) C(M2—C(A3—C(B3 125.2 (2)
C1—C2—H2 119.4 N2—C(A4—C(B4 110.0 (2)
C3—C2—C1 121.1 (3) N2—C(A4—C(M3 126.0 (2)
C3—C2—H2 119.4 C(M3—C(A4—C(B4 124.0 (2)
C2—C3—H3 119.8 N3—C(A5—C(B5 109.7 (2)
C4—C3—C2 120.4 (3) N3—C(A5—C(M3 125.7 (2)
C4—C3—H3 119.8 C(M3—C(A5—C(B5 124.4 (2)
C3—C4—H4 120.3 N3—C(A6—C(B6 110.0 (2)
C3—C4—C5 119.3 (3) N3—C(A6—C(M4 125.7 (2)
C5—C4—H4 120.3 C(M4—C(A6—C(B6 124.2 (2)
C4—C5—H5 119.8 N4—C(A7—C(B7 110.1 (2)
C4—C5—C6 120.4 (3) N4—C(A7—C(M4 125.2 (2)
C6—C5—H5 119.8 C(M4—C(A7—C(B7 124.7 (2)
C1—C6—C5 120.7 (3) N4—C(A8—C(B8 109.7 (2)
C1—C6—H6 119.6 N4—C(A8—C(M1 125.6 (2)
C5—C6—H6 119.6 C(M1—C(A8—C(B8 124.7 (2)
C8—C7—C12 118.5 (2) C(A1—C(B1—H(B1 126.4
C8—C7—C(M2 121.1 (2) C(B2—C(B1—C(A1 107.3 (2)
C12—C7—C(M2 120.4 (2) C(B2—C(B1—H(B1 126.4
C7—C8—H8 119.7 C(A2—C(B2—H(B2 126.4
C7—C8—C9 120.6 (3) C(B1—C(B2—C(A2 107.2 (2)
C9—C8—H8 119.7 C(B1—C(B2—H(B2 126.4
C8—C9—H9 119.9 C(A3—C(B3—H(B3 126.3
C10—C9—C8 120.2 (3) C(B4—C(B3—C(A3 107.5 (2)
C10—C9—H9 119.9 C(B4—C(B3—H(B3 126.3
C9—C10—H10 120.0 C(A4—C(B4—H(B4 126.4
C9—C10—C11 119.9 (3) C(B3—C(B4—C(A4 107.3 (2)
C11—C10—H10 120.0 C(B3—C(B4—H(B4 126.4
C10—C11—H11 120.1 C(A5—C(B5—H(B5 126.5
C10—C11—C12 119.9 (3) C(B6—C(B5—C(A5 107.0 (2)
C12—C11—H11 120.1 C(B6—C(B5—H(B5 126.5
C7—C12—H12 119.6 C(A6—C(B6—H(B6 126.4
C11—C12—C7 120.8 (2) C(B5—C(B6—C(A6 107.2 (2)
C11—C12—H12 119.6 C(B5—C(B6—H(B6 126.4
C14—C13—C(M3 120.8 (2) C(A7—C(B7—H(B7 126.4
C18—C13—C14 118.7 (3) C(B8—C(B7—C(A7 107.3 (2)
C18—C13—C(M3 120.5 (2) C(B8—C(B7—H(B7 126.4
C13—C14—H14 119.8 C(A8—C(B8—H(B8 126.4
C13—C14—C15 120.3 (3) C(B7—C(B8—C(A8 107.2 (2)
C15—C14—H14 119.8 C(B7—C(B8—H(B8 126.4
C14—C15—H15 119.7 C(A1—C(M1—C1 118.2 (2)
C16—C15—C14 120.6 (3) C(A8—C(M1—C1 116.9 (2)
C16—C15—H15 119.7 C(A8—C(M1—C(A1 124.9 (2)
C15—C16—H16 120.4 C(A2—C(M2—C7 118.4 (2)
C15—C16—C17 119.3 (3) C(A2—C(M2—C(A3 124.2 (2)
C17—C16—H16 120.4 C(A3—C(M2—C7 117.3 (2)
C16—C17—H17 119.8 C(A4—C(M3—C13 117.6 (2)
C16—C17—C18 120.4 (3) C(A4—C(M3—C(A5 124.4 (2)
C18—C17—H17 119.8 C(A5—C(M3—C13 117.9 (2)
C13—C18—C17 120.8 (3) C(A6—C(M4—C19 117.4 (2)
C13—C18—H18 119.6 C(A6—C(M4—C(A7 124.7 (2)
C17—C18—H18 119.6 C(A7—C(M4—C19 118.0 (2)
C20—C19—C(M4 120.8 (2)
Mn1—N1—C(A1—C(B1 158.96 (17) C16—C17—C18—C13 −0.6 (4)
Mn1—N1—C(A1—C(M1 −22.0 (3) C18—C13—C14—C15 0.0 (5)
Mn1—N1—C(A2—C(B2 −157.21 (17) C18—C13—C(M3—C(A4 −100.6 (3)
Mn1—N1—C(A2—C(M2 23.5 (3) C18—C13—C(M3—C(A5 76.1 (3)
Mn1—N2—C(A3—C(B3 177.13 (16) C19—C20—C21—C22 −1.2 (5)
Mn1—N2—C(A3—C(M2 −2.6 (4) C20—C19—C24—C23 −0.1 (4)
Mn1—N2—C(A4—C(B4 −176.57 (16) C20—C19—C(M4—C(A6 76.7 (3)
Mn1—N2—C(A4—C(M3 5.3 (4) C20—C19—C(M4—C(A7 −103.0 (3)
Mn1—N3—C(A5—C(B5 166.36 (17) C20—C21—C22—C23 1.3 (5)
Mn1—N3—C(A5—C(M3 −18.5 (4) C21—C22—C23—C24 −0.8 (5)
Mn1—N3—C(A6—C(B6 −166.57 (17) C22—C23—C24—C19 0.2 (5)
Mn1—N3—C(A6—C(M4 15.5 (4) C24—C19—C20—C21 0.5 (4)
Mn1—N4—C(A7—C(B7 162.21 (17) C24—C19—C(M4—C(A6 −100.9 (3)
Mn1—N4—C(A7—C(M4 −16.2 (4) C24—C19—C(M4—C(A7 79.4 (3)
Mn1—N4—C(A8—C(B8 −162.46 (16) C(A1—N1—C(A2—C(B2 1.7 (3)
Mn1—N4—C(A8—C(M1 17.2 (3) C(A1—N1—C(A2—C(M2 −177.6 (2)
N1—C(A1—C(B1—C(B2 −1.0 (3) C(A1—C(B1—C(B2—C(A2 1.9 (3)
N1—C(A1—C(M1—C1 −178.0 (2) C(A2—N1—C(A1—C(B1 −0.5 (3)
N1—C(A1—C(M1—C(A8 2.1 (4) C(A2—N1—C(A1—C(M1 178.5 (2)
N1—C(A2—C(B2—C(B1 −2.3 (3) C(A3—N2—C(A4—C(B4 −1.7 (3)
N1—C(A2—C(M2—C7 176.9 (2) C(A3—N2—C(A4—C(M3 −179.8 (2)
N1—C(A2—C(M2—C(A3 −3.4 (4) C(A3—C(B3—C(B4—C(A4 1.0 (3)
N2—C(A3—C(B3—C(B4 −2.2 (3) C(A4—N2—C(A3—C(B3 2.3 (3)
N2—C(A3—C(M2—C7 172.0 (2) C(A4—N2—C(A3—C(M2 −177.4 (2)
N2—C(A3—C(M2—C(A2 −7.7 (4) C(A5—N3—C(A6—C(B6 0.1 (3)
N2—C(A4—C(B4—C(B3 0.4 (3) C(A5—N3—C(A6—C(M4 −177.8 (2)
N2—C(A4—C(M3—C13 −175.2 (2) C(A5—C(B5—C(B6—C(A6 −0.6 (3)
N2—C(A4—C(M3—C(A5 8.3 (4) C(A6—N3—C(A5—C(B5 −0.5 (3)
N3—C(A5—C(B5—C(B6 0.7 (3) C(A6—N3—C(A5—C(M3 174.6 (2)
N3—C(A5—C(M3—C13 −177.7 (2) C(A7—N4—C(A8—C(B8 −0.5 (3)
N3—C(A5—C(M3—C(A4 −1.3 (4) C(A7—N4—C(A8—C(M1 179.1 (2)
N3—C(A6—C(B6—C(B5 0.3 (3) C(A7—C(B7—C(B8—C(A8 0.4 (3)
N3—C(A6—C(M4—C19 179.0 (2) C(A8—N4—C(A7—C(B7 0.7 (3)
N3—C(A6—C(M4—C(A7 −1.4 (4) C(A8—N4—C(A7—C(M4 −177.7 (2)
N4—C(A7—C(B7—C(B8 −0.7 (3) C(B1—C(A1—C(M1—C1 0.8 (4)
N4—C(A7—C(M4—C19 −178.6 (2) C(B1—C(A1—C(M1—C(A8 −179.0 (2)
N4—C(A7—C(M4—C(A6 1.8 (4) C(B2—C(A2—C(M2—C7 −2.2 (4)
N4—C(A8—C(B8—C(B7 0.1 (3) C(B2—C(A2—C(M2—C(A3 177.5 (3)
N4—C(A8—C(M1—C1 −179.3 (2) C(B3—C(A3—C(M2—C7 −7.7 (4)
N4—C(A8—C(M1—C(A1 0.6 (4) C(B3—C(A3—C(M2—C(A2 172.6 (2)
C1—C2—C3—C4 −0.4 (5) C(B4—C(A4—C(M3—C13 7.0 (4)
C2—C1—C6—C5 1.5 (5) C(B4—C(A4—C(M3—C(A5 −169.5 (2)
C2—C1—C(M1—C(A1 101.4 (3) C(B5—C(A5—C(M3—C13 −3.3 (4)
C2—C1—C(M1—C(A8 −78.8 (3) C(B5—C(A5—C(M3—C(A4 173.2 (3)
C2—C3—C4—C5 −0.6 (5) C(B6—C(A6—C(M4—C19 1.3 (4)
C3—C4—C5—C6 2.1 (6) C(B6—C(A6—C(M4—C(A7 −179.1 (3)
C4—C5—C6—C1 −2.5 (6) C(B7—C(A7—C(M4—C19 3.2 (4)
C6—C1—C2—C3 −0.1 (5) C(B7—C(A7—C(M4—C(A6 −176.4 (2)
C6—C1—C(M1—C(A1 −80.4 (4) C(B8—C(A8—C(M1—C1 0.3 (4)
C6—C1—C(M1—C(A8 99.5 (3) C(B8—C(A8—C(M1—C(A1 −179.8 (2)
C7—C8—C9—C10 1.1 (4) C(M1—C1—C2—C3 178.2 (3)
C8—C7—C12—C11 −0.1 (4) C(M1—C1—C6—C5 −176.8 (3)
C8—C7—C(M2—C(A2 −54.8 (3) C(M1—C(A1—C(B1—C(B2 −180.0 (2)
C8—C7—C(M2—C(A3 125.5 (3) C(M1—C(A8—C(B8—C(B7 −179.6 (2)
C8—C9—C10—C11 −0.3 (4) C(M2—C7—C8—C9 179.3 (2)
C9—C10—C11—C12 −0.8 (4) C(M2—C7—C12—C11 179.7 (2)
C10—C11—C12—C7 1.0 (4) C(M2—C(A2—C(B2—C(B1 176.9 (2)
C12—C7—C8—C9 −0.9 (4) C(M2—C(A3—C(B3—C(B4 177.6 (2)
C12—C7—C(M2—C(A2 125.4 (3) C(M3—C13—C14—C15 −178.6 (3)
C12—C7—C(M2—C(A3 −54.3 (3) C(M3—C13—C18—C17 179.3 (3)
C13—C14—C15—C16 −0.7 (6) C(M3—C(A4—C(B4—C(B3 178.6 (2)
C14—C13—C18—C17 0.7 (4) C(M3—C(A5—C(B5—C(B6 −174.5 (2)
C14—C13—C(M3—C(A4 78.0 (3) C(M4—C19—C20—C21 −177.1 (3)
C14—C13—C(M3—C(A5 −105.3 (3) C(M4—C19—C24—C23 177.5 (3)
C14—C15—C16—C17 0.9 (6) C(M4—C(A6—C(B6—C(B5 178.3 (2)
C15—C16—C17—C18 −0.2 (5) C(M4—C(A7—C(B7—C(B8 177.7 (2)

Symmetry code: (i) −x+1, −y+1, z.

Funding Statement

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21977093); The Strategic Priority Research Program of Chinese Academy of Sciences (grant No. XDB28000000).

References

  1. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476.
  2. Boal, A. K., Cotruvo, J. A. Jr, Stubbe, J. & Rosenzweig, A. C. (2012). Biochemistry, 51, 3861–3871. [DOI] [PMC free article] [PubMed]
  3. Boer, J. W. de, Browne, W. R., Feringa, B. L. & Hage, R. (2007). C. R. Chim. 10, 341–354.
  4. Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, Z. & Yin, G. (2015). Chem. Soc. Rev. 44, 1083–1100. [DOI] [PubMed]
  6. Cheng, B. S., Cukiernik, F., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1995). Inorg. Chem. 34, 4627–4639.
  7. Cheng, B. S., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1996). Inorg. Chem. 35, 1024–1032. [DOI] [PubMed]
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Fleischer, E. B., Palmer, J. M., Srivastava, T. S. & Chatterjee, A. (1971). J. Am. Chem. Soc. 93, 3162–3167. [DOI] [PubMed]
  10. He, M., Li, X., Liu, Y. & Li, J. (2016). Inorg. Chem. 55, 5871–5879. [DOI] [PubMed]
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Teutloff, C., Schäfer, K. O., Sinnecker, S., Barynin, V., Bittl, R., Wieghardt, K., Lendzian, F. & Lubitz, W. (2005). Magn. Reson. Chem. 43, S51–S64. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153–1172.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622008690/wm4172sup1.cif

x-07-x220869-sup1.cif (661.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622008690/wm4172Isup2.hkl

x-07-x220869-Isup2.hkl (560.2KB, hkl)

CCDC reference: 2204345

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES