Abstract
In South America inhabit an endemic group of ungulates adapted to extreme environments: the South American camelids (SAC), a key component of the Andean biocultural heritage. Until today, SAC are the most important factor of Andean economies and social and ritual life. SAC include two wild species, the guanaco (Lama guanicoe) and the vicuña (Vicugna vicugna), and two domestic species, the llama (Lama glama) and the alpaca (Vicugna pacos). Endoparasitosis are one of the most common diseases in SAC, and have great economic and health relevance. Despite this, there is a lack of knowledge on this concern. The main objective of this work was to conduct the first systematic review of the diversity of gastrointestinal parasites of SAC throughout the entire native range of distribution and to identify several gaps in knowledge. The PRISMA protocol was performed and a total of 101 documents were summarized. At least 36 parasitic helminths and five Eimeria spp. were registered. This work highlights the need for a greater number of works to know with more certainty the parasitic fauna of camelids in the past and present, in order to achieve predictions that allow proper management of camelids for their future conservation. Furthermore, concerted research efforts are needed to understand the biology, epidemiology, diagnosis and distribution of the parasitosis of SAC along the entire distribution range to guide conservation decisions.
Keywords: Lama, Vicugna, Alpacas, Llamas, Vicuñas, Guanacos, Endoparasites
Graphical abstract

Highlights
-
•
Endoparasitosis are one of the most common diseases in SAC.
-
•
First review of parasites diversity of SAC throughout its total range of distribution.
-
•
At least 36 parasitic helminths and 5 Eimeria spp. were registered in camelids.
-
•
The registered parasites are mostly generalist parasites.
-
•
A better understanding of the extent and impact of parasites of SAC is needed.
1. Introduction
The South American camelids (SAC) (Artiodactyla, Camelidae) are a key component of the Andean biocultural heritage (Vilá and Arzamendia, 2020) and have occupied a central role in the development of Andean societies, both for ancient hunter-gatherers and for more recent pastoralists and farmers. SAC were the most important factor in Andean economies and social and ritual life throughout time. SAC include two wild species, the guanaco (Lama guanicoe) and the vicuña (Vicugna vicugna); and two domestic species, the llama (Lama glama) and the alpaca (Vicugna pacos) (Wheeler et al., 2006; Yacobaccio, 2021). This is an endemic group of ungulates adapted to extreme environments with a wide distributionin in arid and semiarid ecosystems from Argentina, Bolivia, Chile, Ecuador and Peru, mainly from 3000 to 5000 m.a.s.l. (Franklin, 2011). The original distribution of SAC includes the Andean high-altitude grasslands, the Altiplano and the Patagonian arid steppes (Vilá and Arzamendia, 2020). The distribution of guanacos includes a wide diversity of open habitats and temperate forest environments of Peru, Bolivia, Chile and Argentina, including Patagonian steppes. The distribution of vicuñas is limited to Northern Argentina, Chile, Peru and Bolivia, restricted to high-altitude Puna environments, above 3400 m.a.s.l. (Vilá, 2012). In pre-Hispanic times, llamas inhabit the Andean regions of Peru, Bolivia, Argentina and Chile and the alpacas were restricted to high and humid environments from the Puna of Peru, Bolivia and Chile (Yacobaccio, 2021). Under the dominion of the Incas (1470–1532), the llama distribution reached the southern Colombia and central Chile. There is no evidence of the presence of alpacas in pre-Columbian sites from Argentina (Olivera and Grant, 2009) and Ecuador (Miller and Gill, 1990) being introduced in these regions later.
Today, husbandry of SAC is an important socioeconomic activity for the Andean populations of South America. Recently, the breeding of domestic camelids also began to have great interest in other parts of the world. Numerous publications have been reported the relevance of parasites of SAC. Endoparasitosis are one of the most common diseases of SAC and have great economic and health relevance. Host-specific parasites and generalistic parasites shared with domestic ruminants such as sheep and goats are well known and have been widely described in the literature (e.g. Navone and Merino 1989; Leguia, 1991; Beldomenico et al., 2003; Aguirre and Cafrune, 2007; Arias-Pacheco et al., 2021). It is known that camelids are parasitized by gastrointestinal nematodes, trematodes and cestodes, and by coccidians, among other parasites. Many of them can cause serious diseases (Fowler, 2010) and can be transmitted to humans, including hydatidosis, fascioliasis, sarcocystosis and toxoplasmosis. The knowledgement of the diversity, spread, and evolution of parasites of SAC play a very important role in the understanding of the behavioral ecology, health, and camelids conservation. Despite this, there is a lack of knowledge about a global vision of gastrointestinal parasite diversity throughout the entire distribution range. The main objective of this work was to conduct the first systematic review of the diversity of gastrointestinal parasites of SAC throughout the native range of distribution and to identify several gaps in knowledge.
2. Materials and methods
The research was conducted using the systematic approach of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) protocol guidelines (Shamseer et al., 2015).
2.1. Selection criteria
The literature used in this review included publications reporting on gastrointestinal parasites of SAC. The following list gives the criteria used in the selection of publications.
The inclusion criteria were:
-
•
Scientific peer-reviewed, scientific papers, conference proceedings and theses (PhD and MSc Thesis and Final Degree Projects) were included.
-
•
Literature published in English and Spanish-written in order to include research with local, regional and global impact.
-
•
Gastrointestinal parasite analysis of SAC in the natural range of distribution in order to conduct the first review in the subject and to identify gaps in knowledge.
The exclusion criteria were:
-
•
Research papers conducted in SAC from sites outside the natural range of distribution.
-
•
Research papers on topics other than gastrointestinal parasites of SAC.
2.2. Search strategy and data
2.2.1. Identification
The study was focused on gastrointestinal helminths and Eimeria spp., hereafter “parasites”. The literature research was carried out on internet through the Google Scholar platform (https://scholar.google.com), the PubMed platform (https://pubmed.ncbi.nlm.nih.gov), and the SciELO platform (https://scielo.org/es/). The following keywords were used for the research: “endoparasites”, “gastrointestinal”, “intestinal”, “parasites”, “helminths”, “camelids”, “South American Camelids”, “SAC”, “endoparásitos”, “parásitos”, “intestinales”, gastrointestinales”, “helmintos”, “camélidos”, “camélidos sudamericanos”, “CSA”, “guanaco”, “Lama”, “Vicugna”, “guanicoe”, “pacos”, “glama”, “llama”, “alpaca”, “vicuña”, “Eimeria”, “Coccidia”. The search rule used in English was (endoparasites OR gastrointestinal OR intestinal) AND (parasites OR helminths OR Eimeria OR coccidia) AND (camelids OR South American camelids OR SAC OR guanaco OR vicuña OR llama OR alpaca OR Lama OR Vicugna) AND (guanicoe OR glama OR vicugna OR pacos). The search rule used in Spanish was (endoparásitos OR parásitos OR helmintos OR Eimeria) AND (intestinales OR gastrointestinales) AND (camélidos OR camélidos sudamericanos OR CSA OR guanaco OR vicuña OR llama OR alpaca OR Lama OR Vicugna) AND (guanicoe OR glama OR vicugna OR pacos). The search was conducted in titles, abstracts and keywords in the above-cited databases, following the selection criteria. The snowball effect in the reference lists was used to increase the scope of the search. The initial search process generated 3960 academic papers from Google Scholar, and additional 285 papers from PubMed and 18 papers from SciELO. The publication retrieval from Google Scholar was scaled down to 237 after removing all parasite papers that did not represent the objective of this review. A flowchart of the PRISMA phases of the search is presented in Fig. 1.
Fig. 1.
PRISMA flowchart of the systematic review process.
2.2.2. Screening
After the initial search and paper retrieval, 540 academic papers were collected. After removing duplicate information, 482 publications remained. Subsequently, the generated papers were screened by applying the inclusion and exclusion criteria. A total of 98 academic papers were included for quality assessment.
2.2.3. Eligibility
The studies identified after applying the inclusion and exclusion criteria underwent further evaluation to ensure the quality of the research articles. The theses that contained only information published in scientific journals were eliminated. In total, 3 theses were excluded.
2.2.4. Included papers
A total of 95 publications were included in this review. From all reviewed documents, were extracted data regarding geographic location (country and region), number of samples evaluated, number of positive samples, taxa and prevalence of parasites reported, remarks (type of sample, animal characteristics, study remarks) and type of publication, being the data extraction performed by one author with verification by another, as the PRISMA protocol suggest (Shamseer et al., 2015).
3. Results
The present review includes documents from the period between 1963 and 2022. The information was retrieved from 95 publications and 6 more citations were added (there was no access to the original work), which makes a final number of 101 publications. A total of 74 scientific researchs, 27 theses (PhD and MSc Thesis and Final Degree Projects), four abstracts of scientific meetings and one FAO project were recopiled. The name of parasites was included exactly as reported in the retrieved publications.
The documents summarized belong to five countries (Argentina, Bolivia, Chile, Peru and Ecuador), with the alpaca being the most studied species of SAC, (49.5% of the total documents), followed by the guanaco (23.8%) and finally the llama and vicuña (both 18.8%). The geographical location of the documents summarized is shown in Fig. 2. The map was elaborated with the Google Earth platform.
Fig. 2.
Geographical location of the documents compiled in the present review (red dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
The reports of parasites of alpacas are summarized in Table 1. The 80% of the documents refer to alpacas from Peru, 12% from Ecuador, 4% from Chile and 4% from Bolivia. The reports of parasites of llamas are summarized in Table 2. The 47.4% of the recopiled documents belong to Argentina, 21% to Peru, 15.8% to Chile, 10.5% to Ecuador and 5.3% belong to Bolivia. The Table 3 summarized the recopiled documents of parasites of vicuñas. The 42.1% of the documents refer to vicuñas from Peru, 31.6% from Argentina and 21% from Bolivia and only one document refers to vicuñas from Ecuador (5.3%). The reports of parasites of guanacos are summarized in Table 4. Most of the recopiled documents belong to Argentina (83.33%), while documents from Chile and Peru represent both 8.33%. The data collected throught the entire native range of SAC distribution displayed that the highest species richness of gastrointestinal parasites are found in southern Peru, western Bolivia and central Patagonia. It is important to highlight that this data was elaborated from the information available to date. The parasitic richness found in SAC compiled from the information extracted is represented in Fig. 3.
Table 1.
Gastrointestinal helminths and Eimeria spp. reported in alpacas (Lama pacos) across the entire nature distribution range. (* Calculated with published data, NR: no reported).
| Country | Region | No. tested samples | No. positive (%) | Reported parasites (%) | Remarks | Type of publication | Reference |
|---|---|---|---|---|---|---|---|
| Chile | Valdivia | 47 | NR | Nematodirus spathiger | Rectal samples | Scientific research | Valenzuela et al. (1998) |
| Nematodirus filicolis | |||||||
| Ostertagia sp. | |||||||
| Trichostrongylus sp. | |||||||
| Cooperia sp. | |||||||
| Strongylida | |||||||
| Trichuris sp. | |||||||
| Capillaria sp. | |||||||
| Arica-Parinacota | 494 | 52 (10.53) | Fasciola hepatica | Rectal samples Only Fasciola study | Scientific meeting | Zamorano et al. (2012) | |
| Bolivia | La Paz | 22 | (59.1) | Fasciola hepatica | Only abstract access | Scientific research | Ueno et al. (1975) |
| La Paz | 55 | 54 (98.0) | Eimeria punoensis (67.37)* | Fecal samples | Scientific research | Beltrán-Saavedra et al. (2014) | |
| Eimeria alpacae (16.36)* | |||||||
| Eimeria macusaniensis (12.72)* | |||||||
| Marshallagia sp. (47.27)* | |||||||
| Lamanema spp. (5.45)* | |||||||
| Nematodirus spp. (69.09)* | |||||||
| Strongylida (52.72)* | |||||||
| Capillaria sp. (25.45)* | |||||||
| Trichuris sp. (36.36)* | |||||||
| Moniezia expansa (5.45)* | |||||||
| Moniezia benedeni (10.90)* | |||||||
| Fasciola sp. (1.81)* | |||||||
| Peru | NR | NR | NR | Lamanema chavezi | Only abstract access | Scientific research | Becklund (1963) |
| Nematodirus lamae | |||||||
| Cuzco and Puno | 12 | NR | Eimeria lamae | Rectal samples | Scientific research | Guerrero (1967) | |
| Eimeria alpacae | First description | ||||||
| Eimeria punoensis | Only Eimeria study | ||||||
| Puno | NR | NR | Haemonchus sp. | No access to original document | Scientific research | Guerrero Diaz (1970) (in Navone and Merino, 1989) | |
| Ostertagia sp. | |||||||
| Trichostrongylus sp. | |||||||
| Cooperia sp. | |||||||
| Nematodirus sp. | |||||||
| Oesophagostomum sp. | |||||||
| Chabertia sp. | |||||||
| Trichuris sp. | |||||||
| Graphinema sp. | |||||||
| Lamanema sp. | |||||||
| Mazamastrongylus (Spiculopteragia) sp. | |||||||
| Camelostrongylus sp. | |||||||
| Dictyocaulus sp. | |||||||
| Fasciola sp. | |||||||
| Moniezia sp. | |||||||
| Eimeria sp. | |||||||
| Puno | NR | NR | Eimeria lamae | Fecal samples | Scientific research | Guerrero et al. (1971) | |
| Eimeria alpacae | First report E. macusaniensis | ||||||
| Eimeria punoensis | Only Eimeria study | ||||||
| Eimeria macusaniensis | |||||||
| Junín | NR | NR | Eimeria ivitaensis | Rectal samples | Scientific research | Leguía and Casas (1998) | |
| First description | |||||||
| Only Eimeria study | |||||||
| Junín | 280 | NR | Fasciola hepatica (7.1) | Fecal samples | Scientific research | Neyra et al. (2002) | |
| Trichuris sp. (40.0) | |||||||
| Nematodirus sp. (34.6) | |||||||
| Lamanema sp. (12.8) | |||||||
| Eimeria sp. (11.8) | |||||||
| Cuzco | 7 | NR | Eimeria lamae | Necropsy | Scientific research | Palacios et al. (2004) | |
| Eimeria macusaniensis | Dead animals with clinical signs of diarrhea | ||||||
| Eimeria ivitaensis | Only Eimeria study | ||||||
| Cuzco | 48 | 11 (23.0) | Eimeria macusaniensis | Intestinal samples | Scientific research | Palacios et al. (2005) | |
| Eimeria lamae | Dead animals with diarrhea | ||||||
| Eimeria punoensis | Only Eimeria study | ||||||
| Eimeria alpacae | |||||||
| NR | 40 | 12 | Fasciola hepatica | Fecal samples | Scientific research | Li et al. (2005) | |
| ELISA method | |||||||
| Only Fasciola study | |||||||
| Cuzco | NR | NR | Eimeria macusaniensis | Histopathological examination | Scientific research | Palacios et al. (2006) | |
| Eimeria ivitaensis | Only Eimeria study | ||||||
| Ayacucho | 10 | (100) | Fasciola hepatica | Fecal and blood samples | Scientific research | Ciprián (2007) | |
| Necropsy | |||||||
| Only Fasciola study | |||||||
| Puno | NR | (3.03) | Coccidia (25.44) | Necropsy | Scientific research | Paredes et al. (2009) | |
| Vermes (10.52) | |||||||
| Dictyocaulus sp. (0.88) | |||||||
| Puno and Cuzco | 108 | 33 (30.55) | Eimeria macusaniensis | Intestinal samples | Scientific research | Rosadio et al. (2010) | |
| South of Peru | 316 | NR | Eimeria macusaniensis (56.5) | Only Eimeria study | Scientific research | Cordero et al. (2011) (in Dubey, 2018) | |
| Puno | 60 | NR | Strongylus sp. | Rectal samples | Scientific research | Marino (2011) | |
| Nematodirus sp. | |||||||
| Nematodirus lamae | |||||||
| Lamanema chavezi | |||||||
| Huancavelica | 161 | NR | Eimeria spp. (31.37) | Fecal samples | Scientific research | Rosadio et al. (2012) | |
| Eimeria macusaniensis (4.3) | Adults | ||||||
| Puno | 478 | 418 (87.5) | Eimeria lamae (60.4) | Fecal samples | Scientific research | Rodríguez et al. (2012) | |
| Eimeria alpacae (45.6) | Only Eimeria study | ||||||
| Eimeria punoensis (30.0) | |||||||
| Eimeria macusaniensis (50.4) | |||||||
| Eimeria ivitaensis (6.24) | |||||||
| Cuzco | 30 | NR | Eimeria lamae | Fecal samples | Thesis | Mamani (2012) | |
| Eimeria alpacae | |||||||
| Eimeria punoensis | |||||||
| Eimeria macusaniensis | |||||||
| Eimeria ivitaensis | |||||||
| Nematodirus spathiger | |||||||
| Nematodirus lamae | |||||||
| Lamanema chavezi | |||||||
| Trichuris spp. | |||||||
| Capillaria spp. | |||||||
| Strongylida | |||||||
| Huancavelica | 366 | (59.02) | Eimeria spp. | Rectal samples | Thesis | Auris Bellido and Santiago Cahuana (2013) | |
| Young animals with diarrhea | |||||||
| Cuzco | 1001 | Helminthes (68.4) | Nematodirus (54.0) | Rectal samples | Scientific research | Pérez et al. (2014) | |
| Eimeria spp. (61.5) | Strongylida (16.3) | ||||||
| Trichuris (17.5) | |||||||
| Capillaria (5.1) | |||||||
| Lamanema (4.5) | |||||||
| Moniezia (6.3) | |||||||
| Eimeria alpacae (42.0) | |||||||
| Eimeria punoensis (31.0) | |||||||
| Eimeria lamae (20.0) | |||||||
| Eimeria macusaniensis (7.0) | |||||||
| Cooperia (40.0) | |||||||
| Ostertagia (22.0) | |||||||
| Trichostrongylus (20.0) | |||||||
| Oesophagostomum (16.0) | |||||||
| Bunostomum (2.0) | |||||||
| Junín, Jauja | 103 | (73.8) | Fasciola hepatica | Rectal samples | Scientific research | Flores et al. (2014) | |
| Only Fasciola study | |||||||
| Puno | 1319 | (63.9) | Nematodirus spp. (52.8) | Rectal samples | Scientific research | Contreras et al. (2014) | |
| Strongylida (4.9) | |||||||
| Trichuris spp. (10.8) | |||||||
| Capillaria spp. (1.8) | |||||||
| Lamanema spp. (0.7) | |||||||
| Moniezia spp. (9.6) | |||||||
| Cooperia spp. (37.0) | |||||||
| Oesophagostomum spp. (23.0) | |||||||
| Trichostrongylus spp. (20.0) | |||||||
| Ostertagia spp. (14.0) | |||||||
| Bunostomum spp. (3.0) | |||||||
| Haemonchus spp. (3.0) | |||||||
| Cajamarca | 10 | 9 (90.0) | Nematodirus sp. (70.0) | Necropsy | Thesis | Roncal Narváez (2014) | |
| Bunostomum sp. (50.0) | Sacrificed alpacas from slaughterhouse | ||||||
| Trichuris sp. (40.0) | |||||||
| Moniezia sp. (30.0) | |||||||
| Ostertagia sp. (30.0) | |||||||
| Trichostrongylus sp. (20.0) | |||||||
| Cajamarca | 151 | 20 (13.25) | Fasciola hepatica | Rectal samples | Thesis | López Mejía (2014) | |
| Only Fasciola study | |||||||
| Puno | 369 | (54.20) | Nematodirus lamae | Rectal samples | Thesis | Farfán (2014) | |
| Lamanema chavezi | |||||||
| Trichostrongylus | |||||||
| Trichuris sp. | |||||||
| Moniezia benedeni | |||||||
| Moniezia expansa | |||||||
| Puno | 20 | NR | Lamanema chavezi | Rectal samples and intestinal segments | Scientific research | Angulo et al. (2015) | |
| Redescription | |||||||
| Only Lamanema study | |||||||
| Puno | 51 | 14 (27.5) | Eimeria spp. | Necropsy | Abstract of Scientific meeting | Díaz et al. (2015) | |
| Intestinal samples | |||||||
| Puno | 30 | NR | Eimeria punoensis | Rectal samples and necropsy | Thesis | Quina Quina (2015) | |
| Eimeria lamae | |||||||
| Eimeria macusaniensis | |||||||
| Eimeria alpacae | |||||||
| Eimeria ivitaensis | |||||||
| Strongylus sp. | |||||||
| Nematodirus spp. | |||||||
| Nematodirus spathiger | |||||||
| Nematodirus lamae | |||||||
| Trichuris sp. | |||||||
| Lamanema chavezi | |||||||
| Capillaria sp. | |||||||
| Moniezia benedeni | |||||||
| Moniezia expansa | |||||||
| Puno | 350 | 224 (64.3) | Eimeria lamae | Fecal samples from unweaned alpacas | Scientific research | Díaz et al. (2016) | |
| Eimeria alpacae | Only Eimeria study | ||||||
| Eimeria punoensis | |||||||
| Eimeria macusaniensis | |||||||
| Eimeria ivitaensis | |||||||
| Pasco | 160 | NR | Strongylida (28.1) | Rectal samples | Scientific research | Masson et al. (2016) | |
| Eimeria ivitaensis (6.9) | |||||||
| Eimeria macusaniensis (41.9) | |||||||
| Nematodirus spp. (26.3) | |||||||
| Trichuris sp. (20.0) | |||||||
| Capillaria sp. (5.0) | |||||||
| Lamanema chavezi (3.8) | |||||||
| Cooperia spp. | |||||||
| Oesophagostomum spp. | |||||||
| Teladorsagia circumcincta | |||||||
| Ostertagia ostertagi | |||||||
| Trichostrongylus spp. | |||||||
| Pasco and Junín | 60 | (73.3) | Eimeria spp. (43.3) | Rectal samples and necropsy | Scientific research | Lucas et al. (2016) | |
| Eimeria alpacae | Dead calves with diarrhea | ||||||
| Eimeria macusaniensis | |||||||
| Eimeria lamae | |||||||
| Nematodirus sp. (40.0) | |||||||
| Strongylida (18.3) | |||||||
| Trichuris sp. (1.6) | |||||||
| Puno | 1319 | (52.4) | Eimeria alpacae (31.5) | Rectal samples | Scientific research | Camareno et al. (2016) | |
| Eimeria lamae (2.3) | Only Eimeria study | ||||||
| Eimeria punoensis (66.2) | |||||||
| Eimeria macusaniensis (8.7) | |||||||
| Eimeria ivitaensis (0.7) | |||||||
| Huancavelica | 190 | (81.88) | Eimeria macusaniensis | Rectal samples | Thesis | Lizana Hilario (2016) | |
| Puno | 45 | NR | Eimeria spp. | Intestinal sample | Thesis | Chirinos (2017) | |
| Arequipa, Tacna | 346 | (69.65) | Nematodirus spp. (46.53) | Rectal samples | Thesis | Torres Huacani (2017) | |
| Trichuris spp. (15.61) | |||||||
| Capillaria spp. (13.01) | |||||||
| Lamanema chavezi (1.45) | |||||||
| Strongylida (4.34) | |||||||
| Moniezia expansa (6.65) | |||||||
| Eimeria spp. (45.66) | |||||||
| Pasco | 238 | 51 (21.43) | Nematodirus sp. | Rectal samples | Thesis | Puicón (2018) | |
| 178 | 7 (3.93) | Trichuris sp. | |||||
| Trichostrongylus colubriformis | |||||||
| Teladorsagia circumcincta | |||||||
| Oesophagostomum columbianum | |||||||
| Huancavelica | 260 | 119 (45.8*) | Lamanema chavezi | Necropsy | Thesis | Gómez Escobar and Mallqui Saravia (2018) | |
| Puno | 92 | NR | Strongylus spp. | Rectal samples | Thesis | Quispe Pino (2019) | |
| Nematodirus spp. | |||||||
| Lamanema sp. | |||||||
| Trichuris sp. | |||||||
| Arequipa | 288 | NR | Eimeria spp. (60.4) | Rectal samples | Scientific research | Frezzato et al. (2020) | |
| Eimeria macusaniensis (18.8) | |||||||
| Trichuris spp. (5.6) | |||||||
| Capillaria spp. (3.5) | |||||||
| Moniezia spp. (3.5) | |||||||
| Nematodirus/Marshallagia spp. (2.1) | |||||||
| Strongylida (1.4) | |||||||
| Cuzco | 78 | 68 (87.18) | Eimeria lamae (85.90) | Rectal samples | Scientific research | Gómez-Puerta et al. (2021) | |
| Eimeria punoensis (62.82) | Only Eimeria study | ||||||
| Eimeria alpacae (53.85) | |||||||
| Eimeria macusaniensis (41.03) | |||||||
| Eimeria ivitaensis (5.13) | |||||||
| Ecuador | Imbabura | 40 | NR | Eimeria sp. (67.50) | Rectal samples | Thesis | Fierro Obregón (2010) |
| Trichostrongylus sp. (35.0) | |||||||
| Cooperia (32.5) | |||||||
| Marshallagia sp. (5.0) | |||||||
| Nematodirus sp. (12.50) | |||||||
| Trichuris sp. (12.50) | |||||||
| Cotopaxi and Pichincha | 406 | NR | Nematodirus spp. (45.5) | Rectal simples | Scientific research | Salazar et al. (2014) | |
| Bunostomum spp. (39.4) | |||||||
| Haemonchus spp. (27.5) | |||||||
| Cooperia spp. (14.5) | |||||||
| Ostertagia spp. (13.7) | |||||||
| Trichuris spp. (12.6) | |||||||
| Marshallagia spp. (6.1) | |||||||
| Strongyloides spp. (5.1) | |||||||
| Moniezia benedeni (5.9) | |||||||
| Moniezia expansa (4.4) | |||||||
| Eimeria lamae (18.2) | |||||||
| Eimeria macusaniensis (5.1) | |||||||
| Pichicha | 201 | 147 (73.0) | Haemonchus spp. (77.9) | Rectal samples | Thesis | Salazar Robayo (2015) | |
| Nematodirus spp. (77.6) | |||||||
| Trichostrongylus spp. (77) | |||||||
| Bunostomum spp. (69.9) | |||||||
| Cooperia spp. (55.8) | |||||||
| Ostertagia spp. (50.4) | |||||||
| Oesophagostomum spp.(45.1) | |||||||
| Capillaria spp. (34.5) | |||||||
| Trichuris spp. (29.2) | |||||||
| Marshallagia spp. (25.6) | |||||||
| Lamanema spp. (22.1) | |||||||
| Strongyloides spp. (18.6) | |||||||
| Strongylus spp. (0.9) | |||||||
| Eimeria spp. (70.7) | |||||||
| Eimeria macusaniensis (29.3) | |||||||
| Moniezia expansa (19.4) | |||||||
| Moniezia benedeni (80.6) | |||||||
| Cotopaxi | 114 | 114 (100.0) | Marshallagia spp. (9.6) | Rectal samples | Thesis | Condor Tapia (2015) | |
| Nematodirus spp. (42.1) | |||||||
| Strongylus spp. (14.9) | |||||||
| Trichostrongylus spp. (28.9) | |||||||
| Haemonchus spp. (13.2) | |||||||
| Ostertagia spp. (8.8) | |||||||
| Oesophagostomum spp. (9.6) | |||||||
| Bunostomum spp. (0.9) | |||||||
| Trichuris spp. (23.7) | |||||||
| Cooperia spp. (10.5) | |||||||
| Toxocara spp. (13.2) | |||||||
| Capillaria spp. (7.9) | |||||||
| Cotopaxi | 204 | (71.0) | Nematodirus spp. (89.0) | Rectal samples | Thesis | Regalado Valdivieso (2015) | |
| Bunostomum spp. (78.0) | |||||||
| Haemonchus spp. (43.0) | |||||||
| Capillaria spp. (31.0) | |||||||
| Trichostrongylus spp. (31.0) | |||||||
| Oesophagostomum spp. (28.0) | |||||||
| Lamanema chavezi (27.0) | |||||||
| Trichuris spp. (27.0) | |||||||
| Ostertagia spp. (26.0) | |||||||
| Cooperia spp. (20.0) | |||||||
| Marshallagia spp. (20.0) | |||||||
| Strongyloides spp. (10.0) | |||||||
| Strongylida (2.0) | |||||||
| Eimeria spp. (81.0) | |||||||
| Eimeria macusaniensis (25.0) | |||||||
| Moniezia benedeni (61.0) | |||||||
| Moniezia expansa (41.0) | |||||||
| Cotopaxi | 80 | NR | Ostertagia sp. (29.37) | Rectal samples | Thesis | Panchi Lema (2021) | |
| Nematodirus sp. (24.56) | |||||||
| Trichostrongylus sp. (5.79) | |||||||
| Haemonchus sp. (9.06) | |||||||
| Strongyloides sp. (18.89) | |||||||
| Trichuris tenuis (12.99) | |||||||
| Coccidia (83.75) |
Table 2.
Gastrointestinal helminths and Eimeria spp. reported in llamas (Lama glama) across the entire nature distribution range. (* Calculated with published data, NR: no reported).
|
Country |
Region | No. tested samples | No. positive (%) | Reported parasites (%) | Remarks | Type of publication | Reference |
|---|---|---|---|---|---|---|---|
| Argentina | Jujuy | 15 | 15 (100.0) | Fasciola hepatica | Fecal samples | Scientific research | Cafrune et al. (1996a) |
| Only Fasciola study | |||||||
| Jujuy | 37 | 35 (95.0)* | Trichuris tenuis | Fecal samples and Necropsy | Scientific research | Cafrune et al. (1999) | |
| Only Trichuris study | |||||||
| Salta | 2 | 2 (100.0) | Lamanema chavezi (100)* | Fecal samples and one Necropsy. | Scientific research | Cafrune et al. (2001) | |
| Trichuris tenuis (50.0)* | Farm llamas | ||||||
| Trichostrongylus spp. (50.0)* | |||||||
| Cooperia spp. (50.0)* | |||||||
| Nematodirus spp. (50.0)* | |||||||
| Jujuy | 708 | 131 (18.5) | Lamanema chavezi (13.9) | Rectal samples | Scientific research | Cafrune et al. (2009a) | |
| Salta | (31.7) | Only Lamanema study | |||||
| Catamarca | (34.3) | ||||||
| Jujuy | 626 | 315 (50.3) | Eimeria ivitaensis (0.4) | Rectal samples | Scientific research | Cafrune et al. (2009b) | |
| Salta Catamarca | (0.0) | Only Eimeria study | |||||
| (2.0) | |||||||
| Eimeria macusaniensis (48.7) | |||||||
| (35.4) | |||||||
| (65.0) | |||||||
| Jujuy | 430 | Fasciola hepatica (21.6) | Fecal samples | FAO project | Marin et al. (2009) | ||
| Lamanema chavezi (18.2) | |||||||
| Trichuris sp. (70.5) | |||||||
| Capillaria sp. (10.2) | |||||||
| Nematodirus sp. (1.1) | |||||||
| Strongyloides sp. (3.4) | |||||||
| Strongylida (5.7) | |||||||
| Cestoda (17.0) | |||||||
| Eimeria spp. (64.8) | |||||||
| Eimeria lamae | |||||||
| Eimeria alpacae | |||||||
| Eimeria punoensis | |||||||
| Eimeria ivitaensis | |||||||
| Eimeria macusaniensis | |||||||
| Mendoza | 2 | 2 (100.0) | Fasciola hepatica (100.0) | Fecal samples | Scientific research | Mera y Sierra et al. (2015) | |
| Nematodirus sp. (50.0) | Clinical signs of diarrhea | ||||||
| Salta | NR | NR | Lamanema chavezi | Dead llama with gastrointestinal symptoms. | Scientific research | Petrigh et al. (2019) | |
| DNA analysis | |||||||
| Catamarca | 97 | NR | Strongylida (1.0) | Rectal samples and necropsy | Thesis | Cardozo (2019) | |
| 60 | (18.9) | (+) indicates presence | |||||
| Trichuris sp. (15.50) | |||||||
| (23.3) | |||||||
| Toxocara sp. (72.30) | |||||||
| (1.6) | |||||||
| Lamanema chavezi (1.0) | |||||||
| (18.3) | |||||||
| Moniezia (+) | |||||||
| Strongyloides papillosus | |||||||
| (1.6) | |||||||
| Nematodirus sp. (0.0) | |||||||
| (11.6) | |||||||
| Camelostrongylus sp. (0.0) | |||||||
| (5.0) | |||||||
| Eimeria lamae (4.1) | |||||||
| (6.7) | |||||||
| Eimeria alpacae (7.2) | |||||||
| (26.7) | |||||||
| Eimeria punoensis (15.5) | |||||||
| (36.7) | |||||||
| Eimeria macusaniensis (10.3) | |||||||
| (28.3) | |||||||
| Eimeria ivitaensis (3.1) | |||||||
| (5.0) | |||||||
| Fasciola hepatica (3.15) | |||||||
| (2.6) | |||||||
| Ostertagia sp. (100.0) | |||||||
| + | |||||||
| Trichostrongylus sp. (8.0) | |||||||
| (15.0) | |||||||
| Cooperia sp. (0.0) | |||||||
| + | |||||||
| Chile | I Chile Region | 150 | NR | Camelostrongylus mentulatus (73.3) | Only abstract description | Scientific research | Alcaíno et al. (1991) |
| Trichostrongylus axei (11.3) | |||||||
| Ostertagia sp. (1.3) | |||||||
| Graphinema aucheniae (1.3) | |||||||
| Mazamastrongylus (Spiculopteragia) peruvianus (1.3) | |||||||
| Lamanema chavezi (61.3) | |||||||
| Nematodirus sp. (18.7) | |||||||
| Trichuris ovis (66.7) | |||||||
| Moniezia expansa (6.7) | |||||||
| Araucanía, Temuco | 45 | NR | Strongylida | Fecal samples and field analysis | Scientific research | Müller (1998) | |
| Nematodirus sp. | |||||||
| Ostertagia sp. | |||||||
| Nematodirus spathiger | |||||||
| Nematodirus filicolis | |||||||
| Trichostrongylus sp. | |||||||
| Cooperia sp. | |||||||
| Los Ríos, Valdivia | 32 | (100.0) | Capillaria sp. | Rectal samples | Scientific meeting | Oyarzún-Ruiz et al. (2017) | |
| Eimeria sp. | |||||||
| Eimeria macusaniensis | |||||||
| Fasciola hepatica | |||||||
| Moniezia sp. | |||||||
| Trichuris sp. | |||||||
| Nematodirus sp. | |||||||
| Strongylida | |||||||
| Bolivia | Oruro, Potosí, La Paz and Cochabamba | 33 | NR | Lamanema chavezi (64.0) | Fecal samples and necropsy | Scientific research |
Spörndly and Nissen (2008) (in Mamani, 2012) |
| Nematodirus spathiger (55.0) | |||||||
| Nematodirus lamae (12.0) | |||||||
| Nematodirus abnormalis (15.0) | |||||||
| Camelostrongylus mentulatus (33.0) | |||||||
| Haemonchus contortus (15.0) | |||||||
| Trichuris sp. (42.0) | |||||||
| Graphinema aucheniae (12.0) | |||||||
| Marshallagia occidentalis (6.0) | |||||||
| Ostertagia ostertagi (12.0) | |||||||
| Cooperia oncophora (9.0) | |||||||
| Cooperia surnabada (3.0) | |||||||
| Trichostrongylus colubriformis (6.0) | |||||||
| Trichostrongylus vitrinus (3.0) | |||||||
| Trichostrongylus probolurus (6.0) | |||||||
| Skrjabinema sp. (3.0) | |||||||
| Moniezia sp. (3.0) | |||||||
| Fasciola hepatica (12.0) | |||||||
| Eimeria spp. (82.0) | |||||||
| Peru | Cuzco | NR | NR | Eimeria lamae | Rectal samples Mother and brood |
Thesis | Mamani (2012) |
| Eimeria alpacae | |||||||
| Eimeria punoensis | |||||||
| Eimeria ivitaensis | |||||||
| Eimeria macusaniensis | |||||||
| Nematodirus spathiger | |||||||
| Nematodirus lamae | |||||||
| Lamanema chavezi | |||||||
| Trichuris spp. | |||||||
| Capillaria spp. | |||||||
| Strongylida | |||||||
| Huancavelica | 155 | 145 (93.55) | Fasciola hepatica (9.7) | Necropsy | Thesis | Fuentes Ríos (2013) | |
| Haemonchus sp. (18.0) | |||||||
| Trichostrongylus axei (18.7) | |||||||
| Ostertagia sp. (36.8)* | |||||||
| Graphinema sp. (15.5)* | |||||||
| Camelostrongylus sp. (11.0)* | |||||||
| Nematodirus sp. (83.22)* | |||||||
| Lamanema chavezi (45.2)* | |||||||
| Cooperia sp. (16.12)* | |||||||
| Trichostrongylus c. (15.5)* | |||||||
| Bunostomum sp. (6.45)* | |||||||
| Moniezia sp. (10.32)* | |||||||
| Oesophagostomum sp. (21.3)* | |||||||
| Trichuris sp. (78.7)* | |||||||
| Skrjabinema sp. (10.32)* | |||||||
| Junín, Jauja | 97 | (49.5) | Fasciola hepatica | Rectal samples | Scientific research | Flores et al. (2014) | |
| Only Fasciola study | |||||||
| Huancavelica | 212 | 95 (44.8*) | Lamanema chavezi | Necropsy | Thesis | Gómez Escobar and Mallqui Saravia (2018) | |
| Ecuador | Azuay, Sigsig | 95 | 27 (28.4) | Strongylida | Fecal samples | Thesis | Zhiminaicela (2015) |
| Trichuris sp. | |||||||
| Bunostomum sp. | |||||||
| Nematodirus sp. | |||||||
| Coccidia | |||||||
| Trichostrongylus sp. | |||||||
| Chimborazo, Millmahuanchi | 44 | NR | Eimeria sp. (52.0) | Rectal samples | Thesis | Gavilanes Loja (2016) | |
| Strongyloides sp. (48.0) | |||||||
| Nematodirus sp. (14.0) | |||||||
| Trichostrongylus sp. (7.0) | |||||||
| Trichuris sp. (7.0) | |||||||
| Fasciola hepatica (9.0) |
Table 3.
Gastrointestinal helminths and Eimeria spp. reported in vicuñas (Vicugna vicugna) across the entire distribution range. (* Calculated with published data, NR: no reported).
| Country | Region | No. tested samples | No. positive (%) | Reported parasites (%) | Remarks | Type of publication | Reference |
|---|---|---|---|---|---|---|---|
| Argentina | Jujuy | 187 | 30 (16.04) | Fasciola hepatica | Rectal samples | Scientific research | Cafrune et al., (1996b) |
| Semi-captive | |||||||
| Only Fasciola study | |||||||
| Jujuy | 69 | 45* (65.0) | Trichuris tenuis | Fecal samples | Scientific research | Cafrune et al. (1999) | |
| Semi-captive | |||||||
| Only Trichuris study | |||||||
| Jujuy | 63 | 14 (22.2) | Eimeria macusaniensis | Rectal samples | Scientific research | Cafrune et al., (2009b) | |
| Salta | 98 | 9 (9.2) | Semi-captive | ||||
| Only Eimeria study | |||||||
| Jujuy | 81 juveniles | 81 (100.0) | Eimeria punoensis (100) | Rectal samples | Scientific research | Cafrune et al. (2014) | |
| 154 adults | 143 (92.8) | (89.6) | Captive | ||||
| Eimeria alpacae (85.1) | Only Eimeria study | ||||||
| (66.8) | |||||||
| Eimeria macusaniensis (82.7) | |||||||
| (15.5) | |||||||
| Eimeria lamae (48.1) | |||||||
| (27.2) | |||||||
| Eimeria ivitaensis (3.7) | |||||||
| (1.2) | |||||||
| Jujuy | 150 | NR | Strongylida (40.66) | Rectal samples | Scientific research | Marcoppido et al. (2016) | |
| Nematodirus sp. (4.66) | Wild | ||||||
| Coccidia (7.33) | |||||||
| Cestoda (0.66) | |||||||
| Catamarca, Laguna Blanca | 40 | (2.5) | Capillaria sp. | Fecal samples | Thesis | Cardozo (2019) | |
| Haemonchus sp. | |||||||
| Camelostrongylus sp. | |||||||
| Eimeria spp. (7.5) | |||||||
| Eimeria lamae | |||||||
| Eimeria alpacae | |||||||
| Eimeria punoensis | |||||||
| Moniezia sp. | |||||||
| Fasciola hepatica (12.5) | |||||||
| Bolivia | La Paz, Apolobamba | 7 juveniles | 7 (100.0) | Strongylida (28.6) | Rectal samples | Scientific research | Beltrán-Saavedra et al. (2011) |
| 25 adults | 22 (88.0) | (56.0) | Wild | ||||
| Marshallagia sp.(71.4) | |||||||
| (32.0) | |||||||
| Lamanema spp. (42.9) | |||||||
| (16.0) | |||||||
| Nematodirus spp. (57.1) | |||||||
| (28.0) | |||||||
| Capillaria sp. (28.6) | |||||||
| (0.0) | |||||||
| Trichuris sp. (28.6) | |||||||
| (44.0) | |||||||
| Moniezia benedeni (14.3) | |||||||
| (0.0) | |||||||
| Eimeria punoensis (100.0) | |||||||
| (80.0) | |||||||
| Eimeria alpacae (100.0) | |||||||
| (88.0) | |||||||
| Eimeria lamae (42.9) | |||||||
| (12.0) | |||||||
| Eimeria macusaniensis (14.3) | |||||||
| (8.0) | |||||||
| La Paz, Apolobamba | 54 fecal samples | (100.0) | Marshallagia sp. | Fecal and dump samples | Scientific meeting | Condori et al. (2012) | |
| 8 dump samples | Nematodirus sp. | Wild | |||||
| Trichuris sp. | |||||||
| Capillaria sp. | |||||||
| Lamanema chavezi | |||||||
| Moniezia benedeni | |||||||
| Moniezia expansa | |||||||
| Eimeria punoensis | |||||||
| Eimeria alpacae | |||||||
| Eimeria lamae | |||||||
| Eimeria macusaniensis | |||||||
| Cooperia oncophora | |||||||
| Cooperia macmasteri | |||||||
| Oesophagostomum columbianum | |||||||
| Ostertagia circumcincta | |||||||
| Trichostrongylus colubriformis | |||||||
| Trichostrongylus axei | |||||||
| Mazamastrongylus peruvianus | |||||||
| Potosí, Tarija and Cochabamba | 98 | (73.5) | Trichuris spp. (32.7)* | Rectal samples | Thesis | Martela Mamani (2016) | |
| Lamanema chavezi (5.1)* | Semi-captive | ||||||
| Marshallagia spp. (4.1)* | |||||||
| Strongylida (30.61)* | |||||||
| Capillaria spp. (1.02)* | |||||||
| Moniezia benedeni (6.12)* | |||||||
| Fasciola hepatica (1.02)* | |||||||
| Eimeria punoensis (64.3)* | |||||||
| Eimeria alpacae (42.9)* | |||||||
| Eimeria peruviana (17.34)* | |||||||
| Eimeria lamae (11.22)* | |||||||
| Eimeria macusaniensis (1.02)* | |||||||
| La Paz and Oruro | 84 | (98.6) | Marshallagia spp. (32.14)* | Rectal samples | Thesis | Ruiz Hurtado (2016) | |
| Lamanema spp. (1.2)* | Semi-captive | ||||||
| Strongylida (38.1)* | |||||||
| Nematodirus spp. (10.7)* | |||||||
| Trichuris spp. (54.8)* | |||||||
| Capillaria spp. (1.2)* | |||||||
| Moniezia benedeni (3.6)* | |||||||
| Eimeria punoensis (39.3)* | |||||||
| Eimeria alpacae (40.5)* | |||||||
| Peru | Cuzco | NR | NR | Lamanema chavezi | First report | Scientific research | Becklund (1963) |
| Nematodirus lamae | Host: llama and vicuña | ||||||
| no access to original document | |||||||
| Ayacucho, Pampa Galeras | 39 | 15 (41.0) | Eimeria lamae | NR | Scientific research | Bouts et al. (2003)(in Dubey, 2018) | |
| Eimeria punoensis | |||||||
| Tacna | 120 | (80.83) | Trichuris sp. (81.44) | Rectal samples | Thesis | Quispe García (2011) | |
| Strongylus sp. (20.62) | Semi-captive | ||||||
| Nematodirus sp. (15.46) | |||||||
| Capillaria sp. (11.34) | |||||||
| Eimeria sp. (20.62) | |||||||
| Huancavelica | 80 | (27.5) | Fasciola hepatica | Rectal and dump samples | Scientific research | Pizarro and Puray (2014) | |
| Only Fasciola study | |||||||
| Junín, Paccha | 143 | (32.9) | Fasciola hepatica | Rectal samples | Scientific research | Samamé et al. (2016) | |
| Wild | |||||||
| Only Fasciola study | |||||||
| Cajamarca | 208 | NR | Strongylida (61.1) | Rectal samples | Thesis | Curay Cabanillas (2018) | |
| Nematodirus (39.4) | Semi-captive | ||||||
| Trichuris (26.9) | |||||||
| Capillaria (16.8) | |||||||
| Moniezia (8.7) | |||||||
| Cooperia (39.64) | |||||||
| Trichostrongylus (20.76) | |||||||
| Ostertagia (17.56) | |||||||
| Oesophagostomum (12.88) | |||||||
| Haemonchus (5.45) | |||||||
| Bunostomum (3.99) | |||||||
| Cuzco | 147 | High | Fasciola hepatica (2.0) | Rectal samples | Scientific research | Angulo-Tisoc et al. (2021) | |
| NR | Strongylida (42.1) | Wild and captive | |||||
| Nematodirus sp. (6.8) | |||||||
| Nematodirus spathiger (26.5) | |||||||
| Trichuris sp. (4.0) | |||||||
| Eimeria spp. (85.0) | |||||||
| Moniezia spp. (2.7) | |||||||
| Cuzco | 115 | (84.4) | Strongylida (54.8) | Fecal samples | Scientific research | Arias-Pacheco et al. (2021) | |
| Nematodirus lamae (11.3) | Semi-captive | ||||||
| Nematodirus spathiger (13.9) | |||||||
| Trichuris spp. (9.6) | |||||||
| Capillarid (2.6) | |||||||
| Lamanema chavezi (13.0) | |||||||
| Eimeria alpacae (23.5) | |||||||
| Eimeria macusaniensis (34.8) | |||||||
| Eimeria lamae (6.1) | |||||||
| Eimeria punoensis (38.3) | |||||||
| Trichostrongylus spp. | |||||||
| Haemonchus spp. | |||||||
| Cooperia spp. | |||||||
| Teladorsagia spp. | |||||||
| Oesophagostomum spp. | |||||||
| Bunostomum phlebotomum | |||||||
| Gaigeria pachyscelis | |||||||
| Ecuador | Bolívar, Tungurahua and Chimborazo | 200 | NR | Eimeria spp. (69.85) | Dump samples | Thesis | Chacaguasay Cepeda (2016) |
| Helminthes (68.84) | |||||||
| Larvae |
Table 4.
Gastrointestinal helminths and Eimeria spp. reported in guanacos (Lama guanicoe) across the entire distribution range. (* Calculated with published data, NR: no reported).
| Country | Region | No. tested samples | No. positive (%) | Parasites reported (%) | Remarks | Type of publication | Reference |
|---|---|---|---|---|---|---|---|
| Argentina | Río Negro | 3 | NR | Skrjabinema sp. | NR | Scientific research | Larrieu et al. (1982) (in González-Rivas et al., 2019) |
| Trichuris ovis. | |||||||
| Trichostrongylus sp. | |||||||
| Trichostrongylus vitrinus | |||||||
| Trichostrongylus axei | |||||||
| Ostertagia ostertagi | |||||||
| Nematodirus filicolis | |||||||
| Nematodirus battus | |||||||
| Nematodirus lanceolatus | |||||||
| Nematodirus spathiger | |||||||
| Cooperia oncophora | |||||||
| Cooperia macmasteri | |||||||
| Capillaria sp. | |||||||
| Tierra del Fuego | 58 | NR | Haemonchus sp. | Fecal samples | Scientific research | Navone and Merino (1989) | |
| Nematodirus sp. | |||||||
| Marshallagia sp. | |||||||
| Ostertagia sp. | |||||||
| Trichostrongylus sp. | |||||||
| Oesophagostomum sp. | |||||||
| Chabertia sp. | |||||||
| Cooperia sp. | |||||||
| Eimeria sp. | |||||||
| Chubut | 20 | 12 (60.0)* | Strongyloides sp. (5.0)* | Rectal samples | Scientific research | Karesh et al. (1998) | |
| Nematodirus sp. (30.0)* | Free-ranging | ||||||
| Marshallagia sp. (10.0)* | Two animals in poor body conditions | ||||||
| Trichostrongylus sp.(15.0)* | |||||||
| Trichuris sp. (25.0)* | |||||||
| Dictyocaulus sp.(5.0)* | |||||||
| Chubut | 12 | NR | Eimeria spp. (83.3)* | Feces from necropsied animals | Scientific research | Beldoménico et al. (2003) | |
| Eimeria macusaniensis (75.0)* | Animals dead by starvation | ||||||
| Nematodirus sp. (75.0)* | Wild | ||||||
| Marshallagia sp. (66.6)* | |||||||
| Trichuris sp. (8.33)* | |||||||
| Dictyocaulus filaria | |||||||
| Trichuris tenuis | |||||||
| Moniezia expansa | |||||||
| Mendoza and San Juan | 35 | NR | Eimeria sp. | Only access to abstract | Scientific research | Borghi et al. (2004) (in Dubey, 2018) | |
| Eimeria macusaniensis | |||||||
| Mendoza | 70 | 1 (1.4) | Fasciola hepatica | Fecal samples | Scientific research | Issia et al. (2007) | |
| First report | |||||||
| Wild | |||||||
| Only Fasciola study | |||||||
| Neuquen, Río Negro and Chubut | NR | (84.2) | Fasciola hepatica | Rectal samples Semi-captive | Scientific research | Larroza and Olaechea (2008) | |
| Only Fasciola study | |||||||
| Salta | 4 | 1 (25.0) | Eimeria macusaniensis | Dung samples Semi-captive | Scientific research | Cafrune et al. (2009a) | |
| Only Eimeria study | |||||||
| Salta | 4 | 3 (75.0) | Lamanema chavezi | Dung samples Semi-captive | Scientific research | Cafrune et al. (2009b) | |
| Only Lamanema study | |||||||
| Mendoza | 224 | (0.5) | Fasciola hepatica | Fecal samples | Scientific research | Issia et al. (2009) | |
| Wild | |||||||
| Only Fasciola study | |||||||
| Neuquén, Chubut and Río Negro | 622 | NR | Nematodirus spathiger | Necropsied animals | Scientific research | Olaechea et al. (2011) | |
| Nematodirus oriatianus | Semi-captive | ||||||
| Nematodirus filicolis | |||||||
| Nematodirus abnormalis | |||||||
| Ostertagia ostertagi | |||||||
| Ostertagia trifurcate | |||||||
| Cooperia oncophora | |||||||
| Trichostrongylus colubriformis | |||||||
| Trichuris spp. | |||||||
| Dictyocaulus spp. | |||||||
| Moniezia spp. | |||||||
| Eimeria macusaniensis | |||||||
| Fasciola hepatica | |||||||
| Mendoza | 75 rectal | NR | Eimeria sp. | Rectal and field samples | Scientific research | Moreno et al. (2013) | |
| 600 field | Eimeria macusaniensis | Wild | |||||
| Nematodirus sp. | |||||||
| Mendoza | 756 | 638 (84.4)* | Nematodirus spp. | Rectal samples | Scientific research | Moreno et al. (2015) | |
| Trichuris sp. | Wild | ||||||
| Capillaria sp. | |||||||
| Strongyloides sp. | |||||||
| Moniezia benedeni | |||||||
| Eimeria lamae | |||||||
| Eimeria alpacae | |||||||
| Eimeria punoensis | |||||||
| Eimeria macusaniensis | |||||||
| Eimeria ivitaensis | |||||||
| Mendoza | 4 | 1 (25.0)* | Fasciola hepatica | Fecal samples | Scientific research | Mera y Sierra et al. (2015) | |
| Eimeria spp. | Semi-captive | ||||||
| One dead with diarrhea | |||||||
| Santa Cruz | NR | NR | Nematodirus spathiger | Fecal samples | Scientific research | Petrigh and Fugassa (2014) | |
| Wild | |||||||
| DNA analysis | |||||||
| Only Nematodirus study | |||||||
| Santa Cruz | 15 | (77.0) | Nematodirus spp.(53.3) | Fecal samples | Thesis | Taglioretti (2015) | |
| Dictyocaulus sp.(6.7)* | Wild | ||||||
| Strongylida (20.0) | |||||||
| Chubut | NR | NR | Lamanema chavezi | Fecal samples | Scientific research | Petrigh et al. (2019) | |
| Wild | |||||||
| DNA analysis | |||||||
| Only Lamanema study | |||||||
| San Juan | 72 | NR | Eimeria spp. | Fecal samples | Scientific research | González-Rivas et al. (2019) | |
| Eimeria macusaniensis | Wild | ||||||
| Eimeria ivitaensis | |||||||
| Nematodirus sp. | |||||||
| Trichuris sp. | |||||||
| Santa Cruz | 4 | NR | Capillarid eggs | Dump samples | Scientific research | Velázquez et al. (2020) | |
| Wild | |||||||
| Multi proxy analysis | |||||||
| Santa Cruz | 10 | 10 (100.0) | Lamanema chavezi(100.0) | Necropsied animals | Scientific research | Santana et al. (2020) | |
| Nematodirus spp. (100.0) | Wild | ||||||
| Capillaria spp. (60.0) | |||||||
| Trichuris spp. (40.0) | |||||||
| Coccidia (60.0) | |||||||
| Chile | Magallanes | NR | NR | Ostertagia sp. | NR | Scientific research | Cunazza (1982) (in Navone and Merino, 1998) |
| Trichostrongylus sp. | |||||||
| Nematodirus sp. | |||||||
| Oesophagostomum sp. | |||||||
| Trichuris sp. | |||||||
| Eimeria sp. | |||||||
| Magallanes | 15 | 10 (66.7) | Eimeria macusaniensis (40.0) | Fecal samples Semi-captive | Scientific research | Correa et al. (2012) | |
| Nematodirus sp. (46.7) | |||||||
| Strongylida (20.0) | |||||||
| Peru | Cuzco | NR | (72.0) | Strongylus spp. (75.0) | No access to original document | Scientific research | Hurtado et al. (1985) |
| Lamanema chavezi (64.0) | |||||||
| Trichuris ovis (22.0) | |||||||
| Nematodirus spp. (14.0) | |||||||
| Eimeria macusaniensis (28.0) | |||||||
| Ayacucho | 132 | 71 (53.8) | Strongylida (31.8) | Field samples | Scientific research | Castillo et al. (2008) | |
| Eimeria punoensis (21.2) | Wild | ||||||
| Eimeria alpacae (13.6) | |||||||
| Eimeria lamae (4.5) | |||||||
| Eimeria macusaniensis (15.9) | |||||||
| Trichuris sp. (8.3) | |||||||
| Nematodirus sp. (1.5) | |||||||
| Trichostrongylus sp. | |||||||
| Cooperia sp. | |||||||
| Ostertagia sp. | |||||||
| Bunostomum sp. | |||||||
| Mazamastrongylus peruvianus | |||||||
| Graphinema aucheniae |
Fig. 3.
Parasitic richness of South American camelid throught the native distribution range based on data available to date.
The gastrointestinal parasites of each of the four SAC species compiled are summarized in Table 5. At least 36 parasitic helminths were registered. Twenty two genera of the Phylum Nematoda have been reported among the four species of SAC. Seventeen genera belong to the Order Strongylida (including 28 taxa identified to the species level), one genus belong to the Order Ascaridida, one genus belong to the Order Oxyurida, one genus belong to the order Rhabditida and two genus belong to the Order Enoplida. Three genera of the Phylum Platyhelminthes were also reported. One of them belongs to Cestoda (with two identified species) and one species belong to Trematoda. Respects to Eimeria spp. (Apicomplexa), five species have been identified. The prevalence of the reported parasitic infestations in many cases was 100% (Table 1, Table 2, Table 3, Table 4). This review displays that there is no one species more prevalent than another, but rather that the prevalence varies in each of the studies.
Table 5.
Review of gastrointestinal parasites of South American Camelids.
| Parasite species | Alpacas | Llamas | Vicuñas | Guanacos |
|---|---|---|---|---|
| NEMATODA | ||||
| STRONGYLIDA/ANCYLOSTOMATIDAE | ||||
| Bunostomum sp. | + | + | + | + |
| Bunostomum phlebotomum | + | |||
| STRONGYLIDA/MOLINEIDAE | ||||
| Lamanema sp. | + | + | + | + |
| Lamanema chavezi | + | + | + | + |
| Nematodirus spp. | + | + | + | + |
| Nematodirus spathiger | + | + | + | + |
| Nematodirus filicolis | + | + | + | |
| Nematodirus abnormalis | + | + | ||
| Nematodirus battus | + | |||
| Nematodirus lanceolatus | + | |||
| Nematodirus oriatianus | + | |||
| Nematodirus lamae | + | + | + | |
| STRONGYLIDA/TRICHOSTRONGYLIDAE | ||||
| Camelostrongylus sp. | + | + | + | |
| Camelostrongylus mentulatus | + | |||
| Cooperia sp. | + | + | + | + |
| Cooperia oncophora | + | + | + | |
| Cooperia surnabada | + | |||
| Cooperia mcmasteri | + | + | ||
| Graphinema sp. | + | + | ||
| Graphinema aucheniae | + | + | ||
| Haemonchus sp. | + | + | + | + |
| Haemonchus contortus | + | |||
| Marshallagia sp. | + | + | + | + |
| Marshallagia occidentalis | + | |||
| Mazamastrongylus (Spiculopteragia) peruvianus | + | + | + | + |
| Ostertagia sp. | + | + | + | + |
| Ostertagia ostertagi | + | + | + | |
| Ostertagia circumcincta | + | |||
| Ostertagia trifurcate | + | |||
| Teladorsagia spp. | + | |||
| Telodorsagia circumcincta | + | |||
| Trichostrongylus sp. | + | + | + | + |
| Trichostrongylus colubriformis | + | + | + | + |
| Trichostrongylus axei | + | + | + | |
| Trichostrongylus vitrinus | + | + | ||
| Trichostrongylus probolurus | + | |||
| STRONGYLIDA/CHABERTIDAE | ||||
| Chabertia sp. | + | |||
| Oesophagostomum sp. | + | + | + | + |
| Oesophagostomum columbianum | + | + | ||
| STRONGYLIDA/DICTYOCAULIDAE | ||||
| Dictyocaulus sp. | + | + | ||
| Dictyocaulus filaria | + | |||
| Gaigeria pachyscelis | + | |||
| STRONGYLIDA/STRONGYLIDAE | ||||
| Strongylus sp. | + | + | ||
| ASCARIDIDA/ASCARIDIDAE | ||||
| Toxocara spp. | + | + | ||
| OXYURIDA/OXYURIDAE | ||||
| Skrjabinema sp. | + | + | ||
| RHABDITIDA/STRONGYLOIDIDAE | ||||
| Strongyloides spp. | + | + | + | |
| Strongyloides papillosus | + | |||
| ENOPLIDA/TRICHURIDAE | ||||
| Capillaria sp. | + | + | + | + |
| Trichuris sp. | + | + | + | + |
| Trichuris ovis | + | + | ||
| Trichuris tenuis | + | + | + | |
| PLATYHELMINTHES | ||||
| CESTODA | ||||
| Moniezia sp. | + | + | + | + |
| Moniezia expansa | + | + | + | + |
| Moniezia benedeni | + | + | + | |
| TREMATODA | ||||
| Fasciola hepatica | + | + | + | + |
| APICOMPLEXA | ||||
| Eimeria lamae | + | + | + | + |
| Eimeria alpacae | + | + | + | + |
| Eimeria punoensis | + | + | + | + |
| Eimeria macusaniensis | + | + | + | + |
| Eimeria ivitaensis | + | + | + | + |
| 36 | 44 | 36 | 42 | |
4. Discussion
The present work is the first scientific review that provides detailed information about gastrointestinal parasite diversity of SAC throughout the entire native distribution range, encompassing a large number of documents. The records summarized here comprise documents dating from 1963 to 2022, with an increase in the last 10 years, whenever a wide production of scientific publications and graduate and postgraduate theses were produced. This point can be explained by the growing interest in recent years for SAC conservation and, in the other hand, for the economic interest on SAC around the world. The recopilated documents are focused mainly in gastrointestinal parasites studies from fecal samples or from necropsied animals, by microscopic techniques mostly. This implies that in many occasions it is not possible to identify the species. Molecular studies on camelid parasites are scarce. Although 101 works were recopilated, results highlight that a large number of the documents summarized are not published in indexed journals and are not easily accessible to a wider audience.
The highest species richness of gastrointestinal parasites was found in southern Peru, western Bolivia and central Patagonia. This agrees with the regions with the highest population of SAC and with the regions where more studies have been carried out. The important population of Peru explain that this country produced a great number of the available knowledge. However, it is mainly focused on alpaca. Numerous studies considered that latitude is one of the main factors correlated to parasite diversity and richness. Parasite diversity is expected to decrease in high latitude areas as result of lack of intermediate hosts or high mortality rates due to harsh conditions in winter (Krasnov et al., 2004; Lindenfors et al., 2007; Bordes et al., 2010; Poulin and Leung, 2011). The data on parasitic richness of SAC summarized in this paper so far do not allow us to observe a decrease pattern in their distribution throughout their extensive distribution. However, the parasite diversity display in this review should be taken with caution as it is subject to the number and type of samples analyzed in each region. So far, all parasite genera appear to be represented throughout the distribution range.
Most wild and domestic ungulate species have few host-specific parasites, which make up less than half of the total number of nematode parasite species found in a given host; and mostly have generalist parasites (Walker and Morgan, 2014). Across vast areas, SAC coexist with domestic herbivores such as sheep, goat and cattle. Furthermore, domestic SAC coexist with human populations. This proximity facilitates the exchange of parasites between domestic and wild animals and humans. Walker and Morgan (2014) found that domestic camelids (llamas and alpacas) have a high liability index (the degree to which a host species is vulnerable to infection with generalist parasites), with a value of 0.77. This index is designed to range from −1 (entirely host-specific parasites) to 1 (entirely parasites shared with the other group). This result displays that llamas and alpacas have mostly generalist species. In the present study, 22 genera of nematodes were reported, with at least 33 species. Of all of them, only five are known as SAC-specific nematodes: Trichuris tenuis, Graphinema aucheniae, Camelostrongylus mentulatus, Nematodirus lamae, and Lamanema chavezi. Most of the registered parasites in this review are generalist parasites, and are shared with domestic ungulates and wildlife species, such as Ostertagia spp., Haemonchus contortus, Trichostrongylus spp., Cooperia spp., and Oesophagostomum. From a sanitary point of view, it would be important to know if host-specific parasites dominate the communities of their hosts and generalist parasites tend to occur at lower abundances, or vice versa (Zaffaroni et al., 2000). In this review, is clear that there is not enough data to compare the abundance of different nematode species within a host. Further studies of the contribution of shared parasite species to total parasite burden rather than only species richness would be a step toward understanding the impact that generalist parasites have on SAC. In the other hand, several studies have looked at nematodes of wild ungulates in relation to domestic species. In the present review, domestic SAC displayed to have the same genera of parasites than wild SAC.
SAC have also been described as hosts for parasites of zoonotic importance such as Fasciola hepatica. This trematode was found in wild and domestic camelids, from the north of its distribution to the north of Patagonia. It was generally assumed that entry of F. hepatica to America coincided with the first arrival of the Europeans and their associated livestock in the late 15th century. Throughout the 500 years since its introduction, the parasite gained new definitive hosts among native species. This trematode is now widespread in livestock and can be mapped across the whole South America and certain regions of North America. Nonetheless in Argentina, eggs of F. hepatica have been observed in deer and camelid coprolites dating back to 2300 years B.P., prior to the arrival of the European cattle in the 15th century (Beltrame et al., 2020; Tietze et al., 2021). This shows that the presence of Fasciola in camelids is not only due to its transmission by European cattle.
Cestodes found in SACs are ruminant-related anoplocephalid of the genus Moniezia, identified in the four camelids species in a wide variety of environments with records that go from the north of its distribution reaching as far as northern Patagonia. Parasites of Moniezia expansa were identify in all SACs species, while Moniezia benedeni were identify in vicuñas, alpacas and guanacos. In the case of llamas, findings of cestodes were scarce, and in general it was only possible to identify the genus. Recently, Moniezia eggs were also found in coprolites from the middle to late-Holocene from the Argentinian Puna, evidencing the presence of this genus in SAC prior the European cattle arrival (Tietze et al., 2021).
There are five common species of Eimeria in SAC: E. lamae, E. alpacae, E. punoensis, E. macusaniensis and E. ivitaensis (Dubey, 2018). All Eimeria spp. were recorded in wild and domestic camelids throughout its distribution range. The most prevalent Eimeria found in guanacos was E. macusaniensis, but in general the most prevalent in SAC was E. punoensis while the least prevalent was E. ivitaensis (Marin et al., 2009; Rodríguez et al., 2012; Cafrune et al., 2014; Moreno et al., 2015). Of the five Eimeria species registered in SAC, E. macusaniensis is considered the most pathogenic, clinical symptoms can develop even before oocysts are registered in the feces. The host specificity along with the characteristic morphology of its oocyst makes it an effective indicator when identifying the host in coprological studies (Dubey, 2018). The presence of E. macusaniensis is reported even in ancient samples from Argentina, Chile and Peru (Fugassa et al., 2008; Beltrame et al., 2010; Taglioretti et al., 2015; de Souza et al., 2018; Le Bailly et al., 2020; Tietze et al., 2021).
When studying the interactions between wildlife, livestock, and their parasites, it will be important to understand the historical context and patterns of contact and relatedness between the host species. A useful tool for this focus is the paleoparasitology. Paleoparasitological studies on SAC have shown the presence of diverse parasitic species in ancient times, which demonstrate the presence of some of them in prehistoric times, before the arrival of the European fauna, and others in more recent archaeological levels. Within the archaeological records were found Dictyocaulus sp., Fasciola hepatica, Lamanema chavezi, Moniezia sp., Nematodirus spathiger, Strongyloides sp., Trichuris sp. (e.g. Taglioretti et al., 2017; Petrigh et al., 2021; Tietze et al., 2021). If we are to make predictions of changes in host–parasite interactions due to, for example, climate or land use change, or to introduction of exotic species, it is necessary to have an exhaustive knowledge of the parasitic diversity of SAC throughout the time and throughout their entire distribution. Environmental changes can modify the epidemiological pattern of parasitic diseases, with impacts on the economy, public health, and/or wildlife conservation (Rhyan and Spraker, 2010). This work highlights the need for a greater number of works to know with more certainty the parasitic fauna of SAC in the past and present, in order to achieve predictions that allow proper management of camelids for their future conservation. Furthermore, concerted research efforts are needed to understand the biology, epidemiology, diagnosis and distribution of the parasitosis of SAC along the entire distribution range to guide conservation decisions.
5. Conclusions
In summary, this review presents the first compendium of studies of gastrointestinal parasites of SAC throughout the native range of distribution. This serves as a baseline for future studies focused on elucidating the role that parasites play on SAC and further epidemiological research. Clearly, a better understanding of the extent and impact of parasites on SAC, at both the individual and population levels, is needed. This shortfall in knowledge is concerning for SAC conservation.
Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements
This research was funded by the project PICT 2019–2577 (Agencia Nacional de Promoción Científica y Tecnológica) from Argentina.
Contributor Information
Victoria Cañal, Email: victoriacanal@mdp.edu.ar.
María Ornela Beltrame, Email: ornelabeltrame@conicet.gov.ar.
References
- Aguirre D.H., Cafrune M.M. Anguil, Ediciones INTA; 2007. Parasitosis de los camélidos Sudamericanos. Enfermedades parasitarias de los ovinos y otros rumiantes menores en el Cono Sur de América. [Google Scholar]
- Alcaino H., Gorman T., Burgos M. Helmintiasis gastrointestinal en llamas (Lama glama) de la I Región de Chile. Parasitol. día. 1991:93–96. [Google Scholar]
- Angulo J., Tantaleán-Vidaurre M., Watanabe-Watanabe R., Del Solar Velarde J.M. Redescripción de Lamanema chavezi por microscopía óptica y microscopía electrónica de barrido. Rev. Investig. Vet. Peru. 2015;26:245–258. doi: 10.15381/rivep.v26i2.11001. [DOI] [Google Scholar]
- Angulo-Tisoc J.M., Pacheco J.I., Vélez V., García W., Castelo H., Gomez-Puerta L.A. Situación actual de la sarna e infecciones parasitarias en vicuñas (Vicugna vicugna) de la Región Cusco. Perú. Rev. Investig. Vet. Peru. 2021;32:20405. doi: 10.15381/rivep.v32i3.20405. 20405. [DOI] [Google Scholar]
- Arias-Pacheco C., Pezo D., Mathias L.A., Tebaldi J.H., Castelo-Oviedo H., Lux-Hoppe E.G. Parasitological status of vicuñas (Vicugna vicugna) from southeastern Peru and its relationship with fiber quality. Trop. Anim. Health Prod. 2021;53:1–10. doi: 10.1007/s11250-021-02650-1. [DOI] [PubMed] [Google Scholar]
- Auris Bellido E., Santiago Cahuana B. Thesis, Universidad Nacional de Huancavelica; Huancavelica, Peru): 2013. Agentes parasitarios que causan diarreas en crías (5-90 días) de alpacas (Lama pacos) en la comunidad campesina de Pilpichaca. [Google Scholar]
- Becklund W.W. Lamanema chavezi gen. n., sp. n. and Nematodirus lamae sp. n. (Nematoda: Trichostrongylidae) from the Alpaca, Lama pacos, and the Vicuña, Vicugna vicugna. Perú. J. Parasitol. 1963:1023–1027. doi: 10.2307/3275745. [DOI] [PubMed] [Google Scholar]
- Beldomenico P.M., Uhart M., Bono M.F., Marull C., Baldi R., Peralta J.L. Internal parasites of free-ranging guanacos from Patagonia. Vet. Parasitol. 2003;118:71–77. doi: 10.1016/j.vetpar.2003.09.008. [DOI] [PubMed] [Google Scholar]
- Beltrame M.O., Fugassa M.H., Sardella N.H. First paleoparasitological results from late Holocene in Patagonian coprolites. J. Parasitol. 2010;96:648–651. doi: 10.1645/GE-2376.1. [DOI] [PubMed] [Google Scholar]
- Beltrame M.O., Pruzzo C., Sanabria R., Mora M.S. First report of prehispanic Fasciola hepatica from South America revealed by ancient DNA. Parasitology. 2020;147:371–375. doi: 10.1017/S0031182019001719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beltrán-Saavedra L.F., Nallar-Gutiérrez R., Ayala G., Limachi J.M., Gonzales-Rojas J.L. Estudio sanitario de vicuñas en silvestría del Área Natural de Manejo Integrado Nacional Apolobamba, Bolivia. Ecol. Boliv. 2011;46:14–27. [Google Scholar]
- Beltrán-Saavedra L.F., González-Acuña D., Nallar-Gutiérrez R., Ticona-Challco H. Estudio coproparasitario y ectoparasitario en alpacas (Vicugna pacos Linnaeus, 1758) de Apolobamba, con nuevos registros de Phthiraptera (Insecta) e Ixodidae (Acari), La Paz-Bolivia. J. Selva Andina Anim. Sci. 2014;1:2–17. [Google Scholar]
- Bordes F., Morand S., Krasnov B.R., Poulin R. Parasite diversity and latitudinal gradients in terrestrial mammals. The biogeography of host-parasite interactions. 2010;89:98. [Google Scholar]
- Borghi E.D., Araoz C., Jofré C., Duarte A., Mera y Sierra R.L. Gastrointestinal parasites of guanacos (Lama guanicoe) of Midwest Argentina (Mendoza and san Juan) Biocell. 2004;28:185. [Google Scholar]
- Bouts T., Fox M.T., Scheres G., Chávez A. Vol. 28. 2003. Identification of gastrointestinal nematodes and coccidia in wild vicunas (Lama vicugna) in Pampa Galeras, Peru; pp. 101–105. (Internationalen Symposiums uber die Erkrankungen der Zoo und Wildtiere). Rome, Italy. [Google Scholar]
- Cafrune M.M., Rebuffi G.E., Gaido A.B., Aguirre D.H. Fasciola hepatica in semi-captive vicunias (Vicugna vicugna) in North West Argentina. Vec. Rec. 1996;139:97. doi: 10.1136/vr.139.4.97-a. [DOI] [PubMed] [Google Scholar]
- Cafrune M.M., Rebuffi G.E., Cabrera R.H., Aguirre D.H. Fasciola hepatica en llamas (Lama glama) de la Puna Argentina. Vet. Argent. 1996;13:570–574. [Google Scholar]
- Cafrune M.M., Aguirre D.H., Rickard L.G. Recovery of Trichuris tenuis Chandler, 1930, from camelids (Lama glama and Vicugna vicugna) in Argentina. J. Parasitol. 1999;85:961–962. doi: 10.2307/3285836. [DOI] [PubMed] [Google Scholar]
- Cafrune M.M., Aguirre D.H., Rickard L.G. First report of Lamanema chavezi (Nematoda: Trichostrongyloidea) in llamas (Lama glama) from Argentina. Vet. Parasitol. 2001;97:165–168. doi: 10.1016/S0304-4017(01)00379-X. [DOI] [PubMed] [Google Scholar]
- Cafrune M.M., Marín R.E., Rigalt F.A., Romero S.R., Aguirre D.H. Lamanema chavezi (Nematoda: Molineidae): epidemiological data of the infection in South American camelids of Northwest Argentina. Vet. Parasitol. 2009;166:321–325. doi: 10.1016/j.vetpar.2009.09.008. [DOI] [PubMed] [Google Scholar]
- Cafrune M.M., Marín R.E., Rigalt F.A., Romero S.R., Aguirre D.H. Prevalence of Eimeria macusaniensis and Eimeria ivitaensis in south American camelids of Northwest Argentina. Vet. Parasitol. 2009;162:338–341. doi: 10.1016/j.vetpar.2009.03.006. [DOI] [PubMed] [Google Scholar]
- Cafrune M.M., Romero S.R., Aguirre D.H. Prevalence and abundance of Eimeria spp. infection in captive vicuñas (Vicugna vicugna) from the Argentinean Andean altiplano. Small Rumin. Res. 2014;120:150–154. doi: 10.1016/j.smallrumres.2014.04.013. [DOI] [Google Scholar]
- Camareno E., Chávez A., Pinedo R., Leyva V. Prevalencia de Eimeria spp en alpacas de dos comunidades del distrito de Macusani, Puno, Peru. Rev. Investig. Vet. Peru. 2016;27:573–580. doi: 10.15381/rivep.v27i3.11990. [DOI] [Google Scholar]
- Cardozo P.A. Universidad Nacional de Mar del Plata; Buenos Aires, Argentina): 2019. Caracterización de las especies parasitarias de ovinos, caprinos y camélidos sudamericanos en la Puna de Catamarca (Doctoral dissertation. [Google Scholar]
- Castillo H., Chávez A., Hoces D., Casas E., Rosadio R., Wheeler J.C. Contribución al estudio del parasitismo gastrointestinal en guanacos (Lama guanicoe cacsilensis) Rev. Investig. Vet. Peru. 2008;19:168–175. [Google Scholar]
- Chacaguasay Cepeda B.M. 2016. Estudio parasitario en defecadores de vicuñas (Vicugna vicugna) en la Reserva de Producción de Fauna Chimborazo (Bachelor's thesis, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador. [Google Scholar]
- Chirinos A. Thesis, Universidad Nacional del Altiplano; Puno, Perú): 2017. Cuantificación del Clostridium perfringens y su relación con la presencia de Eimeria spp. En crías de alpacas sanas y muertas con síndrome hemorrágico enterotóxico en el Cip. La raya. [Google Scholar]
- Ciprian A. APPA-ALPA; Cuzco, Perú: 2007. Determinación del grado de lesión con respecto al grado de infección causada por Distomatosis Hepática en alpacas de Ayacucho; pp. 1–6. [Google Scholar]
- Cóndor Tapia D.M. Universidad Técnica de Cotopaxi; Latacunga, Ecuador): 2015. Prevalencia de parásitos gastrointestinales en alpacas huacayas (Vicunga pacos) en la comunidad Apagua, cantón Pujilí (Bachelor's thesis. [Google Scholar]
- Condori W., Gutiérrez E., Mamani W., Guzmán J. VI Congreso Mundial de Camélidos Sudamericanos. Arica-Chile. 2012. Determinación de parásitos gastrointestinales en vicuñas silvestres en dos comunidades del ANMIN-Apoblabamba La Paz, Bolivia. [Google Scholar]
- Contreras N., Chávez A., Pinedo V., Leyva V., Suárez F. Helmintiasis en alpacas (Vicugna pacos) de dos comunidades de Macusani, Puno, durante la época seca. Rev. Investig. Vet. Peru. 2014;25:268–275. [Google Scholar]
- Cordero A., Huanca W., Díaz P., López C.M., Panadero R., Fernández G., Lago N., Morrondo P., Díez-Baños P. Proceedings of the XII Congreso Ibérico de Parasitología SOCEPA. 2011. Infection by gastrointestinal parasites in alpacas (Lama pacos) from Southern Peru; pp. 5–8. [Google Scholar]
- Correa L., Zapata B., Soto-Gamboa M. Gastrointestinal and blood parasite determination in the guanaco (Lama guanicoe) under semi-captivity conditions. Trop. Anim. Health Prod. 2012;44:11–15. doi: 10.1007/s11250-011-9891-4. [DOI] [PubMed] [Google Scholar]
- Cunazza C. In: Navone G.T., Merino M.L., editors. Vol. 44. 1982. Extracción experimental de 150 guanacos de Tierra del Fuego. CONAF; pp. 46–51. (Knowledge of the Endoparasitic Fauna of Lama guanicoe Müller). 10. 1989. , 1776, from the Mitre Peninsula, Tierra del Fuego, Argentina. Bol. chil. parasitol. [PubMed] [Google Scholar]
- Curay Cabanillas J.J. Thesis, Universidad Nacional Mayor de San Marcos; Lima, Peru): 2018. Helmintiasis en vicuñas (Vicugna vicugna) en el distrito de Contumazá, departamento de Contumazá-Cajamarca. [Google Scholar]
- de Souza M.V., da Silva L.G.R., Silva-Pinto V., Mendez-Quiros P., de Miranda Chaves S.A., Iñiguez A.M. New paleoparasitological investigations from the pre-inca to hispanic contact period in northern Chile. Acta Trop. 2018;178:290–296. doi: 10.1016/j.actatropica.2017.11.021. [DOI] [PubMed] [Google Scholar]
- Díaz G., Chero A., Purdy S., Lenin Maturrano L., Rosadio R. VII Congreso Mundial en Camélidos Sudamericanos. 2015. Presencia de Eimeria spp. En enteropatías fatales de alpacas neonatas. [Google Scholar]
- Díaz P., Panadero R., López R., Cordero A., Pérez-Creo A., López C.M., Fernández G., Díez-Baños P., Morrondo P. Prevalence and risk factors associated to Eimeria spp. infection in unweaned alpacas (Vicugna pacos) from Southern Peru. Acta Parasitol. 2016;61:74–78. doi: 10.1515/ap-2016-0008. [DOI] [PubMed] [Google Scholar]
- Dubey J.P. A review of coccidiosis in South American camelids. Parasitol. Res. 2018;117:1999–2013. doi: 10.1007/s00436-018-5890-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farfan E.J. Doctoral dissertation, Universidad Católica de Santa María; Arequipa, Perú): 2014. Prevalencia de helmintos gastrointestinales en alpacas (Vicugna pacos) en la comunidad campesina de Queracucho y localidades del distrito de Ajoyani, provincia de Carabaya–Puno. [Google Scholar]
- Fierro Obregón M.F. 2010. Diagnóstico parasitario, evaluacion de eficiencia antihelmintica y diseno de un plan sanitario parasitologico en la caravana de alpacas de la comunidad de Morochos, canton Cotacachi (Bachelor's thesis, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador. [Google Scholar]
- Flores B., Pinedo R., Suárez F., Angelats R., Chávez A. Prevalencia de fasciolosis en llamas y alpacas en dos comunidades rurales de Jauja. Perú. Rev. Investig. Vet. Peru. 2014;25:276–283. [Google Scholar]
- Fowler M.E. 3ed. Wiley-Blackwell; Iowa: 2010. Medicine and Surgery of Camelids; p. 644. [Google Scholar]
- Franklin W.L. Handbook of the Mammals of the World. Vol. 2. 2011. Family Camelidae (camels) pp. 206–246. [Google Scholar]
- Frezzato G., Stelletta C., Murillo C.E.P., Simonato G., Cassini R. Parasitological survey to address major risk factors threatening alpacas in Andean extensive farms (Arequipa, Peru) J. Vet. Med. Sci. 2020;20–0253 doi: 10.1292/jvms.20-0253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuentes Ríos M.A. Thesis, Universidad Nacional de Huancavelica; Huancavelica, Peru): 2013. Fauna helmintica gastrointestinal en llamas (Lama glama) según la edad en la Región Huancavelica. [Google Scholar]
- Fugassa M.H., Sardella N.H., Taglioretti V., Reinhard K.J., Araujo A. Eimeriid oocysts from archaeological samples in Patagonia, Argentina. J. Parasitol. 2008;94:1418–1420. doi: 10.1645/GE-1537.1. [DOI] [PubMed] [Google Scholar]
- Gavilanez Loja M.J. 2016. Estudio parasitario para la aplicación de un calendario sanitario para llamas de la comunidad Mill Mahuanchi, parroquia de Cebadas, cantón Guamote (Bachelor's thesis, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador. [Google Scholar]
- Gomez Escobar G., Mallqui Saravia D. Thesis, Universidad Nacional de Huancavelica; Huancavelica, Peru: 2018. Mapa parasitológico del lugar de procedencia de alpacas y llamas infestadas con Lamanema chavezi y Sarcocystis aucheniae beneficiadas en el matadero municipal de Huancavelica. [Google Scholar]
- Gomez-Puerta L.A., Carrasco J., Robles K., Vargas-Calla A., Cribillero N.G., Arroyo G., Castillo H., Lopez-Urbina M.T., Gonzalez A.E. Coccidiosis in clinically asymptomatic alpaca (Vicugna pacos) crias from the Peruvian Andes. Parasitol. Int. 2021;102438 doi: 10.1016/j.parint.2021.102438. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Rivas C.J., Borghi C.E., De Lamo D.A. Endoparásitos en guanaco (Lama guanicoe): Revisión de situación en Argentina y registros de la provincia de San Juan. Rev. Investig. Vet. Peru. 2019;30:339–349. doi: 10.15381/rivep.v30i1.14609. [DOI] [Google Scholar]
- Guerrero C.A. Coccidia (Protozoa: Eimeriidae) of the alpaca Lama pacos. J. Protozool. 1967;14:613–616. doi: 10.1111/j.1550-7408.1967.tb02050.x. [DOI] [PubMed] [Google Scholar]
- Guerrero C.A., Hernandez J., Bazalar H., Alva J. Eimeria macusaniensis n. sp. (Protozoa: Eimeriidae) of the alpaca Lama pacos. J. Protozool. 1971;18:162–163. doi: 10.1111/j.1550-7408.1971.tb03299.x. [DOI] [PubMed] [Google Scholar]
- Guerrero Díaz C. In: Navone G.T., Merino M.L., editors. Vol. 44. 1970. Parásitos y enfermedades parasitarias de las alpacas. Anales de la Primera Convención sobre camélidos Sudamericanos (Auquénidos). Puno, Peru. Universidad Nacional Técnica del Altiplano pp. 46–51. (Knowledge of the Endoparasitic Fauna of Lama guanicoe Müller, 1776). . 122-133. 1989, from the Mitre Peninsula, Tierra del Fuego, Argentina. Bol. chil. parasitol. [Google Scholar]
- Hurtado E., Bustinza J., Sánchez C. 5. Convención Internacional sobre Camélidos Sudamericanos 16-21 Jun 1985 Cuzco (Perú) (No. RISPAL No. 0295) Universidad Nacional Mayor de San Marcos; Lima: 1985. Parasitismo gastrointestinal por examen de heces de guanacos (Lama guanicoe) Libro de resúmenes. (Perú) Instituto Veterinario de Investigaciones Tropicales y de Altura-IVITA, Lima (Perú). Centro de Investigación Universidad Nacional San Antonio Abad del Cuzco, Cuzco (Perú). Facultad de Agronomía y Zootecnia. [Google Scholar]
- Issia L., Ovejero R., Carmanchahi P., Pietrokovsky S., Wisnivesky-Colli C. V Congreso Latinoam Especialistas en Pequeños Rumiantes y CSA. 2007. Primer registro de F. hepatica en guanacos silvestres de Mendoza, Argentina. Buenos Aires. [Google Scholar]
- Issia L., Pietrokovsky S., Sousa-Figueiredo J., Stothard J.R., Wisnivesky-Colli C. Fasciola hepatica infections in livestock flock, guanacos and coypus in two wildlife reserves in Argentina. Vet. Parasitol. 2009;165:341–344. doi: 10.1016/j.vetpar.2009.07.011. [DOI] [PubMed] [Google Scholar]
- Karesh W.B., Uhart M.M., Dierenfeld E.S., Braselton W.E., Torres A., House C., Puche H., Cook R.A. Health evaluation of free-ranging guanaco (Lama guanicoe) J. Zoo Wildl. Med. 1998:134–141. [PubMed] [Google Scholar]
- Krasnov B.R., Shenbrot G.I., Khokhlova I.S., Degen A.A. Flea species richness and parameters of host body, host geography and host ‘milieu. J. Anim. Ecol. 2004;73:1121–1128. doi: 10.1111/j.0021-8790.2004.00883.x. [DOI] [Google Scholar]
- Larrieu E., Bigatti R., Lukovich R., Eddi C.S., Bonazzi E.F., Gómez E., Niec R., Oporto N.R. Contribución al estudio del parasitismo gastrointestinal en guanacos (Lama guanicoe) y llamas (Lama glama) Gac. Vet. 1982;44 [Google Scholar]
- Larroza M., Olaechea F. XVII Reunión Científico Técnica de la Asociación Argentina de Veterinarios de Laboratorios de Diagnóstico. 2008. Morfologia y viabilidad de los huevos de Fasciola hepatica en distintos hospedadores en patagonia. (Santa Fe, Argentina) [Google Scholar]
- Le Bailly M., Goepfert N., Prieto G., Verano J., Dufour B. Camelid gastrointestinal parasites from the Archaeological Site of Huanchaquito (Peru): first results. Environ. Archaeol. 2020;25:325–332. doi: 10.1080/14614103.2018.1558804. [DOI] [Google Scholar]
- Leguia G. The epidemiology and economic impact of llama parasites. Parasitol. Today. 1991;7:54–56. doi: 10.1016/0169-4758(91)90190-Y. [DOI] [PubMed] [Google Scholar]
- Leguía G., Casas E. Eimeria ivitaensis (Protozoa: Eimeridae) en alpacas Lama pacos. Rev. Per. Parasitol. 1998;13:59–61. [Google Scholar]
- Li O., Leguía G., Espino A., Duménigo B., Díaz A., Otero O. Detección de anticuerpos y antígenos para el diagnóstico de Fasciola hepatica en alpacas naturalmente infectadas. Rev. Investig. Vet. Peru. 2005;16:143–153. [Google Scholar]
- Lindenfors P., Nunn C.L., Jones K.E., Cunningham A.A., Sechrest W., Gittleman J.L. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecol. Biogeogr. 2007;16:496–509. doi: 10.1111/j.1466-8238.2006.00301.x. [DOI] [Google Scholar]
- Lizana Hilario E. Thesis, Universidad Nacional de Huancavelica; Huancavelica, Peru): 2016. Asociación de Eimeria macusaniensis y Clostridium perfringens en proceso diarreicos en crías de Alpaca (Vicugna pacos) en la comunidad de Santa Bárbara-Huancavelica. [Google Scholar]
- Lopez Mejía M.E. Doctoral dissertation, Universidad Nacional de Cajamarca; Cajamarca, Perú): 2014. Prevalencia de Fasciola hepatica en alpacas (Lama pacos) de la Cooperativa Agraria de Trabajadores Atahualpa Jerusalén, granja porcón–provincia de Cajamarca, 2014. [Google Scholar]
- Lucas J.R., Morales S., Barrios M., Rodríguez J., Vásquez M., Lira B., Torres B., Casas E., Espinoza J. Patógenos involucrados en casos fatales de diarrea en crías de alpaca de la Sierra Central del Perú. Rev. Investig. Vet. Peru. 2016;27:169–175. doi: 10.15381/rivep.v27i1.11465. [DOI] [Google Scholar]
- Mamani J. Universidad Nacional Jorge Basadre Gromhann–Tacna; Tacna, Peru: 2012. Evaluación de la carga parasitaria y su interacción madre-cría, desde el nacimiento al destete, en alpacas (Vicugna pacos) y llamas (Lama glama) en Cicas la Raya, Cusco. Cusco (Thesis. [Google Scholar]
- Marin R.E., Rodriguez D., Parreño V. Rev Vet argentina Dir Prov Desarro Ganad Gob la Prov Jujuy Minist Prod Ley Ovina Nro 25422 Proyecto FAO; 2009. Prevalencia Sanitaria en Llamas (Lama glama) de la Provincia de Jujuy. Argentina; p. 7. 2552. [Google Scholar]
- Marino T.A.C. Determinación de resistencia antihelmíntica frente a ivermectina de nematodos gastrointestinales en alpacas (Vicugna pacos) Puno-Perú. Abanico Vet. 2011;1:11–20. [Google Scholar]
- Marcoppido G., Schapiro J., Morici G., Arzamendia Y., Vilá B. Coproparasitological evaluation of nematodes and coccidia in a wild vicuña (Vicugna vicugna) population in the Argentinean Andean Altiplano. J. Camelid Sci. 2016;9:23–34. [Google Scholar]
- Martela Mamani W. Dictoral Dissertation, Universidad Mayor de San Andres; La Paz, Bolivia): 2016. Identificacion de parasitos gastrointestinales en poblaciones de vicuña (Vicugna vicugna) en tres regiones de Bolivia. [Google Scholar]
- Masson M., Gutiérrez G., Puicón V., Zárate D. Helmintiasis y eimeriosis gastrointestinal en alpacas criadas al pastoreo en dos granjas comunales de la región Pasco, Perú, y su relación con el peso y condición corporal. Rev. Investig. Vet. Peru. 2016;27:805–812. doi: 10.15381/rivep.v27i4.12566. [DOI] [Google Scholar]
- Mera y Sierra R., Cantero F., González M. Fasciola hepatica en guanacos y llamas en un establecimiento de Malargüe, provincia de Mendoza. Rev. Argentina Zoonosis Enf. Infec. Emerg. 2015;10:46–47. [Google Scholar]
- Miller G.R., Gill A.L. Zooarchaeology at Pirincay, a formative period site in highland Ecuador. J. Field Archaeol. 1990;17:49–68. doi: 10.1179/009346990791548510. [DOI] [Google Scholar]
- Moreno P.G., Eberhardt M.A.T., Lamattina D., Previtali M.A., Beldomenico P.M. Intra-phylum and inter-phyla associations among gastrointestinal parasites in two wild mammal species. Parasitol. Res. 2013;112:3295–3304. doi: 10.1007/s00436-013-3509-x. [DOI] [PubMed] [Google Scholar]
- Moreno P.G., Schroeder N.M., Taraborelli P.A., Gregorio P., Carmanchahi P.D., Beldomenico P.M. La comunidad de parásitos gastrointestinales de guanacos silvestres (Lama guanicoe) de la reserva provincial La Payunia, Mendoza, Argentina. Mastozool. Neotrop. 2015;22:63–71. [Google Scholar]
- Müller R. Estudio del parasitismo gastrointestinal en llamas (Lama glama), en un predio en la IX Región de Chile. Memoria Título Médico Veterinario. Valdivia, Chile. U. Austral de Chile. Fac. Cs. Veterinarias. 1998:20. [Google Scholar]
- Navone G.T., Merino M.L. Knowledge of the endoparasitic fauna of Lama guanicoe Müller, 1776, from the Mitre Peninsula, Tierra del Fuego, Argentina. Bol. Chil. Parasitol. 1989;44:46–51. [PubMed] [Google Scholar]
- Neyra V., Chavarry E., Espinoza J.R. Cysteine proteinases Fas1 and Fas2 are diagnostic markers for Fasciola hepatica infection in alpacas (Lama pacos) Vet. Parasitol. 2002;105:21–32. doi: 10.1016/S0304-4017(02)00002-X. [DOI] [PubMed] [Google Scholar]
- Olaechea F., Larroza M., Raffo F. 2011. Hallazgos parasitológicos en guanacos (Lama guanicoe) en el Laboratorio de Parasitología de la EEA INTA Bariloche (2001-2010. [Google Scholar]
- Olivera D., Grant J.L. Puestos de altura de la Puna Argentina: zooarqueología de Real Grande 1 y 6 y Alero Tomayoc. Rev. Mus. Antropol. 2009;2:151–168. doi: 10.31048/1852.4826.v2.n1.5415. [DOI] [Google Scholar]
- Oyarzún-Ruiz P., Barrientos V., Rodríguez R., Almonacid A., Barrientos O., Painean J., Ortiz C., Ratto M. XXIV Congreso Latinoamericano de Parasitología. 2017. Identificación y cuantificación de parásitos en llamas (Lama glama Linnaeus, 1758) de Valdivia, Chile. Santiago, Chile. [Google Scholar]
- Palacios C., Tabacchi L., Chavera A., López T., Santillán G., Pezo D., Perales R. Eimeriosis en crías de alpacas: estudio anátomo histopatológico. Rev. Investig. Vet. Peru. 2004;15:174–178. [Google Scholar]
- Palacios C., Perales R., Chavera A., López T. Caracterización anátomo-histopatológica de enteropatías causantes de mortalidad en crías de alpaca. Rev. Investig. Vet. Peru. 2005;16:34–40. [Google Scholar]
- Palacios C.A., Perales R.A., Chavera A.E., Lopez M.T., Braga W.U., Moro M. Eimeria macusaniensis and Eimeria ivitaensis co-infection in fatal cases of diarrhoea in young alpacas (Lama pacos) in Peru. Vet. Rec. 2006;158:344. doi: 10.1136/vr.158.10.344. [DOI] [PubMed] [Google Scholar]
- Panchi Lema L.S. Universidad Técnica de Cotopaxi; Latacunga, Ecuador): 2021. Prevalencia de parásitos gastrointestinales en alpacas huacayas de la comunidad Maca Grande Latacunga (Master's thesis. [Google Scholar]
- Paredes J.M., Condemayta Z.C., Charaja L.C. Causas de mortalidad de alpacas en tres principales centros de producción ubicados en puna seca y humeda del departamento de Puno. Rev. Electron. Vet. 2009;10:1–13. [Google Scholar]
- Pérez H., Chávez A., Pinedo R., Leyva V. Helmintiasis y eimeriasis en alpacas de dos comunidades de Cusco. Perú. Rev. Investig. Vet. Peru. 2014;25:245–253. [Google Scholar]
- Petrigh R.S., Fugassa M.H. Molecular identification of Nematodirus spathiger (Nematoda: Molineidae) in Lama guanicoe from patagonia, Argentina. Helminthologia. 2014;51:79–82. doi: 10.2478/s11687-014-0213-z. [DOI] [Google Scholar]
- Petrigh R.S., Cafrune M.M., Fugassa M.H. First mitochondrial and nuclear DNA sequences of Lamanema chavezi (Nematoda: Molineidae): novel findings to improve its identification in feces from South American camelids. Parasitol. Int. 2019;68:60–62. doi: 10.1016/j.parint.2018.10.007. [DOI] [PubMed] [Google Scholar]
- Petrigh R.S., Velázquez N.J., Fugassa M.H., Burry L.S., Mondini M., Korstanje M.A. Herbivore coprolites from the south-central Andes. A multiproxy study at los Viscos archaeological site, Catamarca, Argentina. J. Archaeol. Sci. 2021;38 doi: 10.1016/j.jasrep.2021.103063. [DOI] [Google Scholar]
- Pizarro, R. del Pilar. Puray N. Vol. 1. Enfoque Veterinario; 2014. (Huevos de Fasciola hepatica en heces de vicuña (Vicugna vicugna) en Tullpacancha Huancavelica-Perú). [Google Scholar]
- Poulin R., Leung T.L.F. Latitudinal gradient in the taxonomic composition of parasite communities. J. Helminthol. 2011;85:228–233. doi: 10.1017/S0022149X10000696. [DOI] [PubMed] [Google Scholar]
- Puicón V.H. Doctoral dissertation, Universidad Nacional Agraria La Molina; Lima, Perú): 2018. Evaluación de la resistencia natural a nematodos gastrointestinales en alpacas y ovinos en praderas de la puna central del Perú. [Google Scholar]
- Quina Quina Y. Thesis, Universidad Nacional del Altiplano; Puno, Peru): 2015. Parasitismo gastrointestinal en crías de alpaca (Vicugna pacos) post nacimiento del centro de investigación y producción La Raya–Puno. [Google Scholar]
- Quispe García H.H. Thesis, Universidad Nacional Jorge Basadre Grohmann-Tacna; Tacna, Peru): 2011. Estudio de parásitos externos y gastrointestinales en vicuñas (Vicugna vicugna mensalis) en el anexo Mamuta de la provincia de Tarata en la Región de Tacna. [Google Scholar]
- Quispe Pino K.M.R. Thesis, Universidad Nacional del Altiplano; Puno, Peru: 2019. Relación entre el peso vivo y el grado de infección por nematodos gastrointestinales en alpacas del Centro Experimental La Raya. [Google Scholar]
- Regalado Valdivieso M.C. Universidad San Francisco de Quito; Quito, Ecuador): 2015. Prevalencia de parásitos gastrointestinales en alpacas (Lama pacos) del sector Pedegral-Mejía en la provincia de Cotopaxi (Bachelor's thesis. [Google Scholar]
- Rhyan J.C., Spraker T.R. Emergence of diseases from wildlife reservoirs. Vet. Pathol. 2010;47:34–39. doi: 10.1177/2F0300985809354466. [DOI] [PubMed] [Google Scholar]
- Rodríguez A., Casas E., Luna L., Zanabria V., Rosadio R. Eimeriosis en crías de alpacas: prevalencia y factores de riesgo. Rev. Investig. Vet. Peru. 2012;23:289–298. [Google Scholar]
- Roncal Narváez C.A. Thesis, Universidad Nacional de Cajamarca; Cajamarca, Peru): 2014. Identificación de helmintos en alpacas (Lama pacos) provenientes de la provincia de Cajamarca. [Google Scholar]
- Rosadio R., Londoñe P., Pérez D., Castillo H., Véliz A., Llanco L., Yaya K., Maturrano L. Eimeria macusaniensis associated lesions in neonate alpacas dying from enterotoxemia. Vet. Parasitol. 2010;168:116–120. doi: 10.1016/j.vetpar.2009.10.010. [DOI] [PubMed] [Google Scholar]
- Rosadio R., Maturrano L., Pérez D., Luna L. El complejo entérico neonatal en alpacas andinas. Rev. Investig. Vet. Peru. 2012;23:261–271. [Google Scholar]
- Ruíz Hurtado C.R. MSc Thesis, Universidad Mayor de San Andrés; La Paz, Bolivia): 2016. Identificación y caracterización de la presencia de ectoparásitos y endoparásitos en vicuñas (Vicugna vicugna) en Comunidades de los Departamentos de La Paz y Oruro. [Google Scholar]
- Salazar Robayo C.I. Universidad San Francisco de Quito; Quito, Ecuador): 2015. Prevalencia de parásitos gastrointestinales en Alpacas del Inga Alto, Pichincha (Bachelor's thesis. [Google Scholar]
- Salazar C., Regalado C., Mena L.M., Galecio J.S. XIV Congreso Panamericano de Ciencias Veterinarias. 2014. Identificación y cuantificación de parásitos gastrointestinales en alpacas. [Google Scholar]
- Samamé L.M., Chávez A., Pinedo R. Fasciolosis en vicuñas (Vicugna vicugna) de la sierra central del Perú. Rev. Investig. Vet. Peru. 2016;27:137–144. doi: 10.15381/rivep.v26i3.11184. [DOI] [Google Scholar]
- Santana J.L., Martínez A., Soulés A., Milicevic F., Cafrune Wierna M.M., Larroza M.P., Robles C.A. Hepatitis parasitaria por Lamanema chavezi en guanacos (Lama guanicoe) faenados en la Provincia de Santa Cruz, Argentina. Soc. Med. Vet. 2020;101:3–8. http://hdl.handle.net/20.500.12123/6641 [Google Scholar]
- Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:7647. doi: 10.1136/bmj.g7647. 7647. [DOI] [PubMed] [Google Scholar]
- Spörndly E., Nissen A.M. In: Evaluación de la carga parasitaria y su interacción madre-cría, desde el nacimiento al destete, en alpacas (Vicugna pacos) y llamas (Lama glama) en Cicas la Raya, Cusco. Cusco [Thesis. Mamani J., editor. Universidad Nacional Jorge Basadre Gromhann–Tacna; Tacna, Peru]: 2008. Prevalence of parasites in llamas in the Andean Bolivia (Doctoral dissertation, MSc Thesis. Denmark: university of Copenhagen) 2012. [Google Scholar]
- Taglioretti V. Universidad Nacional de Mar del Plata; Buenos Aires, Argentina): 2015. Estudios paleoparasitológicos en coprolitos de camélidos sudamericanos (Doctoral dissertation. [Google Scholar]
- Taglioretti V., Fugassa M.H., Sardella N.H. Parasitic diversity found in coprolites of camelids during the Holocene. Parasitol. Res. 2015;114:2459–2464. doi: 10.1007/s00436-015-4442-y. [DOI] [PubMed] [Google Scholar]
- Taglioretti V., Fugassa M.H., Rindel D., Sardella N.H. New parasitological findings for pre-Hispanic camelids. Parasitology. 2017;144:1763–1768. doi: 10.1017/S0031182017000932. [DOI] [PubMed] [Google Scholar]
- Tietze E., Urquiza S.V., Beltrame M.O. Paleoparasitological study of Holocene South American camelids (ca. 8970–470 years 14C BP) from an archaeological site, southern puna of Argentina (Antofagasta de la Sierra, Catamarca) Holocene. 2021;31:1264–1272. doi: 10.1177/09596836211011654. [DOI] [Google Scholar]
- Torres Huacani L. Thesis, Universidad Nacional Jorge Basadre Grohmann-Tacna; Tacna, Peru): 2017. Prevalencia de parásitos gastrointestinales en alpacas (Vicugna pacos) de la raza huacaya en la comunidad campesina de Huaytire del distrito y provincia de Candarave en el departamento de Tacna–2016. [Google Scholar]
- Ueno H., Arandia R., Morales G., Medina G. Fascioliasis of livestock and snail host for Fasciola in the Altiplano region of Bolivia. Natl. Inst. Anim. Health Q. 1975;15:61–67. [PubMed] [Google Scholar]
- Valenzuela G., Leiva M.P., Quintana I. Estudio epidemiológico de larvas de nemátodos gastrointestinales en praderas pastoreadas por alpacas (Lama pacos) en Valdivia, Chile. Arch. Med. Vet. 1998;30:79–90. doi: 10.4067/S0301-732X1998000200008. [DOI] [Google Scholar]
- Velázquez N.J., Petrigh R.S., Benvenuto M.L., Martínez Tosto C., Camiolo I., Palacio P.I., Fugassa M.H., Valenzuela L.O., Burry L.S. Diseño y evaluación de un protocolo de extracción múltiple de restos vegetales, silicofitolitos, polen, parásitos, isótopos estables y ADN de heces de Lama guanicoe. A. Arqueol. Etnol. 2020;74:127–145. [Google Scholar]
- Vilá B.L. 2012. Camélidos Sudamericanos. Eudeba. Buenos Aires, Argentina. [Google Scholar]
- Vilá B., Arzamendia Y. South American Camelids: their values and contributions to people. Sustain. Sci. 2020;17:707–724. doi: 10.1007/s11625-020-00874-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J.G., Morgan E.R. Generalists at the interface: nematode transmission between wild and domestic ungulates. Int. J. Parasitol. Parasites Wildl. 2014;3:242–250. doi: 10.1016/j.ijppaw.2014.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler J.C., Chikhi L., Bruford M.W. In: Zeder M.A., editor. 2006. Genetic analysis of the origins of domestic South American camelids; pp. 229–341. (Documenting Domestication: New Genetic and Archaeological Paradigms). [Google Scholar]
- Yacobaccio H.D. The domestication of South American camelids: a review. Anim. Front. 2021;11:43–51. doi: 10.1093/af/vfaa065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaffaroni E., Manfredi M.T., Citterio C., Sala M., Piccolo G., Lanfranchi P. Host specificity of abomasal nematodes in free ranging alpine ruminants. Vet. Parasitol. 2000;90:221–230. doi: 10.1016/S0304-4017(00)00240-5. [DOI] [PubMed] [Google Scholar]
- Zamorano R., Fredes F., Fuentes R., Parraguez V.H., Raggi L.A. VI Congreso Mundial de Camélidos Sudamericanos Arica-Chile. 2012. Hallazgo de Fasciola hepatica en Lama pacos del altiplano de la región de Arica y Parinacota, Chile; p. 119. Noviembre 2012. [Google Scholar]
- Zhiminaicela P.V. Thesis, Universidad de Cuenca; Cuenca, Ecuador): 2015. Identificación y diagnóstico de endoparásitos en llamas en el cantón Sigsig. [Google Scholar]



