Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Oct 11;78(Pt 11):1107–1112. doi: 10.1107/S2056989022009744

Crystal structure of bis­{3-(3,4-di­methyl­phen­yl)-5-[6-(1H-pyrazol-1-yl)pyridin-2-yl]-4H-1,2,4-triazol-4-ido}iron(II) methanol disolvate

Kateryna Znovjyak a, Igor O Fritsky a, Tatiana Y Sliva a, Vladimir M Amirkhanov a, Sergey O Malinkin a, Sergiu Shova b, Maksym Seredyuk a,*
Editor: C Schulzkec
PMCID: PMC9638982  PMID: 36380912

The title compound, a charge-neutral bis­{2-(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-ato)-6-(1H-πyrazol-1-yl)pyridine} iron(II) complex di­methanol solvate, is a low-spin complex with a moderately distorted pseudo­octa­hedral coordination environment of the metal ion. As a result of the cone shape, the mol­ecules are stacked in mono-periodic columns that are bound by weak hydrogen bonds into di-periodic layers, which, in turn, are arranged in a three-dimensional lattice bound by weak inter­layer inter­actions.

Keywords: crystal structure, spin-crossover, spin transition, energy frameworks

Abstract

As a result of the high symmetry of the Aea2 structure, the asymmetric unit of the title compound, [FeII(C18H15N6)2]·2MeOH, consists of half of a charge-neutral complex mol­ecule and a discrete methanol mol­ecule. The planar anionic tridentate ligand 2-[5-(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates the FeII ion meridionally through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa­hedral coordination sphere of the central ion. The average Fe—N bond distance is 1.955 Å, indicating a low-spin state of the FeII ion. Neighbouring cone-shaped mol­ecules, nested into each other, are linked through double weak C—H(pz)⋯π(ph’) inter­actions into mono-periodic columns, which are further linked through weak C—H⋯N′/C′ inter­actions into di-periodic layers. No inter­actions shorter than the sum of the van der Waals radii of the neighbouring layers are observed. Energy framework analysis at the B3LYP/6–31 G(d,p) theory level, performed to qu­antify the inter­molecular inter­action energies, reproduces the weak inter­layer inter­actions in contrast to the strong inter­action within the layers. Inter­molecular contacts were qu­anti­fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, showing the relative contributions of the contacts to the crystal packing to be H⋯H 48.5%, H⋯C/C⋯H 28.9%, H⋯N/N⋯H 16.2% and C⋯C 2.4%.

1. Chemical context

Bisazole­pyridines are a broad class of meridional tridentate ligands used to synthesize charged FeII compounds capable of switching between a spin state with the t 2g 4 eg 2 configuration (high-spin, total spin S = 2) and a spin state with the t 2g 6 eg 0 configuration (low-spin, total spin S = 0) due to temperature variation, light irradiation or external pressure (Halcrow, 2014; Halcrow et al., 2019). In the case of asymmetric ligand design, where one of the azole groups carries a hydrogen on the nitro­gen heteroatom, it was shown that deprotonation can produce neutral complex species that can be high-spin (Schäfer et al., 2013), low-spin (Shiga et al., 2019) or exhibit temperature-induced transitions between the spin states of the central atom (Seredyuk et al., 2014), depending on the ligand field strength. The substituents of ligands can also play an important role in behaviour of the solid samples, determining the way mol­ecules inter­act with each other and, therefore, influencing the spin state adopted by the central atom. As we have recently shown, the dynamic rearrangement of the substituent groups can lead to an abnormally large hysteresis of the thermal high-spin transition due to the supra­molecular mechanism of blocking the deformation of the complex mol­ecule by the meth­oxy group (Seredyuk et al., 2022). 1.

In a continuation of our inter­est in 3d-metal complexes formed by polydentate ligands (Bartual-Murgui et al., 2017; Bonhommeau et al., 2012; Valverde-Muñoz et al., 2020), we report here the structural characterization of a new electroneutral complex [FeII L 2]0 based on an asymmetric mono-deprotonated ligand with two methyl substituents on the phenyl group, L = 2-[5-(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine.

2. Structural commentary

The asymmetric unit comprises half of the mol­ecule and a discrete MeOH mol­ecule forming a hydrogen bond O26—H26⋯N12 with the triazole (trz) ring (Fig. 1). The FeII ion has a pseudo-octa­hedral coordination environment composed of the nitro­gen donor atoms of the pyrazole (pz), pyridine (py) and trz heterocycles with an average Fe—N distance of 1.957 Å (V[FeN6] = 9.654 Å3) being typical for low-spin complexes with an N6 coordination environment (Gütlich & Goodwin, 2004). The pz, py, trz and phenyl rings, together with the two methyl substituents of one ligand, all lie essentially in the same plane.

Figure 1.

Figure 1

The mol­ecular structure of half the title compound as refined in the asymmetric unit with displacement ellipsoids drawn at the 50% probability level. The O—H⋯N hydrogen bond is indicated by the dashed line. This and the next figure were generated with the program Mercury (Macrae et al., 2020).

The average trigonal distortion parameters, Σ = Σ1 12(|90 − φ i|), with φ i being the N—Fe—N′ angle (Drew et al., 1995), and Θ = Σ1 24(|60 − θ i|), with θ i being the angle generated by superposition of two opposite faces of the octa­hedron (Chang et al., 1990), are 92.8 and 295.0°, respectively. The values reveal a deviation of the coordination environment from an ideal octa­hedron which is, however, in the expected range for complexes with similar bis­azole­pyridine ligands (see below). The calculated continuous shape measure (CShM) value relative to the ideal Oh symmetry is 2.18 (Kershaw Cook et al., 2015).

3. Supra­molecular features

As a result of the tapered shape, neighbouring complex mol­ecules are embedded in each other and inter­act through two weak inter­molecular C—H(pz)⋯π(ph’) contacts between the pyrazole (pz) and phenyl (ph) groups, respectively [distance C2)(pz)⋯Cg (ph’) is 3.392 Å, angle between planes of the rings is 73.77°]. The formed mono-periodic supra­molecular columns protrude along the c-axis with a stacking periodicity equal to 10.6511 (7) Å (= cell parameter c) (Fig. 2 a). Weak inter­molecular hydrogen-bonding inter­actions C—H(pz, py)⋯N/C(pz, trz)/O(MeOH) in the range 2.257–2.893 Å (Table 1), link neighbouring columns into corrugated di-periodic layers in the bc plane (Fig. 2 b,c). The layers stack along the b-axis direction without any strong or weak inter­layer inter­actions shorter than the sum of the van der Waals radii (Fig. 2 c). The voids between the layers are occupied by methanol mol­ecules, which participate in the strong hydrogen bonding mentioned above, and weak hydrogen bonding with the aromatic substituents within the layers (a complete list of inter­molecular inter­actions is given in Table 1).

Figure 2.

Figure 2

(a) A fragment of the mono-periodic supra­molecular columns formed by stacking of mol­ecules along the c axis. (b) Di-periodic supra­molecular layers formed by stacking of the supra­molecular columns. For a better representation, each column has a different colour. Red dashed lines represent weak hydrogen bonds. (c) Stacking of the di-periodic layers along the c axis. Blue shaded areas correspond to the inter­layer space without inter­molecular inter­actions shorter than the sum of the van der Waals radii. The methanol mol­ecules are not shown for clarity.

Table 1. Hydrogen bonding (Å) of the title compound.

Hydrogen bond Length Symmetry operation of the contact atom
C7⋯H—C21(pz) 2.827 1 − x, 1 − y, 1 + z
C6⋯H—C21(pz) 2.777 1 − x, 1 − y, 1 + z
C5⋯H—C21(pz) 2.756 1 − x, 1 − y, 1 + z
C4⋯H—C21(pz) 2.802 1 − x, 1 − y, 1 + z
C3⋯H—C21(pz) 2.893 1 − x, 1 − y, 1 + z
N9⋯H—C15(py) 2.475 Inline graphic  + x, 1 − y, Inline graphic  + z
N9⋯H—C20(pz) 2.522 Inline graphic  + x, 1 − y, Inline graphic  + z
H7⋯C20(pz) 2.641 Inline graphic  + x, 1 − y, Inline graphic  + z
N12⋯H—O26 2.017 x, y, z
H17⋯O26 2.329 x, y, z
O26⋯H—C22(pz) 2.257 Inline graphic  + x, 1 − y, Inline graphic  + z

4. Hirshfeld surface and 2D fingerprint plots

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using Crystal Explorer (Spackman et al., 2021), with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.6122 (red) to 1.3609 (blue) a.u. (Fig. 3). The pale-red spots symbolize short contacts and negative d norm values on the surface correspond to the inter­actions described above. The overall two-dimensional fingerprint plot is illustrated in Fig. 4. The Hirshfeld surfaces mapped over d norm are shown for the H⋯H, H⋯C/C⋯H, H⋯N/N⋯H and C⋯C contacts, and the two-dimensional fingerprint plots, associated with their relative contributions to the Hirshfeld surface. At 48.5%, the largest contribution to the overall crystal packing is from H⋯H inter­actions, which are located mostly in the central region of the fingerprint plot. H⋯C/C⋯H contacts contribute 28.9%, resulting in a pair of characteristic wings. The H⋯N/N⋯H contacts, represented by a pair of sharp spikes in the fingerprint plot, make a 16.2% contribution to the Hirshfeld surface. Finally, C⋯C contacts, which account for a contribution of 2.4%, are mostly distributed in the middle part of the plot.

Figure 3.

Figure 3

A projection of d norm mapped on the Hirshfeld surface, showing the inter­molecular inter­actions within the mol­ecule. Red areas represent regions where contacts are shorter than the sum of the van der Waals radii, blue areas represent regions where contacts are longer than the sum of van der Waals radii, and white areas are regions where contacts are close to the sum of van der Waals radii. This and the next two figures were generated with the program Crystal Explorer (Spackman et al., 2021).

Figure 4.

Figure 4

(a) The overall two-dimensional fingerprint plot and those decomposed into specified inter­actions. (b) Hirshfeld surface representations with the function d norm plotted onto the surface for the different inter­actions.

5. Energy frameworks

The energy frameworks, calculated using the wave function at the B3LYP/6-31G(d,p) theory level, including the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot), are shown in Fig. 5 (Spackman et al., 2021). The cylindrical radii, adjusted to the same scale factor of 100, are proportional to the relative strength of the corresponding energies. The major contribution to the inter­molecular inter­actions comes from dispersion forces (E dis), reflecting the dominant inter­actions in the network of the electroneutral mol­ecules. The topology of the energy framework resembles the topology of the inter­molecular inter­actions within and between the supra­molecular layers described above. Because of the high lattice symmetry, there are only two different attractive inter­actions between the mol­ecules within the layers, equal to −58.5 and −90.6 kJ mol−1. As for the inter­layer inter­actions, the absence of supra­molecular bonding leads to very weak inter­actions in the range −7.4 to +2.5 kJ mol−1, i.e. from weakly attracting to weakly repulsive. The colour-coded inter­action mappings within a radius of 3.8 Å of a central reference mol­ecule for the title compound together with full details of the various contributions to the total energy (E tot) are given in the supporting information

Figure 5.

Figure 5

The calculated energy frameworks, showing (a) the electrostatic potential forces (E ele), (b) the dispersion forces (E dis) and (c) the total energy diagrams (E tot). Tube size is set at 100 scale.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) reveals several similar neutral FeII complexes with a deprotonated azole group, for example, those based on pyrazole-pyridine-benzimidazole, XODCEB (Shiga et al., 2019), phenathroline-tetra­zole, QIDJET (Zhang et al., 2007), and phenanthroline-benzimidazole, DOMQUT (Seredyuk et al., 2014). We also included in the comparison data for three polymorphs, in different spin states, of a complex structurally similar to the title compound, but carrying a meth­oxy group on the phenyl substituent (EJQOA, BEJQUG, BEJQUG01, BEJRAN, BEJRER; Seredyuk et al., 2022) (see schematic structures of all complexes in the supporting information. The Fe—N distances of these complexes in the low-spin state are 1.946–1.991 Å, while in the high-spin state they are in the range 2.138–2.184 Å. The values of the trigonal distortion and CShM(Oh ) change correspondingly, and in the low-spin state they are systematically lower than in the high-spin state. The respective structural parameters of the title compound and related complexes are given in Table 2.

Table 2. Computed distortion indices (Å, °) for the title compound and similar literature complexes.

CSD code Spin state <Fe—N> Σ Θ CShM(Oh )
Title compound Low-spin 1.957 92.8 295.0 2.18
XODCEB a Low-spin 1.950 87.4 276.6 1.92
QIDJET01 b Low-spin 1.970 90.3 341.3 2.47
QIDJET b High-spin 2.184 145.5 553.3 5.88
DOMQIH c Low-spin 1.962 83.8 280.7 2.02
DOMQUT c Low-spin 1.991 88.5 320.0 2.48
DOMQUT02 c High-spin 2.183 139.6 486.9 5.31
EJQOA d Low-spin 1.946 87.5 308.9 2.16
BEJQUG d Low-spin 1.952 97.9 309.9 2.37
BEJQUG01 d High-spin 2.138 118.0 375.9 3.34
BEJRAN d Low-spin 1.946 107.7 384.5 3.20
BEJRER d High-spin 2.139 147.8 507.2 4.92

Notes: (a) Shiga et al. (2019); (b) Zhang et al. (2007); (c) Seredyuk et al. (2014); (d) Seredyuk et al. (2022).

7. Synthesis and crystallization

The ligand L was synthesized by the Suzuki cross-coupling reaction from the commercially available precursors (Enamine Ltd.) according to the method described in the literature (Seredyuk et al., 2022). The synthesis of the title compound was performed with a layering technique in a standard test tube. The layering sequence was as follows: the bottom layer contained a solution of [Fe(L 2)](BF4)2 prepared by dissolving L = 2-[(3,4-di­methyl­phen­yl)-4H-1,2,4-triazol-3-yl)]-6-(1H-pyrazol-1-yl)pyridine (100 mg, 0.316 mmol) and Fe(BF4)2·6H2O (53 mg, 0.158 mmol) in boiling acetone, to which chloro­form (5 ml) was then added. The middle layer was a methanol–chloro­form mixture (1:10, 10 ml), which was covered by a layer of methanol (10 ml), to which 100 µl of NEt3 was added dropwise. The tube was sealed, and black plate-like single crystals appeared within 3-4 weeks (yield ca 75%). Elemental analysis calculated for C38H38FeN12O2: C, 60.80; H, 5.10; N, 22.39. Found: C, 60.50; H, 5.31; N, 22.71.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions using idealized geometries, with C—H = 0.98 Å for methyl groups and 0.95 Å for aromatic H atoms, and refined using a riding model with U iso(H) = 1.2–1.5U eq(C); the hydrogen atom H26 was refined freely. Two OMIT commands were used to exclude beamstop-affected data.

Table 3. Experimental details.

Crystal data
Chemical formula [Fe(C18H15N6)2]·2CH4O
M r 750.65
Crystal system, space group Orthorhombic, A e a2
Temperature (K) 180
a, b, c (Å) 12.6854 (10), 26.315 (2), 10.6511 (7)
V3) 3555.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.3 × 0.24 × 0.04
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.824, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6911, 3047, 2211
R int 0.071
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.061, 0.100, 1.00
No. of reflections 3047
No. of parameters 247
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.84, −0.50
Absolute structure Flack x determined using 703 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter −0.02 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009744/yz2021sup1.cif

e-78-01107-sup1.cif (305.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009744/yz2021Isup2.hkl

e-78-01107-Isup2.hkl (243.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022009744/yz2021Isup5.cdx

Supporting data for energy framework analysis and schematic structures of related complexes. DOI: 10.1107/S2056989022009744/yz2021sup4.doc

CCDC reference: 2211089

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows: Conceptualization, KZ and MS; methodology, KZ; formal analysis, IOF; synthesis, SOM; single-crystal measurements, SS; writing (original draft), MS; writing (review and editing of the manuscript), TYS, MS; visualization and calculations, VMA; funding acquisition, KZ, MS.

supplementary crystallographic information

Crystal data

[Fe(C18H15N6)2]·2CH4O Dx = 1.402 Mg m3
Mr = 750.65 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aea2 Cell parameters from 1363 reflections
a = 12.6854 (10) Å θ = 2.6–22.8°
b = 26.315 (2) Å µ = 0.48 mm1
c = 10.6511 (7) Å T = 180 K
V = 3555.5 (5) Å3 Plate, clear dark red
Z = 4 0.3 × 0.24 × 0.04 mm
F(000) = 1568

Data collection

Xcalibur, Eos diffractometer 3047 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 2211 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.071
Detector resolution: 16.1593 pixels mm-1 θmax = 25.0°, θmin = 2.2°
ω scans h = −12→15
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −25→31
Tmin = 0.824, Tmax = 1.000 l = −12→12
6911 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.0192P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.84 e Å3
3047 reflections Δρmin = −0.50 e Å3
247 parameters Absolute structure: Flack x determined using 703 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraint Absolute structure parameter: −0.02 (3)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.500000 0.500000 0.32399 (13) 0.0198 (3)
N13 0.3533 (4) 0.48261 (19) 0.3181 (6) 0.0170 (12)
N23 0.4520 (4) 0.5467 (2) 0.1903 (5) 0.0202 (15)
N19 0.3481 (4) 0.5393 (2) 0.1587 (4) 0.0219 (15)
N10 0.4953 (5) 0.4455 (3) 0.4514 (5) 0.0211 (15)
O26 0.1937 (5) 0.3536 (3) 0.6135 (7) 0.074 (3)
H26 0.255 (9) 0.359 (4) 0.602 (8) 0.10 (4)*
N12 0.3978 (4) 0.3867 (2) 0.5544 (4) 0.0214 (15)
N9 0.5624 (4) 0.4206 (2) 0.5293 (5) 0.0205 (15)
C14 0.2907 (5) 0.5053 (3) 0.2340 (6) 0.0189 (17)
C16 0.1439 (5) 0.4588 (3) 0.3039 (6) 0.0266 (18)
H16 0.070880 0.450760 0.300859 0.032*
C11 0.3991 (6) 0.4244 (3) 0.4689 (6) 0.0187 (17)
C18 0.3142 (5) 0.4458 (3) 0.3926 (6) 0.0208 (17)
C17 0.2084 (5) 0.4332 (3) 0.3877 (6) 0.0232 (18)
H17 0.180469 0.407444 0.440732 0.028*
C2 0.5444 (6) 0.3525 (3) 0.6874 (6) 0.0221 (17)
C15 0.1835 (5) 0.4957 (3) 0.2245 (5) 0.0231 (17)
H15 0.139860 0.513428 0.166841 0.028*
C20 0.3249 (6) 0.5650 (3) 0.0514 (6) 0.028 (2)
H20 0.258538 0.565681 0.010235 0.034*
C7 0.6517 (6) 0.3493 (3) 0.7117 (6) 0.031 (2)
H7 0.698294 0.368889 0.661329 0.037*
C21 0.4130 (6) 0.5893 (3) 0.0140 (7) 0.031 (2)
H21 0.420863 0.610314 −0.057996 0.038*
C6 0.6947 (6) 0.3191 (3) 0.8056 (7) 0.0300 (19)
C5 0.6260 (7) 0.2904 (3) 0.8814 (7) 0.036 (2)
C4 0.5194 (7) 0.2928 (3) 0.8593 (6) 0.040 (2)
H4 0.473076 0.273418 0.910428 0.048*
C22 0.4901 (6) 0.5776 (3) 0.1021 (7) 0.0274 (19)
H22 0.560432 0.589870 0.099718 0.033*
C24 0.8132 (5) 0.3196 (3) 0.8284 (8) 0.048 (2)
H24A 0.846198 0.345213 0.774413 0.072*
H24B 0.842489 0.286043 0.808838 0.072*
H24C 0.827202 0.327787 0.916573 0.072*
C8 0.5027 (5) 0.3860 (3) 0.5907 (6) 0.0205 (17)
C3 0.4769 (6) 0.3232 (3) 0.7632 (6) 0.035 (2)
H3 0.402940 0.323876 0.749434 0.042*
C27 0.1677 (7) 0.3185 (4) 0.7045 (8) 0.060 (3)
H27A 0.208643 0.287319 0.691455 0.089*
H27B 0.092312 0.310638 0.699199 0.089*
H27C 0.183692 0.332462 0.787647 0.089*
C25 0.6686 (7) 0.2584 (3) 0.9889 (7) 0.057 (3)
H25A 0.722244 0.234986 0.956909 0.085*
H25B 0.610868 0.238992 1.026777 0.085*
H25C 0.700073 0.280733 1.052319 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0140 (7) 0.0239 (8) 0.0216 (6) −0.0013 (8) 0.000 0.000
N13 0.010 (3) 0.020 (3) 0.022 (3) 0.000 (3) −0.003 (3) 0.002 (3)
N23 0.014 (3) 0.028 (4) 0.019 (3) −0.003 (3) 0.000 (3) −0.002 (3)
N19 0.016 (3) 0.024 (4) 0.025 (3) −0.002 (3) −0.002 (3) 0.002 (3)
N10 0.019 (3) 0.026 (4) 0.018 (3) 0.001 (3) −0.003 (3) 0.002 (3)
O26 0.024 (4) 0.082 (6) 0.115 (6) 0.009 (4) 0.018 (4) 0.066 (5)
N12 0.013 (3) 0.025 (4) 0.026 (3) 0.000 (3) −0.004 (3) 0.001 (3)
N9 0.020 (4) 0.024 (4) 0.018 (3) 0.000 (3) −0.003 (3) 0.004 (3)
C14 0.012 (4) 0.024 (5) 0.021 (4) −0.007 (4) 0.003 (3) −0.003 (3)
C16 0.013 (4) 0.034 (5) 0.032 (5) −0.005 (4) 0.003 (3) 0.000 (4)
C11 0.022 (4) 0.019 (5) 0.015 (4) −0.001 (4) −0.004 (3) −0.002 (3)
C18 0.014 (4) 0.028 (5) 0.020 (3) −0.002 (4) 0.002 (3) −0.004 (3)
C17 0.012 (4) 0.032 (5) 0.025 (4) −0.009 (4) −0.002 (3) 0.000 (4)
C2 0.025 (4) 0.024 (5) 0.017 (4) −0.002 (4) −0.005 (3) −0.001 (3)
C15 0.015 (4) 0.027 (5) 0.028 (4) 0.001 (4) −0.007 (3) 0.004 (4)
C20 0.027 (5) 0.036 (5) 0.022 (4) 0.014 (4) 0.001 (3) 0.004 (4)
C7 0.032 (5) 0.032 (5) 0.027 (5) 0.010 (4) 0.003 (4) 0.001 (4)
C21 0.024 (5) 0.035 (6) 0.035 (5) 0.006 (5) 0.004 (4) 0.017 (4)
C6 0.038 (5) 0.024 (4) 0.028 (4) 0.013 (4) −0.013 (4) −0.007 (4)
C5 0.051 (6) 0.028 (5) 0.030 (4) 0.006 (5) −0.019 (4) 0.001 (4)
C4 0.056 (6) 0.033 (5) 0.031 (6) −0.017 (5) −0.006 (4) 0.013 (4)
C22 0.025 (5) 0.029 (5) 0.029 (4) −0.010 (4) 0.006 (4) 0.006 (4)
C24 0.040 (5) 0.060 (6) 0.045 (4) 0.020 (5) −0.008 (5) 0.012 (6)
C8 0.017 (4) 0.024 (5) 0.021 (4) 0.002 (4) 0.002 (3) −0.005 (3)
C3 0.029 (5) 0.044 (6) 0.031 (4) −0.009 (4) −0.011 (4) 0.001 (4)
C27 0.043 (6) 0.056 (7) 0.080 (6) 0.008 (6) 0.020 (5) 0.025 (6)
C25 0.080 (8) 0.044 (7) 0.047 (5) 0.002 (6) −0.024 (5) 0.012 (4)

Geometric parameters (Å, º)

Fe1—N13 1.917 (5) C2—C8 1.455 (9)
Fe1—N13i 1.917 (5) C2—C3 1.407 (9)
Fe1—N23i 1.977 (6) C15—H15 0.9500
Fe1—N23 1.977 (6) C20—H20 0.9500
Fe1—N10i 1.974 (6) C20—C21 1.349 (9)
Fe1—N10 1.974 (6) C7—H7 0.9500
N13—C14 1.338 (8) C7—C6 1.389 (9)
N13—C18 1.348 (8) C21—H21 0.9500
N23—N19 1.375 (7) C21—C22 1.389 (9)
N23—C22 1.333 (9) C6—C5 1.409 (10)
N19—C14 1.403 (8) C6—C24 1.522 (9)
N19—C20 1.360 (8) C5—C4 1.373 (10)
N10—N9 1.358 (8) C5—C25 1.520 (10)
N10—C11 1.355 (9) C4—H4 0.9500
O26—H26 0.79 (11) C4—C3 1.406 (9)
O26—C27 1.380 (9) C22—H22 0.9500
N12—C11 1.345 (8) C24—H24A 0.9800
N12—C8 1.386 (8) C24—H24B 0.9800
N9—C8 1.352 (8) C24—H24C 0.9800
C14—C15 1.387 (8) C3—H3 0.9500
C16—H16 0.9500 C27—H27A 0.9800
C16—C17 1.386 (9) C27—H27B 0.9800
C16—C15 1.383 (9) C27—H27C 0.9800
C11—C18 1.463 (9) C25—H25A 0.9800
C18—C17 1.384 (8) C25—H25B 0.9800
C17—H17 0.9500 C25—H25C 0.9800
C2—C7 1.388 (9)
N13—Fe1—N13i 176.2 (4) C14—C15—H15 121.9
N13—Fe1—N23 80.0 (3) C16—C15—C14 116.2 (6)
N13—Fe1—N23i 97.3 (2) C16—C15—H15 121.9
N13i—Fe1—N23 97.3 (2) N19—C20—H20 126.1
N13i—Fe1—N23i 80.0 (3) C21—C20—N19 107.8 (7)
N13—Fe1—N10 79.6 (3) C21—C20—H20 126.1
N13—Fe1—N10i 103.0 (2) C2—C7—H7 118.2
N13i—Fe1—N10i 79.6 (3) C6—C7—C2 123.7 (7)
N13i—Fe1—N10 103.0 (2) C6—C7—H7 118.2
N23i—Fe1—N23 87.9 (3) C20—C21—H21 127.0
N10i—Fe1—N23 93.0 (2) C20—C21—C22 106.1 (7)
N10—Fe1—N23i 93.0 (2) C22—C21—H21 127.0
N10i—Fe1—N23i 159.5 (2) C7—C6—C5 118.4 (7)
N10—Fe1—N23 159.5 (2) C7—C6—C24 119.9 (7)
N10—Fe1—N10i 93.2 (4) C5—C6—C24 121.6 (7)
C14—N13—Fe1 119.4 (5) C6—C5—C25 120.6 (7)
C14—N13—C18 119.8 (6) C4—C5—C6 119.1 (7)
C18—N13—Fe1 120.6 (5) C4—C5—C25 120.3 (8)
N19—N23—Fe1 112.5 (4) C5—C4—H4 119.1
C22—N23—Fe1 140.8 (5) C5—C4—C3 121.9 (7)
C22—N23—N19 105.2 (6) C3—C4—H4 119.1
N23—N19—C14 116.6 (5) N23—C22—C21 110.9 (7)
C20—N19—N23 110.0 (6) N23—C22—H22 124.5
C20—N19—C14 133.2 (6) C21—C22—H22 124.5
N9—N10—Fe1 138.8 (5) C6—C24—H24A 109.5
C11—N10—Fe1 114.9 (5) C6—C24—H24B 109.5
C11—N10—N9 106.3 (6) C6—C24—H24C 109.5
C27—O26—H26 117 (7) H24A—C24—H24B 109.5
C11—N12—C8 100.8 (6) H24A—C24—H24C 109.5
C8—N9—N10 105.7 (5) H24B—C24—H24C 109.5
N13—C14—N19 111.0 (6) N12—C8—C2 123.7 (6)
N13—C14—C15 123.3 (6) N9—C8—N12 113.2 (6)
C15—C14—N19 125.7 (6) N9—C8—C2 123.1 (6)
C17—C16—H16 119.3 C2—C3—C4 119.8 (7)
C15—C16—H16 119.3 C2—C3—H3 120.1
C15—C16—C17 121.4 (7) C4—C3—H3 120.1
N10—C11—C18 115.4 (6) O26—C27—H27A 109.5
N12—C11—N10 114.0 (6) O26—C27—H27B 109.5
N12—C11—C18 130.6 (7) O26—C27—H27C 109.5
N13—C18—C11 109.5 (6) H27A—C27—H27B 109.5
N13—C18—C17 120.5 (6) H27A—C27—H27C 109.5
C17—C18—C11 130.0 (7) H27B—C27—H27C 109.5
C16—C17—H17 120.6 C5—C25—H25A 109.5
C18—C17—C16 118.7 (7) C5—C25—H25B 109.5
C18—C17—H17 120.6 C5—C25—H25C 109.5
C7—C2—C8 121.7 (6) H25A—C25—H25B 109.5
C7—C2—C3 117.2 (7) H25A—C25—H25C 109.5
C3—C2—C8 121.1 (6) H25B—C25—H25C 109.5
Fe1—N13—C14—N19 1.3 (8) C11—N12—C8—C2 177.6 (6)
Fe1—N13—C14—C15 −178.9 (5) C11—C18—C17—C16 −178.4 (6)
Fe1—N13—C18—C11 −0.5 (8) C18—N13—C14—N19 −174.9 (6)
Fe1—N13—C18—C17 −179.7 (5) C18—N13—C14—C15 4.9 (10)
Fe1—N23—N19—C14 7.5 (7) C17—C16—C15—C14 0.0 (10)
Fe1—N23—N19—C20 −168.3 (4) C2—C7—C6—C5 −0.6 (11)
Fe1—N23—C22—C21 163.0 (6) C2—C7—C6—C24 −177.8 (7)
Fe1—N10—N9—C8 −178.8 (5) C15—C16—C17—C18 1.1 (11)
Fe1—N10—C11—N12 178.9 (5) C20—N19—C14—N13 168.7 (7)
Fe1—N10—C11—C18 −1.0 (8) C20—N19—C14—C15 −11.1 (12)
N13—C14—C15—C16 −3.1 (10) C20—C21—C22—N23 0.6 (9)
N13—C18—C17—C16 0.7 (11) C7—C2—C8—N12 173.2 (6)
N23—N19—C14—N13 −5.8 (8) C7—C2—C8—N9 −8.5 (11)
N23—N19—C14—C15 174.4 (6) C7—C2—C3—C4 0.6 (11)
N23—N19—C20—C21 −0.4 (8) C7—C6—C5—C4 0.5 (11)
N19—N23—C22—C21 −0.8 (8) C7—C6—C5—C25 −177.4 (7)
N19—C14—C15—C16 176.7 (6) C6—C5—C4—C3 0.0 (12)
N19—C20—C21—C22 −0.1 (9) C5—C4—C3—C2 −0.6 (11)
N10—N9—C8—N12 0.9 (8) C22—N23—N19—C14 176.5 (6)
N10—N9—C8—C2 −177.5 (6) C22—N23—N19—C20 0.8 (8)
N10—C11—C18—N13 1.0 (8) C24—C6—C5—C4 177.7 (7)
N10—C11—C18—C17 −179.9 (7) C24—C6—C5—C25 −0.3 (12)
N12—C11—C18—N13 −178.9 (7) C8—N12—C11—N10 0.4 (7)
N12—C11—C18—C17 0.2 (13) C8—N12—C11—C18 −179.8 (7)
N9—N10—C11—N12 0.2 (8) C8—C2—C7—C6 177.9 (6)
N9—N10—C11—C18 −179.7 (6) C8—C2—C3—C4 −177.3 (6)
C14—N13—C18—C11 175.7 (6) C3—C2—C7—C6 0.0 (11)
C14—N13—C18—C17 −3.6 (10) C3—C2—C8—N12 −8.9 (11)
C14—N19—C20—C21 −175.2 (7) C3—C2—C8—N9 169.3 (7)
C11—N10—N9—C8 −0.6 (7) C25—C5—C4—C3 178.0 (7)
C11—N12—C8—N9 −0.8 (7)

Symmetry code: (i) −x+1, −y+1, z.

Funding Statement

Funding for this research was provided by a grant from the Ministry of Education and Science of Ukraine for perspective development of a scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv.

References

  1. Bartual-Murgui, C., Piñeiro-López, L., Valverde-Muñoz, F. J., Muñoz, M. C., Seredyuk, M. & Real, J. A. (2017). Inorg. Chem. 56, 13535–13546. [DOI] [PubMed]
  2. Bonhommeau, S., Lacroix, P. G., Talaga, D., Bousseksou, A., Seredyuk, M., Fritsky, I. O. & Rodriguez, V. (2012). J. Phys. Chem. C, 116, 11251–11255.
  3. Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.
  8. Halcrow, M. A. (2014). New J. Chem. 38, 1868–1882.
  9. Halcrow, M. A., Capel Berdiell, I., Pask, C. M. & Kulmaczewski, R. (2019). Inorg. Chem. 58, 9811–9821. [DOI] [PubMed]
  10. Kershaw Cook, L. J., Mohammed, R., Sherborne, G., Roberts, T. D., Alvarez, S. & Halcrow, M. A. (2015). Coord. Chem. Rev. 289–290, 2–12.
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Schäfer, B., Rajnák, C., Šalitroš, I., Fuhr, O., Klar, D., Schmitz-Antoniak, C., Weschke, E., Wende, H. & Ruben, M. (2013). Chem. Commun. 49, 10986–10988. [DOI] [PubMed]
  15. Seredyuk, M., Znovjyak, K., Valverde-Muñoz, F. J., da Silva, I., Muñoz, M. C., Moroz, Y. S. & Real, J. A. (2022). J. Am. Chem. Soc. 144, 14297–14309. [DOI] [PMC free article] [PubMed]
  16. Seredyuk, M., Znovjyak, K. O., Kusz, J., Nowak, M., Muñoz, M. C. & Real, J. A. (2014). Dalton Trans. 43, 16387–16394. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Shiga, T., Saiki, R., Akiyama, L., Kumai, R., Natke, D., Renz, F., Cameron, J. M., Newton, G. N. & Oshio, H. (2019). Angew. Chem. Int. Ed. 58, 5658–5662. [DOI] [PubMed]
  20. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  21. Valverde-Muñoz, F.-J., Seredyuk, M., Muñoz, M. C., Molnár, G., Bibik, Y. S. & Real, J. A. (2020). Angew. Chem. Int. Ed. 59, 18632–18638. [DOI] [PubMed]
  22. Zhang, W., Zhao, F., Liu, T., Yuan, M., Wang, Z. M. & Gao, S. (2007). Inorg. Chem. 46, 2541–2555. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022009744/yz2021sup1.cif

e-78-01107-sup1.cif (305.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022009744/yz2021Isup2.hkl

e-78-01107-Isup2.hkl (243.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022009744/yz2021Isup5.cdx

Supporting data for energy framework analysis and schematic structures of related complexes. DOI: 10.1107/S2056989022009744/yz2021sup4.doc

CCDC reference: 2211089

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES