Skip to main content
IUCrData logoLink to IUCrData
. 2022 Oct 4;7(Pt 10):x220957. doi: 10.1107/S2414314622009579

3-(3-Nitro­phen­yl)-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one

Vinaya a, Yeriyur B Basavaraju a, Holalagudu A Nagma Banu b, Balakrishna Kalluraya b, Hemmige S Yathirajan a,*, Rishik Balerao c, Ray J Butcher d
Editor: M Boltee
PMCID: PMC9638063  PMID: 36405853

The mol­ecule of the title compound is almost planar but with a dihedral angle between the two phenyl rings of 19.22 (5)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming sheets in the (21 Inline graphic ) plane.

Keywords: crystal structure, nitro­benzene, alkyne, chalcone, phenyl ring

Abstract

The structure of the title compound, C18H13NO4, shows that the whole mol­ecule is almost planar but with a dihedral angle between the two phenyl rings of 19.22 (5)°. The mol­ecules are linked by C—H⋯O inter­actions, forming sheets in the (21 Inline graphic ) plane. graphic file with name x-07-x220957-scheme1-3D1.jpg

Structure description

Chalcones are among the leading bioactive flavonoids, with a therapeutic potential implicated to an array of bioactivities that have been investigated by a series of pre­clinical and clinical studies. They contain an α-β unsaturated carbonyl system, which is present in open-chain form, and two aromatic rings are joined through three-carbon atoms (Kozlowski et al., 2007; Raghav & Garg, 2014). Studies depicting the biological activities of chalcones and their derivatives describe their immense significance as anti­diabetic, anti­cancer, anti-inflammatory, anti­microbial, anti­oxidant, anti­parasitic, psychoactive and neuroprotective agents, and their anti­oxidant and enzyme inhibitory activities (Lin et al., 2002; Bhat et al., 2005; Trivedi et al., 2007; Lahtchev et al., 2008; Aneja et al., 2018).

Chalcone as a privileged structure in medicinal chemistry has been reviewed by Zhuang et al. (2017). A comprehensive review of chalcone derivatives as anti­leishmanial agents has also been published (de Mello et al., 2018). The crystal structures of (2E)-1-(4-meth­ylphen­yl)-3-(4-nitro­phen­yl)prop-2-en-1-one (Butcher et al., 2007), (2E)-1-(3-bromo­phen­yl)-3-(4,5-dimeth­oxy-2-nitro­phen­yl)prop-2-en-1-one (Jasinski et al., 2010), (2E)-3-(3-nitro­phen­yl)-1-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one (Fun et al., 2012) and 4′-di­meth­ylamino-3-nitro­chalcone, 3-di­meth­ylamino-3′-nitro­chalcone and 3′-nitro­chalcone (Hall et al., 2020) have been reported.

The present work describes the synthesis and crystal structure of the title compound 3-(3-nitro­phen­yl)-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one (Fig. 1), which crystallizes in the triclinic space group P Inline graphic with one mol­ecule in the asymmetric unit. It consists both a 3-nitro­phenyl group and a (prop-2-yn-1-yl­oxy)benzene group linked to a central chalcone moiety. Even though the C—N bond length is 1.4706 (17) Å and thus single, the nitro group is almost coplanar with its phenyl ring [dihedral angle of 18.94 (6)°] as a result of the steric clash between O1 and H4 and between O2 and H2, respectively. The chalcone group is planar (average deviation from plane of 0.004 Å) and makes dihedral angles of 7.69 (8) and 10.96 (6)° with the 3-nitro­phenyl ring and the phenyl ring of the (prop-2-yn-1-yl­oxy)benzene group, respectively. Lastly, the twist between the two phenyl rings which are linked by the chalcone is 19.22 (5)°.

Figure 1.

Figure 1

Diagram of mol­ecules showing the atom-labelling scheme. Atomic displacement parameters are at the 30% probability level.

The mol­ecules are linked by C–H⋯O inter­actions (Table 1), which form sheets in the (21 Inline graphic ) plane as shown in Fig. 2 . There are no π–π inter­actions between the phenyl rings.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2i 0.901 (18) 2.519 (18) 3.3927 (18) 163.6 (15)

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

Packing diagram for the title compound showing the C–H⋯O inter­actions linking the mol­ecules into sheets in the (21 Inline graphic ) plane.

Synthesis and crystallization

A well-stirred solution of 1-[4-(prop-2-yn­yloxy)phen­yl]ethan­one (1 g, 1 mmol) in 20 ml of ethanol was added slowly to alcoholic potassium hydroxide (0.48 g, 1.5 mmol). To this solution, m-nitro benzaldehyde (1.03 g, 1.2 mmol) was added. The resulting mixture was stirred at room temperature for 30 min. Then, the separated solid from the reaction mixture was filtered, washed with cold water, dried and recrystallized from ethanol:di­methyl­formamide mixture (9:1). Golden yellow crystals (yield: 86%, m.p. 453–454 K). The reaction scheme is shown in Fig. 3. FT–IR: νmax, cm−1 (KBr): 2987 (C—H aliphatic), 2117 (C≡C str), 1650 (C=O), 1518 (asym NO2 stretch),1444 (sym NO2 stretch), 1252 (C—O stretch); 1H NMR (400 MHz, CDCl3, δ p.p.m.): 7.55 (d, 1H, J = 15.7 Hz, olefinic-β), 7.36 (d, 2H, J = 8.8 Hz, Ar—H), 7.28 (d, 2H, J = 8.6 Hz, Ar—H), 7.16 (d, 2H, J = 8.8 Hz, Ar—H), 7.09 (d, 2H, J = 8.3 Hz, Ar—H), 6.73 (d, 1H, J = 15.7 Hz, olefinic-α), 4.46 (s, 2H, O—CH2), 2.79 (s, 1H, acetyl­ene proton).

Figure 3.

Figure 3

Reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C18H13NO4
M r 307.29
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.6534 (16), 8.6079 (15), 11.369 (2)
α, β, γ (°) 94.433 (7), 97.953 (8), 97.019 (7)
V3) 732.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.33 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.634, 0.729
No. of measured, independent and observed [I > 2σ(I)] reflections 47166, 3638, 2700
R int 0.089
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.137, 1.08
No. of reflections 3638
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.21

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622009579/bt4126sup1.cif

x-07-x220957-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622009579/bt4126Isup2.hkl

x-07-x220957-Isup2.hkl (290.1KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622009579/bt4126Isup3.cml

CCDC reference: 2210152

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

V is grateful to the DST–PURSE Project, Vignan Bhavana, UOM, for providing research facilities.

full crystallographic data

Crystal data

C18H13NO4 Z = 2
Mr = 307.29 F(000) = 320
Triclinic, P1 Dx = 1.393 Mg m3
a = 7.6534 (16) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.6079 (15) Å Cell parameters from 9976 reflections
c = 11.369 (2) Å θ = 2.7–32.9°
α = 94.433 (7)° µ = 0.10 mm1
β = 97.953 (8)° T = 100 K
γ = 97.019 (7)° Prism, yellow
V = 732.8 (3) Å3 0.33 × 0.19 × 0.14 mm

Data collection

Bruker APEXII CCD diffractometer 2700 reflections with I > 2σ(I)
φ and ω scans Rint = 0.089
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 28.3°, θmin = 2.4°
Tmin = 0.634, Tmax = 0.729 h = −10→10
47166 measured reflections k = −11→10
3638 independent reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.137 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.1082P] where P = (Fo2 + 2Fc2)/3
3638 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The acetylenic H atom was freely refined. All remaining hydrogen atoms were placed geometrically and refined as riding atoms with their Uiso values 1.2 times that of their attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.8224 (2) −0.53179 (13) 0.40582 (11) 0.0732 (4)
O2 0.78869 (16) −0.48667 (12) 0.22192 (10) 0.0557 (3)
O3 0.38666 (16) 0.19330 (12) 0.03294 (9) 0.0557 (3)
O4 0.12863 (14) 0.82184 (10) 0.22678 (8) 0.0419 (3)
N1 0.79204 (16) −0.44535 (13) 0.32710 (11) 0.0436 (3)
C1 0.63484 (18) −0.05300 (15) 0.30785 (12) 0.0358 (3)
C2 0.67213 (17) −0.20372 (14) 0.27518 (11) 0.0342 (3)
H2A 0.639784 −0.249615 0.195197 0.041*
C3 0.75705 (18) −0.28509 (15) 0.36138 (12) 0.0362 (3)
C4 0.8101 (2) −0.22355 (17) 0.47820 (12) 0.0446 (3)
H4A 0.868961 −0.282414 0.535011 0.054*
C5 0.7751 (2) −0.07331 (18) 0.51018 (13) 0.0518 (4)
H5A 0.811026 −0.027252 0.589874 0.062*
C6 0.6882 (2) 0.00972 (17) 0.42650 (13) 0.0469 (4)
H6A 0.663892 0.112233 0.450078 0.056*
C7 0.54529 (18) 0.03375 (15) 0.21647 (12) 0.0378 (3)
H7A 0.524932 −0.013883 0.136707 0.045*
C8 0.49007 (19) 0.17290 (15) 0.23512 (12) 0.0402 (3)
H8A 0.505167 0.222444 0.314155 0.048*
C9 0.40553 (19) 0.25253 (15) 0.13558 (12) 0.0386 (3)
C10 0.34071 (18) 0.40617 (14) 0.16303 (11) 0.0345 (3)
C11 0.32576 (18) 0.46816 (15) 0.27815 (11) 0.0366 (3)
H11A 0.365827 0.414762 0.344742 0.044*
C12 0.25357 (19) 0.60589 (15) 0.29624 (11) 0.0382 (3)
H12A 0.242477 0.645757 0.374749 0.046*
C13 0.19719 (17) 0.68610 (14) 0.19960 (11) 0.0343 (3)
C14 0.2132 (2) 0.62771 (16) 0.08447 (12) 0.0418 (3)
H14A 0.176033 0.682647 0.018101 0.050*
C15 0.2840 (2) 0.48861 (16) 0.06802 (12) 0.0418 (3)
H15A 0.293985 0.448410 −0.010617 0.050*
C16 0.0652 (2) 0.90385 (15) 0.12751 (12) 0.0412 (3)
H16A −0.037244 0.838377 0.076985 0.049*
H16B 0.160640 0.926181 0.078194 0.049*
C17 0.01114 (18) 1.05106 (15) 0.17380 (12) 0.0397 (3)
C18 −0.0334 (2) 1.17155 (17) 0.20482 (14) 0.0466 (4)
H18A −0.067 (2) 1.266 (2) 0.2248 (15) 0.057 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1189 (11) 0.0461 (6) 0.0560 (7) 0.0324 (7) −0.0072 (7) 0.0173 (5)
O2 0.0791 (8) 0.0448 (6) 0.0449 (6) 0.0280 (5) 0.0012 (5) −0.0014 (5)
O3 0.0887 (9) 0.0452 (6) 0.0366 (6) 0.0323 (6) 0.0041 (5) −0.0009 (4)
O4 0.0605 (6) 0.0339 (5) 0.0339 (5) 0.0210 (4) 0.0040 (4) 0.0022 (4)
N1 0.0506 (7) 0.0363 (6) 0.0440 (7) 0.0146 (5) −0.0018 (5) 0.0069 (5)
C1 0.0395 (7) 0.0333 (6) 0.0357 (7) 0.0103 (5) 0.0049 (5) 0.0040 (5)
C2 0.0384 (7) 0.0328 (6) 0.0316 (6) 0.0087 (5) 0.0027 (5) 0.0026 (5)
C3 0.0397 (7) 0.0333 (6) 0.0372 (7) 0.0102 (5) 0.0052 (5) 0.0063 (5)
C4 0.0535 (8) 0.0465 (8) 0.0352 (7) 0.0153 (6) 0.0012 (6) 0.0090 (6)
C5 0.0691 (10) 0.0530 (9) 0.0320 (7) 0.0183 (7) −0.0018 (7) −0.0026 (6)
C6 0.0633 (9) 0.0391 (7) 0.0388 (7) 0.0179 (7) 0.0032 (6) −0.0021 (6)
C7 0.0457 (7) 0.0333 (6) 0.0353 (7) 0.0121 (5) 0.0040 (5) 0.0016 (5)
C8 0.0514 (8) 0.0340 (7) 0.0359 (7) 0.0148 (6) 0.0025 (6) 0.0014 (5)
C9 0.0484 (8) 0.0324 (6) 0.0366 (7) 0.0130 (5) 0.0061 (6) 0.0021 (5)
C10 0.0406 (7) 0.0296 (6) 0.0339 (6) 0.0096 (5) 0.0038 (5) 0.0025 (5)
C11 0.0472 (7) 0.0324 (6) 0.0317 (6) 0.0115 (5) 0.0037 (5) 0.0066 (5)
C12 0.0514 (8) 0.0343 (6) 0.0299 (6) 0.0109 (6) 0.0064 (5) 0.0014 (5)
C13 0.0396 (7) 0.0281 (6) 0.0352 (6) 0.0090 (5) 0.0033 (5) 0.0007 (5)
C14 0.0596 (9) 0.0371 (7) 0.0307 (6) 0.0188 (6) 0.0018 (6) 0.0047 (5)
C15 0.0603 (9) 0.0365 (7) 0.0305 (6) 0.0177 (6) 0.0044 (6) 0.0011 (5)
C16 0.0526 (8) 0.0343 (7) 0.0368 (7) 0.0160 (6) −0.0016 (6) 0.0028 (5)
C17 0.0429 (7) 0.0361 (7) 0.0408 (7) 0.0107 (6) 0.0019 (6) 0.0062 (5)
C18 0.0518 (9) 0.0378 (7) 0.0527 (9) 0.0170 (6) 0.0063 (7) 0.0052 (6)

Geometric parameters (Å, º)

O1—N1 1.2232 (15) C8—C9 1.4815 (18)
O2—N1 1.2168 (16) C8—H8A 0.9500
O3—C9 1.2189 (16) C9—C10 1.4940 (17)
O4—C13 1.3693 (14) C10—C15 1.3866 (17)
O4—C16 1.4362 (15) C10—C11 1.3997 (18)
N1—C3 1.4706 (17) C11—C12 1.3809 (17)
C1—C2 1.3957 (17) C11—H11A 0.9500
C1—C6 1.3996 (19) C12—C13 1.3888 (17)
C1—C7 1.4680 (18) C12—H12A 0.9500
C2—C3 1.3838 (17) C13—C14 1.3924 (18)
C2—H2A 0.9500 C14—C15 1.3835 (18)
C3—C4 1.3780 (19) C14—H14A 0.9500
C4—C5 1.384 (2) C15—H15A 0.9500
C4—H4A 0.9500 C16—C17 1.4627 (18)
C5—C6 1.380 (2) C16—H16A 0.9900
C5—H5A 0.9500 C16—H16B 0.9900
C6—H6A 0.9500 C17—C18 1.1746 (19)
C7—C8 1.3295 (17) C18—H18A 0.901 (18)
C7—H7A 0.9500
C13—O4—C16 116.23 (10) O3—C9—C10 120.22 (12)
O2—N1—O1 122.80 (12) C8—C9—C10 118.90 (11)
O2—N1—C3 118.79 (11) C15—C10—C11 118.06 (11)
O1—N1—C3 118.40 (12) C15—C10—C9 117.85 (11)
C2—C1—C6 118.12 (12) C11—C10—C9 124.01 (11)
C2—C1—C7 118.90 (11) C12—C11—C10 120.89 (11)
C6—C1—C7 122.97 (12) C12—C11—H11A 119.6
C3—C2—C1 118.80 (12) C10—C11—H11A 119.6
C3—C2—H2A 120.6 C11—C12—C13 119.98 (12)
C1—C2—H2A 120.6 C11—C12—H12A 120.0
C4—C3—C2 123.22 (12) C13—C12—H12A 120.0
C4—C3—N1 118.22 (11) O4—C13—C12 115.58 (11)
C2—C3—N1 118.56 (11) O4—C13—C14 124.35 (11)
C3—C4—C5 117.94 (12) C12—C13—C14 120.07 (11)
C3—C4—H4A 121.0 C15—C14—C13 119.11 (12)
C5—C4—H4A 121.0 C15—C14—H14A 120.4
C6—C5—C4 120.11 (13) C13—C14—H14A 120.4
C6—C5—H5A 119.9 C14—C15—C10 121.89 (12)
C4—C5—H5A 119.9 C14—C15—H15A 119.1
C5—C6—C1 121.80 (13) C10—C15—H15A 119.1
C5—C6—H6A 119.1 O4—C16—C17 108.45 (11)
C1—C6—H6A 119.1 O4—C16—H16A 110.0
C8—C7—C1 125.96 (12) C17—C16—H16A 110.0
C8—C7—H7A 117.0 O4—C16—H16B 110.0
C1—C7—H7A 117.0 C17—C16—H16B 110.0
C7—C8—C9 121.55 (12) H16A—C16—H16B 108.4
C7—C8—H8A 119.2 C18—C17—C16 176.40 (14)
C9—C8—H8A 119.2 C17—C18—H18A 177.0 (11)
O3—C9—C8 120.87 (12)
C6—C1—C2—C3 1.0 (2) C7—C8—C9—C10 177.91 (13)
C7—C1—C2—C3 179.80 (12) O3—C9—C10—C15 −9.4 (2)
C1—C2—C3—C4 −1.3 (2) C8—C9—C10—C15 171.57 (13)
C1—C2—C3—N1 178.51 (11) O3—C9—C10—C11 167.42 (14)
O2—N1—C3—C4 −161.56 (14) C8—C9—C10—C11 −11.6 (2)
O1—N1—C3—C4 18.8 (2) C15—C10—C11—C12 1.2 (2)
O2—N1—C3—C2 18.64 (19) C9—C10—C11—C12 −175.62 (13)
O1—N1—C3—C2 −160.96 (13) C10—C11—C12—C13 −1.0 (2)
C2—C3—C4—C5 0.5 (2) C16—O4—C13—C12 −178.35 (11)
N1—C3—C4—C5 −179.33 (13) C16—O4—C13—C14 2.0 (2)
C3—C4—C5—C6 0.6 (2) C11—C12—C13—O4 −179.60 (12)
C4—C5—C6—C1 −0.7 (3) C11—C12—C13—C14 0.1 (2)
C2—C1—C6—C5 −0.1 (2) O4—C13—C14—C15 −179.70 (13)
C7—C1—C6—C5 −178.78 (15) C12—C13—C14—C15 0.7 (2)
C2—C1—C7—C8 175.05 (13) C13—C14—C15—C10 −0.5 (2)
C6—C1—C7—C8 −6.3 (2) C11—C10—C15—C14 −0.4 (2)
C1—C7—C8—C9 178.18 (13) C9—C10—C15—C14 176.58 (13)
C7—C8—C9—O3 −1.1 (2) C13—O4—C16—C17 −175.40 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18A···O2i 0.901 (18) 2.519 (18) 3.3927 (18) 163.6 (15)

Symmetry code: (i) x−1, y+2, z.

Funding Statement

HSY and BK are grateful to UGC, New Delhi, for the award of BSR Faculty Fellowship.

References

  1. Aneja, B., Arif, R., Perwez, A., Napoleon, J. V., Hassan, P., Rizvi, M. M. A., Azam, A., Rahisuddin & Abid, M. (2018). ChemistrySelect, 2018, 3, 2638-2645.
  2. Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180. [DOI] [PubMed]
  3. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.
  5. Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974. [DOI] [PMC free article] [PubMed]
  6. Hall, C. L., Hamilton, V., Potticary, J., Cremeens, M. E., Pridmore, N. E., Sparkes, H. A., D’ambruoso, G. D., Warren, S. D., Matsumoto, M. & Hall, S. R. (2020). Acta Cryst. E76, 1599–1604. [DOI] [PMC free article] [PubMed]
  7. Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936–o2937. [DOI] [PMC free article] [PubMed]
  8. Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J. L. (2007). J. Phys. Chem. A, 111, 1138–1145. [DOI] [PubMed]
  9. Lahtchev, K. L., Batovska, D. I., Parushev, P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220–2228. [DOI] [PubMed]
  10. Lin, Y.-M., Zhou, Y., Flavin, M. T., Zhou, L.-M., Nie, W. & Chen, F.-C. (2002). Bioorg. Med. Chem. 10, 2795–2802. [DOI] [PubMed]
  11. Mello, M. V. P. de, Abrahim-Vieira, B. A., Domingos, T. F. S., de Jesus, J. B., de Sousa, A. C. C., Rodrigues, C. R. & Souza, A. M. T. (2018). Eur. J. Med. Chem. 150, 920–929. [DOI] [PubMed]
  12. Raghav, N. & Garg, S. (2014). Eur. J. Pharm. Sci. 60, 55–63. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.
  17. Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622009579/bt4126sup1.cif

x-07-x220957-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622009579/bt4126Isup2.hkl

x-07-x220957-Isup2.hkl (290.1KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622009579/bt4126Isup3.cml

CCDC reference: 2210152

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES