Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Oct 28;78(Pt 11):1138–1142. doi: 10.1107/S2056989022010179

Crystal structure of bis­{3-(3-bromo-4-methoxyphenyl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}­iron(II) methano­l disolvate

Kateryna Znovjyak a, Igor O Fritsky a, Tatiana Y Sliva a, Vladimir M Amirkhanov a, Sergey O Malinkin a, Sergiu Shova b, Maksym Seredyuk a,*
Editor: G Diaz de Delgadoc
PMCID: PMC9638973  PMID: 36380908

The title charge-neutral complex is a low-spin complex with a moderately distorted pseudo-octa­hedral coordination environment of the metal ion. As a result of their asymmetric shape, the mol­ecules stack into chains, which eventually pack into layers and, finally, into a three-dimensional network connected by weak C—H⋯N, C—H⋯C hydrogen bonds and C—H⋯π inter­actions.

Keywords: crystal structure, spin-crossover, spin transition, energy frameworks

Abstract

The unit cell of the title compound, [FeII(C17H12BrN6O)2]·2MeOH, consists of a charge-neutral complex mol­ecule and two independent mol­ecules of methanol. In the complex mol­ecule, the two tridentate ligand mol­ecules 2-[5-(3-bromo-4-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine coordinate to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa­hedral coordination sphere around the central ion. In the crystal, neighbouring asymmetric mol­ecules are linked through weak C—H(pz)⋯π(ph) inter­actions into chains, which are then linked into layers by weak C–H⋯N/C inter­actions. Finally, the layers stack into a three-dimensional network linked by weak inter­layer C—H⋯π inter­actions between the meth­oxy groups and the phenyl rings. The inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 34.2%, H⋯C/C⋯H 25.2%, H⋯Br/Br⋯H 13.2%, H⋯N/N⋯H 12.2% and H⋯O/O⋯H 4.0%. The average Fe—N bond distance is 1.949 Å, indicating the low-spin state of the FeII ion. Energy framework analysis at the HF/3–21 G theory level was performed to qu­antify the inter­action energies in the crystal structure.

1. Chemical context

A broad class of coordination compounds exhibiting spin-state switching between low- (total spin S = 0) and high-spin states (total spin S = 2) is represented by FeII complexes based on tridentate bis­azole­pyridine ligands (Halcrow, 2014; Suryadevara et al., 2022; Halcrow et al., 2019). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on a nitro­gen heteroatom and acts as a Brønsted acid, deprotonation can produce neutral complexes that can be either high-spin (Schäfer et al., 2013) or low-spin (Shiga et al., 2019) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014), depending on the ligand field strength. The periphery of the mol­ecule, i.e. ligand substituents, also plays an important role in the behaviour, determining the way in which mol­ecules are packed in the lattice and their inter­actions with each other, and therefore further influencing the spin state adopted by the central atom. As we have recently demonstrated, the dynamic rearrangement of the meth­oxy group between the bent and extended configurations can lead to a highly hysteretic spin transition via a supra­molecular blocking mechanism (Seredyuk et al., 2022). 1.

Having inter­est in spin-transition 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017; Bonhommeau et al., 2012; Valverde-Muñoz et al., 2020), we report here on our current structural exploration of a new complex [FeII L 2] based on an asymmetric deprotonable ligand with two substituents on the phenyl group, L = 2-[5-(3-bromo-4-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine.

2. Structural commentary

The title complex has a asymmetric mol­ecule with divergent phenyl groups. The ligand mol­ecules are almost planar (r.m.s. deviation = 0.330 Å), including the meth­oxy substituents, which also lie in the plane of the aromatic groups [atoms C17 and C35 are 0.514 (1) and 0.116 (1) Å, respectively, away from the planes passing through their respective ligand molecules]. The two independent methanol mol­ecules form O—H⋯N hydrogen bonds with the triazole (trz) rings of the ligand mol­ecules (Fig. 1, Table 1). The central FeII ion of the complex has a distorted octa­hedral N6 coordination environment formed by the nitro­gen donor atoms of two tridentate ligands (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.

Table 1. Geometry (Å, °) of hydrogen bonds and C⋯N interactions in the title compound.

Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17⋯N6i     3.201 (16)  
O3—H3A⋯N12 0.84 2.02 2.820 (12) 160
O4—H4⋯N6 0.84 2.06 2.855 (11) 158
C1—H1⋯O4ii 0.95 2.22 3.128 (14) 161
C18—H18⋯O3iii 0.95 2.27 3.192 (14) 163
C35—H35A⋯C30iv 0.98 2.62 3.233 (16) 121
C3—H3⋯N5iii 0.95 2.45 3.301 (13) 148
C7—H7⋯O4 0.95 2.46 3.310 (11) 148
C22—H22⋯N11ii 0.95 2.39 3.317 (13) 166
C20—H20⋯N11ii 0.95 2.55 3.389 (13) 148
C5—H5⋯N5iii 0.95 2.53 3.440 (12) 161
C17—H17A⋯O4i 0.98 2.52 3.451 (17) 159
C34—H34⋯C20v 0.95 2.63 3.535 (15) 159
C25—H25⋯O3 0.95 2.69 3.542 (13) 150
C18—H18⋯C36iii 0.95 2.88 3.65 (2) 138
C2—H2⋯C31vi 0.95 2.84 3.639 (15) 143
C2—H2⋯C32vi 0.95 2.89 3.656 (15) 139
C2—H2⋯C30vi 0.95 2.86 3.734 (11) 154
C2—H2⋯Cg2vi 0.95 2.57 3.501 (11) 168
C19—H19⋯Cg1vi 0.95 2.74 3.681 (11) 169

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

The average bond length, <Fe—N> = 1.949 Å, is typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004). The average trigonal distortion parameters Σ = Σ1 12(|90 − φ i|), where φ i is the angle N–Fe–N′ (Drew et al., 1995), and Θ = Σ1 24(|60 − θ i|), where θ i is the angle generated by superposition of two opposite faces of an octa­hedron (Chang et al., 1990) are 93.3 and 298.8°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron (where Σ = Θ = 0) but is, however, in the expected range for bis­azole­pyridines and similar ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 2.24 (Kershaw Cook et al., 2015). The volume of the [FeN6] coord­ination polyhedron is 9.536 Å3.

3. Supra­molecular features

As a result of their asymmetric shape, neighbouring complex mol­ecules fit into each other and inter­act through a weak C—H(pz)⋯π(ph) inter­molecular contact between the pyrazole (pz) and phenyl (ph) groups respectively (Table 1). The mono-periodic supra­molecular chains formed extend along the c-axis direction with a stacking periodicity of 10.6434 (3) Å (equal to cell parameter c; Fig. 2 a). Through weak inter­molecular C—H(pz, py)⋯ N/C(pz, trz) inter­actions in the range 3.128 (14)–3.734 (11) Å (Table 1), neighbouring chains are linked into corrugated layers in the bc plane (Fig. 2 b,c). The layers stack with inter­layer inter­actions limited to C—H⋯N(trz) and C—H⋯π(ph) contacts involving the methyl groups (Fig. 2 c). The voids between the layers are occupied by methanol mol­ecules, which also participate in bonding between neighbouring layers (see Table 1 for the complete list of inter­molecular inter­actions).

Figure 2.

Figure 2

(a) Mono-periodic supra­molecular chain formed by stacking of mol­ecules of the title compound. (b) Di-periodic layers formed by supra­molecular chains. For a better representation, each chain has a different colour. (c) Highlighted inter­actions of neighbouring layers in the three-dimensional supra­molecular network of the title complex. The red dashed lines correspond to contacts below the sum of the van der Waals radii. The methanol mol­ecules are not shown for clarity.

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021), with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.2869 (red) to 2.4335 (blue) a.u. (Fig. 3). The pale-red spots represent short contacts and negative d norm values on the surface corresponding to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The Hirshfeld surfaces mapped over d norm are shown for the H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H and H⋯O/O⋯H contacts together with the two-dimensional fingerprint plots associated with their relative contributions to the Hirshfeld surface. At 34.2%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located in the middle region of the fingerprint plot. H⋯C/C⋯H contacts contribute 25.2%, and the H⋯Br/Br⋯H contacts contribute 13.2% to the Hirshfeld surface and both result in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 12.2% contribution to the Hirshfeld surface. Finally, H⋯O/O⋯H contacts, which account for 4.0% of the contribution, are mostly distributed in the middle part of the plot.

Figure 3.

Figure 3

A projection of d norm mapped on the Hirshfeld surface, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are larger than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii.

Figure 4.

Figure 4

(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function d norm plotted onto the surface for the different inter­actions.

5. Energy framework analysis

The energy framework (Spackman et al., 2021), calculated using the wave function at the HF/3-21G theory level, including the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot), are shown in Fig. 5. The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the inter­molecular inter­actions is due to the dispersion forces (E dis), reflecting the dominating inter­actions in the lattice of the neutral asymmetric mol­ecules. The topology of the energy framework resembles the topology of the inter­actions within and between the layers described above. The calculated values E tot are in the range 65.2–87.6 kJ mol−1 for intra­chain and intra­layer inter­actions, whereas for the inter­layer inter­actions they are within 7.7–23.4 kJ mol−1. The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (E tot) are given in the supporting information.

Figure 5.

Figure 5

The calculated energy frameworks, showing the electrostatic potential forces (E ele), dispersion forces (E dis) and total energy (E tot) diagrams. Tube size is set at 100 scale, cut-off is 5 kJ mol−1.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals several similar neutral FeII complexes with a deprotonable azole group, for example, derivatives of a pyrazole-pyridine-tetra­zole (IGERIX and LUTGEO; Gentili et al., 2015; Senthil Kumar et al., 2015) and a pyrazole-pyridine-benzimidazole (XODCEB; Shiga et al., 2019). There are also related complexes based on phenanthroline-tetra­zole, such as QIDJET (Zhang et al., 2007) and phenanthroline-benzimidazole (DOMQUT; Seredyuk et al., 2014). Schematic structures of the complexes are shown in Fig. S1 in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.933–1.959 Å, while in the high-spin state they are in the range 2.179–2.184 Å. The values of the trigonal distortion and CShM(Oh ) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. Table 2 collates the structural parameters of the complexes and of the title compound.

Table 2. Computed distortion indices (Å,°) for the title compound and similar complexes reported in the literature.

CSD refcode Spin state <Fe—N> Σ Θ CShM(Oh )
Title compound LS 1.949 93.3 298.8 2.24
IGERIX a HS 2.179 149.7 553.2 6.06
IGERIX01 a LS 1.986 105.6 350.6 2.85
LUTGEO b LS 1.933 85.0 309.6 2.10
XODCEB c LS 1.950 87.4 276.6 1.93
DOMQIH d LS 1.962 83.8 280.7 2.02
QIDJET01 e LS 1.970 90.3 341.3 2.47
QIDJET e HS 2.184 145.5 553.3 5.88
DOMQUT d LS 1.991 88.5 320.0 2.48
DOMQUT02 d HS 2.183 139.6 486.9 5.31

Notes: (a) Gentili et al. (2015); (b) Senthil Kumar et al. (2015); (c) Shiga et al. (2019); (d) Seredyuk et al. (2014); (e) Zhang et al. (2007).

7. Synthesis and crystallization

The synthesis of the title compound is identical to that reported recently for a similar complex (Seredyuk et al., 2022). It was produced by layering in a standard test tube. The layering sequence was as follows: the bottom layer contains a solution of [Fe(L 2)](BF4)2 prepared by dissolving L = 2-[5-(3-bromo-4-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyra­zol-1-yl)pyridine (100 mg, 0.252 mmol) and Fe(BF4)2·6H2O (43 mg, 0.126 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and black cubic single crystals appeared in 3–4 weeks (yield ca 60%). Elemental analysis calculated for C36H32Br2FeN12O4: C, 47.39; H, 3.54; N, 18.42. Found: C, 47.11; H, 3.74; N, 18.40.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The highest and lowest remaining electron density peaks are located 1.01 and 0.88 Å, respectively, from the Br2 atom. H atoms were refined as riding [C—H = 0.95–0.98 Å with U iso(H) = 1.2–1.5U eq(C)]. O-bound H atoms were refined with U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Fe(C17H12BrN6O)2]·2CH4O
M r 912.40
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 180
a, b, c (Å) 27.4318 (10), 12.6723 (4), 10.6434 (3)
V3) 3699.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.3 × 0.26 × 0.04
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.772, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14160, 6227, 4361
R int 0.061
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.125, 1.03
No. of reflections 6227
No. of parameters 502
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −0.62
Absolute structure Flack x determined using 1444 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.009 (8)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022010179/dj2053sup1.cif

e-78-01138-sup1.cif (544.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022010179/dj2053Isup2.hkl

e-78-01138-Isup2.hkl (495.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022010179/dj2053Isup4.cdx

Includes energy framework data and schematic structures of similar neutral Fe(II) complexes. DOI: 10.1107/S2056989022010179/dj2053sup3.pdf

e-78-01138-sup3.pdf (286.9KB, pdf)

CCDC reference: 2215273

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, KZ, VMA; funding acquisition, MS, IOF, VMA.

supplementary crystallographic information

Crystal data

[Fe(C17H12BrN6O)2]·2CH4O Dx = 1.638 Mg m3
Mr = 912.40 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 3167 reflections
a = 27.4318 (10) Å θ = 2.2–25.7°
b = 12.6723 (4) Å µ = 2.63 mm1
c = 10.6434 (3) Å T = 180 K
V = 3699.9 (2) Å3 Plate, clear dark red
Z = 4 0.3 × 0.26 × 0.04 mm
F(000) = 1840

Data collection

Xcalibur, Eos diffractometer 6227 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 4361 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.061
Detector resolution: 16.1593 pixels mm-1 θmax = 25.0°, θmin = 1.8°
ω scans h = −29→32
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −15→9
Tmin = 0.772, Tmax = 1.000 l = −11→12
14160 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 1.25 e Å3
6227 reflections Δρmin = −0.62 e Å3
502 parameters Absolute structure: Flack x determined using 1444 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraints Absolute structure parameter: −0.009 (8)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.93947 (6) 0.18179 (10) 0.18738 (16) 0.0755 (6)
Br2 0.58117 (5) 0.86423 (9) 0.16575 (14) 0.0533 (4)
Fe1 0.74880 (4) 0.51357 (9) 0.66488 (14) 0.0165 (3)
O1 0.9850 (3) 0.3512 (6) 0.0344 (7) 0.046 (2)
O2 0.5033 (3) 0.7175 (7) 0.0845 (8) 0.059 (3)
N1 0.7925 (3) 0.4642 (7) 0.7986 (7) 0.021 (2)
N2 0.7854 (3) 0.3616 (6) 0.8310 (6) 0.0190 (19)
N3 0.7331 (2) 0.3663 (5) 0.6688 (8) 0.0169 (16)
N4 0.6980 (3) 0.5090 (7) 0.5358 (7) 0.019 (2)
N5 0.6735 (3) 0.5777 (6) 0.4591 (7) 0.021 (2)
N6 0.6424 (3) 0.4144 (6) 0.4290 (7) 0.021 (2)
N7 0.7030 (3) 0.5599 (6) 0.7956 (7) 0.0179 (19)
N8 0.7095 (3) 0.6637 (6) 0.8297 (7) 0.0203 (19)
N9 0.7639 (2) 0.6605 (5) 0.6733 (7) 0.0157 (16)
N10 0.8015 (3) 0.5208 (7) 0.5376 (7) 0.0167 (19)
N11 0.8252 (3) 0.4538 (7) 0.4581 (7) 0.020 (2)
N12 0.8561 (3) 0.6197 (6) 0.4353 (7) 0.020 (2)
C1 0.8232 (4) 0.5020 (9) 0.8838 (9) 0.022 (3)
H1 0.836027 0.571689 0.884392 0.027*
C2 0.8342 (4) 0.4225 (8) 0.9744 (9) 0.027 (3)
H2 0.854203 0.429649 1.046766 0.032*
C3 0.8103 (3) 0.3351 (8) 0.9362 (9) 0.022 (2)
H3 0.810827 0.267895 0.975646 0.027*
C4 0.7534 (3) 0.3030 (8) 0.7529 (8) 0.020 (2)
C5 0.7444 (3) 0.1970 (8) 0.7604 (8) 0.020 (2)
H5 0.760428 0.153348 0.819944 0.024*
C6 0.7104 (3) 0.1564 (7) 0.6761 (9) 0.026 (2)
H6 0.703580 0.082904 0.675727 0.032*
C7 0.6865 (3) 0.2219 (8) 0.5934 (8) 0.023 (2)
H7 0.662303 0.194369 0.538543 0.028*
C8 0.6979 (3) 0.3278 (8) 0.5907 (8) 0.018 (2)
C9 0.6790 (3) 0.4128 (8) 0.5154 (7) 0.016 (2)
C10 0.6407 (4) 0.5181 (8) 0.3985 (8) 0.020 (2)
C11 0.6061 (3) 0.5658 (8) 0.3117 (8) 0.021 (2)
C12 0.5688 (4) 0.5087 (9) 0.2563 (10) 0.042 (3)
H12 0.566690 0.435012 0.271727 0.051*
C13 0.5339 (4) 0.5569 (9) 0.1775 (13) 0.049 (3)
H13 0.508661 0.515389 0.141389 0.059*
C14 0.5360 (4) 0.6632 (9) 0.1525 (11) 0.034 (3)
C15 0.5737 (3) 0.7203 (9) 0.2037 (9) 0.029 (3)
C16 0.6080 (4) 0.6728 (8) 0.2824 (9) 0.026 (3)
H16 0.633427 0.714686 0.316951 0.031*
C17 0.4597 (5) 0.6610 (12) 0.0437 (14) 0.085 (6)
H17A 0.436960 0.710675 0.004257 0.128*
H17B 0.443970 0.628133 0.116611 0.128*
H17C 0.468752 0.606305 −0.017004 0.128*
C18 0.6699 (4) 0.5218 (9) 0.8754 (9) 0.027 (3)
H18 0.656975 0.452322 0.872907 0.033*
C19 0.6568 (4) 0.6007 (9) 0.9651 (9) 0.028 (3)
H19 0.634576 0.593789 1.033020 0.033*
C20 0.6829 (4) 0.6878 (8) 0.9327 (9) 0.022 (2)
H20 0.682436 0.753910 0.974832 0.026*
C21 0.7426 (3) 0.7227 (8) 0.7576 (8) 0.019 (2)
C22 0.7510 (4) 0.8292 (8) 0.7670 (9) 0.024 (2)
H22 0.734218 0.871698 0.826391 0.029*
C23 0.7855 (3) 0.8719 (7) 0.6848 (9) 0.028 (2)
H23 0.792262 0.945451 0.686681 0.033*
C25 0.8098 (4) 0.8074 (8) 0.6009 (9) 0.024 (2)
H25 0.833605 0.836305 0.545977 0.029*
C26 0.7993 (3) 0.7007 (8) 0.5971 (8) 0.015 (2)
C27 0.8201 (3) 0.6167 (8) 0.5207 (8) 0.017 (2)
C28 0.8572 (3) 0.5168 (9) 0.3993 (8) 0.022 (2)
C29 0.8908 (3) 0.4756 (8) 0.3034 (9) 0.021 (2)
C30 0.9141 (4) 0.5434 (9) 0.2193 (8) 0.028 (3)
H30 0.908122 0.617120 0.223076 0.034*
C31 0.9464 (4) 0.5030 (10) 0.1295 (9) 0.029 (3)
H31 0.962898 0.550064 0.074511 0.034*
C32 0.9544 (4) 0.3969 (10) 0.1196 (9) 0.034 (3)
C33 0.9309 (4) 0.3287 (9) 0.2023 (10) 0.037 (3)
C34 0.8993 (4) 0.3676 (9) 0.2928 (9) 0.029 (3)
H34 0.883359 0.320139 0.348246 0.035*
C35 1.0089 (5) 0.4170 (10) −0.0556 (11) 0.062 (4)
H35A 1.026381 0.372877 −0.116380 0.093*
H35B 1.032148 0.463288 −0.012460 0.093*
H35C 0.984662 0.460036 −0.099718 0.093*
O3 0.8946 (3) 0.8132 (7) 0.3501 (8) 0.054 (2)
H3A 0.889770 0.749515 0.368323 0.080*
C36 0.9355 (6) 0.8495 (13) 0.4134 (18) 0.101 (6)
H36A 0.964669 0.816116 0.378324 0.151*
H36B 0.932720 0.831820 0.502734 0.151*
H36C 0.937869 0.926235 0.403763 0.151*
O4 0.6173 (3) 0.2092 (6) 0.3391 (7) 0.040 (2)
H4 0.620155 0.274742 0.348513 0.059*
C24 0.5796 (4) 0.1885 (10) 0.2562 (11) 0.054 (4)
H24A 0.581928 0.115298 0.227028 0.082*
H24B 0.581953 0.236323 0.184082 0.082*
H24C 0.548314 0.199154 0.298680 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0982 (11) 0.0278 (8) 0.1007 (13) 0.0159 (8) 0.0583 (11) −0.0030 (9)
Br2 0.0659 (8) 0.0299 (7) 0.0640 (8) 0.0033 (6) −0.0228 (9) 0.0170 (8)
Fe1 0.0203 (6) 0.0113 (7) 0.0179 (6) −0.0009 (6) −0.0005 (7) 0.0006 (8)
O1 0.048 (5) 0.041 (6) 0.050 (5) 0.001 (4) 0.030 (4) −0.010 (4)
O2 0.048 (5) 0.050 (6) 0.077 (6) −0.010 (5) −0.044 (4) 0.030 (5)
N1 0.023 (5) 0.016 (5) 0.023 (5) −0.008 (4) 0.003 (4) 0.001 (4)
N2 0.028 (5) 0.011 (5) 0.019 (4) −0.001 (4) 0.007 (3) 0.007 (4)
N3 0.027 (4) 0.011 (4) 0.013 (4) −0.003 (3) 0.008 (4) 0.004 (4)
N4 0.028 (5) 0.015 (5) 0.013 (4) 0.001 (4) 0.000 (3) −0.001 (4)
N5 0.021 (5) 0.010 (5) 0.031 (5) −0.005 (4) −0.001 (4) 0.009 (4)
N6 0.025 (5) 0.015 (5) 0.022 (5) −0.002 (4) −0.004 (4) 0.000 (4)
N7 0.024 (5) 0.010 (5) 0.020 (4) −0.002 (4) 0.008 (4) 0.004 (4)
N8 0.030 (5) 0.009 (5) 0.022 (5) 0.002 (4) 0.001 (4) −0.007 (4)
N9 0.026 (4) 0.009 (4) 0.013 (4) −0.001 (3) −0.008 (4) −0.002 (4)
N10 0.015 (4) 0.016 (5) 0.018 (4) 0.000 (4) −0.004 (3) 0.002 (4)
N11 0.027 (5) 0.014 (5) 0.017 (5) −0.005 (4) 0.005 (4) −0.010 (4)
N12 0.024 (5) 0.010 (5) 0.026 (5) −0.004 (4) 0.004 (4) −0.003 (4)
C1 0.019 (6) 0.013 (6) 0.034 (6) −0.003 (5) −0.003 (5) −0.002 (5)
C2 0.033 (6) 0.022 (7) 0.025 (6) 0.008 (6) −0.006 (5) 0.001 (5)
C3 0.029 (6) 0.018 (6) 0.020 (5) 0.011 (5) −0.005 (4) 0.005 (4)
C4 0.025 (6) 0.018 (6) 0.015 (5) −0.001 (5) −0.004 (4) 0.001 (4)
C5 0.027 (6) 0.013 (6) 0.020 (5) 0.003 (5) 0.003 (4) 0.007 (4)
C6 0.034 (5) 0.020 (5) 0.026 (6) −0.005 (5) 0.007 (6) 0.001 (6)
C7 0.028 (6) 0.024 (7) 0.018 (5) 0.000 (5) −0.005 (4) −0.005 (5)
C8 0.018 (5) 0.013 (6) 0.022 (5) −0.003 (5) 0.004 (4) −0.006 (4)
C9 0.021 (6) 0.016 (6) 0.009 (5) 0.001 (5) −0.002 (4) 0.000 (4)
C10 0.025 (6) 0.018 (7) 0.018 (5) 0.001 (5) −0.002 (4) 0.003 (4)
C11 0.022 (6) 0.021 (6) 0.021 (5) −0.005 (5) −0.002 (4) 0.003 (5)
C12 0.039 (8) 0.023 (7) 0.064 (8) −0.007 (6) −0.007 (6) 0.015 (6)
C13 0.039 (6) 0.042 (8) 0.066 (8) −0.014 (6) −0.033 (7) 0.012 (8)
C14 0.026 (5) 0.041 (7) 0.035 (6) −0.002 (5) −0.009 (5) 0.021 (6)
C15 0.026 (6) 0.031 (7) 0.028 (6) 0.001 (5) −0.002 (5) 0.013 (5)
C16 0.026 (6) 0.021 (6) 0.031 (6) −0.003 (5) −0.007 (5) −0.001 (5)
C17 0.069 (10) 0.081 (12) 0.105 (11) −0.027 (9) −0.065 (9) 0.032 (9)
C18 0.031 (7) 0.018 (7) 0.032 (6) 0.000 (6) 0.001 (5) 0.004 (5)
C19 0.039 (7) 0.028 (7) 0.017 (5) 0.006 (6) 0.009 (5) 0.000 (5)
C20 0.027 (6) 0.019 (6) 0.019 (5) 0.009 (5) 0.007 (4) 0.003 (5)
C21 0.022 (6) 0.015 (6) 0.019 (5) −0.005 (5) −0.006 (4) 0.003 (4)
C22 0.026 (6) 0.023 (6) 0.023 (5) 0.001 (5) −0.005 (4) −0.005 (5)
C23 0.046 (6) 0.009 (5) 0.028 (6) −0.002 (5) −0.001 (6) −0.002 (5)
C25 0.030 (6) 0.018 (6) 0.023 (5) −0.007 (5) 0.001 (4) 0.005 (5)
C26 0.013 (5) 0.014 (6) 0.020 (5) −0.002 (5) −0.002 (4) 0.002 (4)
C27 0.021 (5) 0.021 (6) 0.010 (5) −0.007 (5) 0.003 (4) −0.001 (4)
C28 0.016 (5) 0.025 (7) 0.023 (6) 0.002 (5) 0.000 (4) 0.002 (5)
C29 0.018 (5) 0.025 (7) 0.020 (5) 0.005 (5) 0.000 (4) −0.004 (5)
C30 0.030 (6) 0.030 (7) 0.026 (5) −0.008 (6) 0.004 (5) −0.011 (5)
C31 0.020 (6) 0.038 (8) 0.028 (6) −0.007 (6) 0.003 (4) −0.001 (5)
C32 0.033 (7) 0.041 (8) 0.028 (6) 0.010 (6) 0.001 (5) −0.005 (5)
C33 0.050 (7) 0.028 (7) 0.033 (7) 0.007 (6) 0.004 (6) −0.008 (5)
C34 0.025 (6) 0.031 (7) 0.032 (6) −0.004 (6) 0.012 (5) −0.001 (5)
C35 0.072 (10) 0.057 (11) 0.056 (8) −0.007 (9) 0.038 (8) −0.005 (8)
O3 0.067 (6) 0.023 (5) 0.070 (6) −0.009 (5) 0.009 (5) 0.013 (4)
C36 0.058 (11) 0.065 (13) 0.179 (18) −0.023 (10) −0.015 (12) 0.025 (12)
O4 0.044 (5) 0.021 (5) 0.053 (5) 0.003 (4) −0.018 (4) −0.012 (4)
C24 0.060 (9) 0.047 (10) 0.056 (9) 0.012 (8) −0.019 (7) −0.022 (7)

Geometric parameters (Å, º)

Br1—C33 1.883 (11) C11—C12 1.384 (14)
Br2—C15 1.879 (11) C11—C16 1.392 (13)
Fe1—N1 1.964 (8) C12—H12 0.9500
Fe1—N3 1.916 (7) C12—C13 1.412 (14)
Fe1—N4 1.958 (8) C13—H13 0.9500
Fe1—N7 1.964 (8) C13—C14 1.374 (14)
Fe1—N9 1.909 (6) C14—C15 1.375 (13)
Fe1—N10 1.982 (8) C15—C16 1.396 (13)
O1—C32 1.364 (12) C16—H16 0.9500
O1—C35 1.430 (13) C17—H17A 0.9800
O2—C14 1.342 (11) C17—H17B 0.9800
O2—C17 1.462 (14) C17—H17C 0.9800
N1—N2 1.359 (10) C18—H18 0.9500
N1—C1 1.328 (12) C18—C19 1.429 (14)
N2—C3 1.354 (11) C19—H19 0.9500
N2—C4 1.418 (12) C19—C20 1.360 (14)
N3—C4 1.324 (11) C20—H20 0.9500
N3—C8 1.363 (11) C21—C22 1.373 (13)
N4—N5 1.370 (11) C22—H22 0.9500
N4—C9 1.344 (12) C22—C23 1.398 (13)
N5—C10 1.340 (12) C23—H23 0.9500
N6—C9 1.361 (11) C23—C25 1.382 (13)
N6—C10 1.354 (12) C25—H25 0.9500
N7—N8 1.376 (10) C25—C26 1.384 (13)
N7—C18 1.334 (12) C26—C27 1.455 (13)
N8—C20 1.352 (11) C28—C29 1.472 (13)
N8—C21 1.404 (11) C29—C30 1.395 (14)
N9—C21 1.329 (11) C29—C34 1.393 (13)
N9—C26 1.365 (11) C30—H30 0.9500
N10—N11 1.364 (11) C30—C31 1.399 (12)
N10—C27 1.331 (12) C31—H31 0.9500
N11—C28 1.341 (12) C31—C32 1.367 (15)
N12—C27 1.341 (11) C32—C33 1.393 (15)
N12—C28 1.359 (12) C33—C34 1.385 (14)
C1—H1 0.9500 C34—H34 0.9500
C1—C2 1.426 (13) C35—H35A 0.9800
C2—H2 0.9500 C35—H35B 0.9800
C2—C3 1.350 (14) C35—H35C 0.9800
C3—H3 0.9500 O3—H3A 0.8400
C4—C5 1.369 (12) O3—C36 1.387 (16)
C5—H5 0.9500 C36—H36A 0.9800
C5—C6 1.392 (13) C36—H36B 0.9800
C6—H6 0.9500 C36—H36C 0.9800
C6—C7 1.376 (13) O4—H4 0.8400
C7—H7 0.9500 O4—C24 1.384 (12)
C7—C8 1.379 (13) C24—H24A 0.9800
C8—C9 1.440 (13) C24—H24B 0.9800
C10—C11 1.456 (13) C24—H24C 0.9800
N1—Fe1—N7 88.4 (3) O2—C14—C13 125.4 (10)
N1—Fe1—N10 93.7 (3) O2—C14—C15 116.5 (10)
N3—Fe1—N1 79.1 (3) C13—C14—C15 118.1 (10)
N3—Fe1—N4 80.0 (3) C14—C15—Br2 120.5 (7)
N3—Fe1—N7 97.6 (3) C14—C15—C16 121.2 (10)
N3—Fe1—N10 102.9 (3) C16—C15—Br2 118.3 (8)
N4—Fe1—N1 159.1 (4) C11—C16—C15 121.9 (9)
N4—Fe1—N7 93.0 (3) C11—C16—H16 119.1
N4—Fe1—N10 92.3 (3) C15—C16—H16 119.1
N7—Fe1—N10 159.4 (3) O2—C17—H17A 109.5
N9—Fe1—N1 98.3 (3) O2—C17—H17B 109.5
N9—Fe1—N3 176.0 (4) O2—C17—H17C 109.5
N9—Fe1—N4 102.5 (3) H17A—C17—H17B 109.5
N9—Fe1—N7 79.3 (3) H17A—C17—H17C 109.5
N9—Fe1—N10 80.2 (3) H17B—C17—H17C 109.5
C32—O1—C35 118.7 (10) N7—C18—H18 125.0
C14—O2—C17 117.1 (10) N7—C18—C19 110.1 (10)
N2—N1—Fe1 113.6 (6) C19—C18—H18 125.0
C1—N1—Fe1 140.1 (8) C18—C19—H19 127.3
C1—N1—N2 105.3 (8) C20—C19—C18 105.4 (9)
N1—N2—C4 116.2 (7) C20—C19—H19 127.3
C3—N2—N1 111.9 (8) N8—C20—C19 107.8 (9)
C3—N2—C4 131.9 (8) N8—C20—H20 126.1
C4—N3—Fe1 120.6 (6) C19—C20—H20 126.1
C4—N3—C8 119.6 (8) N9—C21—N8 109.7 (8)
C8—N3—Fe1 119.6 (6) N9—C21—C22 123.9 (9)
N5—N4—Fe1 138.5 (7) C22—C21—N8 126.3 (9)
C9—N4—Fe1 114.6 (6) C21—C22—H22 121.6
C9—N4—N5 106.8 (8) C21—C22—C23 116.7 (9)
C10—N5—N4 105.0 (8) C23—C22—H22 121.6
C10—N6—C9 101.7 (8) C22—C23—H23 120.0
N8—N7—Fe1 113.0 (6) C25—C23—C22 120.1 (9)
C18—N7—Fe1 141.1 (7) C25—C23—H23 120.0
C18—N7—N8 105.5 (8) C23—C25—H25 120.1
N7—N8—C21 116.6 (7) C23—C25—C26 119.8 (9)
C20—N8—N7 111.1 (8) C26—C25—H25 120.1
C20—N8—C21 132.2 (8) N9—C26—C25 119.7 (8)
C21—N9—Fe1 121.0 (6) N9—C26—C27 109.8 (8)
C21—N9—C26 119.5 (8) C25—C26—C27 130.5 (9)
C26—N9—Fe1 119.4 (6) N10—C27—N12 113.6 (9)
N11—N10—Fe1 138.0 (7) N10—C27—C26 116.2 (8)
C27—N10—Fe1 114.5 (6) N12—C27—C26 130.3 (9)
C27—N10—N11 107.5 (8) N11—C28—N12 115.1 (9)
C28—N11—N10 103.3 (8) N11—C28—C29 121.5 (10)
C27—N12—C28 100.4 (8) N12—C28—C29 123.3 (9)
N1—C1—H1 125.1 C30—C29—C28 121.0 (10)
N1—C1—C2 109.9 (10) C34—C29—C28 120.6 (9)
C2—C1—H1 125.1 C34—C29—C30 118.4 (9)
C1—C2—H2 127.1 C29—C30—H30 119.9
C3—C2—C1 105.9 (9) C29—C30—C31 120.2 (11)
C3—C2—H2 127.1 C31—C30—H30 119.9
N2—C3—H3 126.5 C30—C31—H31 119.5
C2—C3—N2 106.9 (9) C32—C31—C30 120.9 (10)
C2—C3—H3 126.5 C32—C31—H31 119.5
N3—C4—N2 109.9 (8) O1—C32—C31 124.6 (10)
N3—C4—C5 123.8 (8) O1—C32—C33 116.2 (11)
C5—C4—N2 126.3 (8) C31—C32—C33 119.2 (10)
C4—C5—H5 121.7 C32—C33—Br1 120.2 (8)
C4—C5—C6 116.5 (9) C34—C33—Br1 119.3 (9)
C6—C5—H5 121.7 C34—C33—C32 120.5 (11)
C5—C6—H6 119.7 C29—C34—H34 119.6
C7—C6—C5 120.6 (9) C33—C34—C29 120.7 (10)
C7—C6—H6 119.7 C33—C34—H34 119.6
C6—C7—H7 120.3 O1—C35—H35A 109.5
C6—C7—C8 119.5 (9) O1—C35—H35B 109.5
C8—C7—H7 120.3 O1—C35—H35C 109.5
N3—C8—C7 119.8 (9) H35A—C35—H35B 109.5
N3—C8—C9 109.1 (8) H35A—C35—H35C 109.5
C7—C8—C9 131.1 (9) H35B—C35—H35C 109.5
N4—C9—N6 112.4 (8) C36—O3—H3A 109.5
N4—C9—C8 116.6 (8) O3—C36—H36A 109.5
N6—C9—C8 130.8 (9) O3—C36—H36B 109.5
N5—C10—N6 114.0 (9) O3—C36—H36C 109.5
N5—C10—C11 120.6 (9) H36A—C36—H36B 109.5
N6—C10—C11 125.3 (9) H36A—C36—H36C 109.5
C12—C11—C10 122.3 (10) H36B—C36—H36C 109.5
C12—C11—C16 116.3 (9) C24—O4—H4 109.5
C16—C11—C10 121.4 (9) O4—C24—H24A 109.5
C11—C12—H12 119.1 O4—C24—H24B 109.5
C11—C12—C13 121.9 (10) O4—C24—H24C 109.5
C13—C12—H12 119.1 H24A—C24—H24B 109.5
C12—C13—H13 119.7 H24A—C24—H24C 109.5
C14—C13—C12 120.6 (10) H24B—C24—H24C 109.5
C14—C13—H13 119.7
Br1—C33—C34—C29 −177.7 (8) C3—N2—C4—N3 172.4 (9)
Br2—C15—C16—C11 −177.8 (7) C3—N2—C4—C5 −8.0 (16)
Fe1—N1—N2—C3 −169.9 (6) C4—N2—C3—C2 −178.2 (9)
Fe1—N1—N2—C4 8.8 (10) C4—N3—C8—C7 −4.9 (13)
Fe1—N1—C1—C2 165.1 (8) C4—N3—C8—C9 175.6 (8)
Fe1—N3—C4—N2 0.4 (10) C4—C5—C6—C7 −2.0 (13)
Fe1—N3—C4—C5 −179.2 (7) C5—C6—C7—C8 2.7 (14)
Fe1—N3—C8—C7 −179.9 (7) C6—C7—C8—N3 0.7 (14)
Fe1—N3—C8—C9 0.5 (10) C6—C7—C8—C9 −179.8 (9)
Fe1—N4—N5—C10 −176.2 (7) C7—C8—C9—N4 179.9 (9)
Fe1—N4—C9—N6 177.2 (6) C7—C8—C9—N6 3.8 (17)
Fe1—N4—C9—C8 0.5 (10) C8—N3—C4—N2 −174.6 (7)
Fe1—N7—N8—C20 −170.3 (6) C8—N3—C4—C5 5.7 (14)
Fe1—N7—N8—C21 7.5 (9) C9—N4—N5—C10 0.7 (10)
Fe1—N7—C18—C19 167.7 (8) C9—N6—C10—N5 0.4 (11)
Fe1—N9—C21—N8 −1.0 (10) C9—N6—C10—C11 −177.5 (9)
Fe1—N9—C21—C22 −178.6 (7) C10—N6—C9—N4 0.1 (10)
Fe1—N9—C26—C25 178.7 (7) C10—N6—C9—C8 176.3 (10)
Fe1—N9—C26—C27 −0.7 (10) C10—C11—C12—C13 176.6 (10)
Fe1—N10—N11—C28 180.0 (7) C10—C11—C16—C15 −177.1 (9)
Fe1—N10—C27—N12 179.3 (6) C11—C12—C13—C14 0.4 (19)
Fe1—N10—C27—C26 −0.1 (10) C12—C11—C16—C15 1.3 (15)
O1—C32—C33—Br1 −3.1 (13) C12—C13—C14—O2 −176.3 (11)
O1—C32—C33—C34 179.6 (10) C12—C13—C14—C15 1.6 (19)
O2—C14—C15—Br2 −5.6 (14) C13—C14—C15—Br2 176.3 (9)
O2—C14—C15—C16 176.0 (10) C13—C14—C15—C16 −2.1 (17)
N1—N2—C3—C2 0.3 (11) C14—C15—C16—C11 0.6 (16)
N1—N2—C4—N3 −6.1 (11) C16—C11—C12—C13 −1.9 (16)
N1—N2—C4—C5 173.6 (9) C17—O2—C14—C13 6.0 (19)
N1—C1—C2—C3 2.4 (12) C17—O2—C14—C15 −171.9 (11)
N2—N1—C1—C2 −2.2 (11) C18—N7—N8—C20 3.1 (10)
N2—C4—C5—C6 178.2 (8) C18—N7—N8—C21 −179.0 (8)
N3—C4—C5—C6 −2.2 (14) C18—C19—C20—N8 0.6 (12)
N3—C8—C9—N4 −0.6 (11) C20—N8—C21—N9 172.9 (9)
N3—C8—C9—N6 −176.7 (8) C20—N8—C21—C22 −9.5 (16)
N4—N5—C10—N6 −0.7 (11) C21—N8—C20—C19 −179.8 (9)
N4—N5—C10—C11 177.2 (8) C21—N9—C26—C25 −5.5 (12)
N5—N4—C9—N6 −0.5 (10) C21—N9—C26—C27 175.1 (8)
N5—N4—C9—C8 −177.3 (8) C21—C22—C23—C25 −1.0 (14)
N5—C10—C11—C12 −173.9 (9) C22—C23—C25—C26 1.0 (14)
N5—C10—C11—C16 4.5 (15) C23—C25—C26—N9 2.3 (13)
N6—C10—C11—C12 3.9 (15) C23—C25—C26—C27 −178.5 (9)
N6—C10—C11—C16 −177.7 (9) C25—C26—C27—N10 −178.9 (9)
N7—N8—C20—C19 −2.3 (11) C25—C26—C27—N12 1.9 (17)
N7—N8—C21—N9 −4.4 (11) C26—N9—C21—N8 −176.6 (7)
N7—N8—C21—C22 173.2 (9) C26—N9—C21—C22 5.7 (14)
N7—C18—C19—C20 1.4 (12) C27—N10—N11—C28 0.4 (10)
N8—N7—C18—C19 −2.7 (11) C27—N12—C28—N11 −0.9 (11)
N8—C21—C22—C23 −179.6 (8) C27—N12—C28—C29 179.4 (8)
N9—C21—C22—C23 −2.4 (14) C28—N12—C27—N10 1.1 (10)
N9—C26—C27—N10 0.4 (11) C28—N12—C27—C26 −179.6 (9)
N9—C26—C27—N12 −178.8 (9) C28—C29—C30—C31 179.4 (8)
N10—N11—C28—N12 0.3 (11) C28—C29—C34—C33 179.8 (9)
N10—N11—C28—C29 −180.0 (8) C29—C30—C31—C32 2.1 (15)
N11—N10—C27—N12 −1.0 (10) C30—C29—C34—C33 1.1 (15)
N11—N10—C27—C26 179.6 (8) C30—C31—C32—O1 179.6 (9)
N11—C28—C29—C30 162.3 (9) C30—C31—C32—C33 −1.4 (15)
N11—C28—C29—C34 −16.3 (14) C31—C32—C33—Br1 177.8 (8)
N12—C28—C29—C30 −18.0 (15) C31—C32—C33—C34 0.6 (16)
N12—C28—C29—C34 163.4 (9) C32—C33—C34—C29 −0.4 (16)
C1—N1—N2—C3 1.2 (10) C34—C29—C30—C31 −1.9 (14)
C1—N1—N2—C4 180.0 (8) C35—O1—C32—C31 −3.0 (16)
C1—C2—C3—N2 −1.6 (11) C35—O1—C32—C33 178.0 (10)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C11–C16 and C29–C34 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C17···N6i 3.201 (16)
O3—H3A···N12 0.84 2.02 2.820 (12) 160
O4—H4···N6 0.84 2.06 2.855 (11) 158
C1—H1···O4ii 0.95 2.22 3.128 (14) 161
C18—H18···O3iii 0.95 2.27 3.192 (14) 163
C35—H35A···C30iv 0.98 2.62 3.233 (16) 121
C3—H3···N5iii 0.95 2.45 3.301 (13) 148
C7—H7···O4 0.95 2.46 3.310 (11) 148
C22—H22···N11ii 0.95 2.39 3.317 (13) 166
C20—H20···N11ii 0.95 2.55 3.389 (13) 148
C5—H5···N5iii 0.95 2.53 3.440 (12) 161
C17—H17A···O4i 0.98 2.52 3.451 (17) 159
C34—H34···C20v 0.95 2.63 3.535 (15) 159
C25—H25···O3 0.95 2.69 3.542 (13) 150
C18—H18···C36iii 0.95 2.88 3.65 (2) 138
C2—H2···C31vi 0.95 2.84 3.639 (15) 143
C2—H2···C32vi 0.95 2.89 3.656 (15) 139
C2—H2···C30vi 0.95 2.86 3.734 (11) 154
C2—H2···Cg2vi 0.95 2.57 3.501 (11) 168
C19—H19···Cg1vi 0.95 2.74 3.681 (11) 169

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) −x+3/2, y+1/2, z+1/2; (iii) −x+3/2, y−1/2, z+1/2; (iv) −x+2, −y+1, z−1/2; (v) −x+3/2, y−1/2, z−1/2; (vi) x, y, z+1.

Geometry (Å, °) of hydrogen bonds and C···N interactions in the title compound.

D–H···A D–H D···A H···A D–H···A Symmetry operation
C17···N6 - 3.20 (2) - - 1-x,1-y,-1/2+z
O3-H···N12 0.84 (1) 2.82 (1) 2.02 (1) 159.5 (5) x,y,z
O4-H···N6 0.84 (1) 2.86 (1) 2.06 (2) 158.0 (5) x,y,z
C1-H···O4 0.95 (1) 3.13 (1) 2.22 (1) 160.6 (5) 1.5-x,1/2+y,1/2+z
C18-H···O3 0.95 (1) 3.19 (1) 2.27 (1) 162.6 (5) 1.5-x,-1/2+y,1/2+z
C35-H···C30 0.95 (1) 3.23 (2) 2.62 (2) 121.0 (5) 2-x,1-y,-1/2+z
C3-H···N5 0.95 (1) 3.30 (1) 2.46 (2) 148.4 (5) 1.5-x,-1/2+y,1/2+z
C7-H···O4 0.95 (1) 3.31 (1) 2.46 (1) 148.4 (5) x,y,z
C22-H···N11 0.95 (1) 3.32 (1) 2.39 (1) 165.6 (5) 1.5-x,1/2+y,1/2+z
C20-H···N11 0.95 (1) 3.39 (1) 2.55 (2) 147.6 (5) 1.5-x,1/2+y,1/2+z
C5-H···N5 0.95 (1) 3.44 (1) 2.53 (2) 160.7 (5) 1.5-x,-1/2+y,1/2+z
C17-H···O4 0.95 (1) 3.45 (2) 2.52 (2) 159.1 (5) 1-x,1-y,-1/2+z
C34-H···C20 0.95 (1) 3.53 (2) 2.63 (1) 159.1 (5) 1.5-x,-1/2+y,-1/2+z
C25-H···O3 0.95 (1) 3.54 (1) 2.69 (1) 149.6 (5) x,y,z
C18-H···C36 0.95 (1) 3.65 (2) 2.88 (1) 138.0 (5) 1.5-x,-1/2+y,1/2+z
C2–H···C31 0.95 (1) 3.64 (2) 2.84 (1) 143.0 (5) x,y,1+z
C2-H···C32 0.95 (1) 3.66 (2) 2.89 (2) 139.0 (5) x,y,1+z
C2–H···C30 0.95 (1) 3.73 (1) 2.86 (1) 154.4 (5) x,y,1+z

Funding Statement

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 22BF037-03, 22BF037-04).

References

  1. Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546. [DOI] [PubMed]
  2. Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.
  3. Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.
  6. Gentili, D., Demitri, N., Schäfer, B., Liscio, F., Bergenti, I., Ruani, G., Ruben, M. & Cavallini, M. (2015). J. Mater. Chem. C. 3, 7836–7844.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.
  9. Halcrow, M. A. (2014). New J. Chem. 38, 1868–1882.
  10. Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. [DOI] [PubMed]
  11. Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986. [DOI] [PubMed]
  15. Senthil Kumar, K., Šalitroš, I., Heinrich, B., Fuhr, O. & Ruben, M. (2015). J. Mater. Chem. C. 3, 11635–11644.
  16. Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c05417. [DOI] [PMC free article] [PubMed]
  17. Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. [DOI] [PubMed]
  21. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  22. Suryadevara, N., Mizuno, A., Spieker, L., Salamon, S., Sleziona, S., Maas, A., Pollmann, E., Heinrich, B., Schleberger, M., Wende, H., Kuppusamy, S. K. & Ruben, M. (2022). Chem. Eur. J. 28, e202103853. [DOI] [PMC free article] [PubMed]
  23. Valverde–Muñoz, F., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. [DOI] [PubMed]
  24. Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022010179/dj2053sup1.cif

e-78-01138-sup1.cif (544.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022010179/dj2053Isup2.hkl

e-78-01138-Isup2.hkl (495.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022010179/dj2053Isup4.cdx

Includes energy framework data and schematic structures of similar neutral Fe(II) complexes. DOI: 10.1107/S2056989022010179/dj2053sup3.pdf

e-78-01138-sup3.pdf (286.9KB, pdf)

CCDC reference: 2215273

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES