Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Nov 14;16(2):3231–3239. doi: 10.1007/s12274-022-5049-0

Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever

Depeng Rao 1,#, Tianhao Yan 1,#, Zihan Qiao 1, Yu Wang 1, Yongpei Peng 1, Han Tu 1, Shangquan Wu 1,, Qingchuan Zhang 1,
PMCID: PMC9661467  PMID: 36405983

Abstract

Ultrasensitive molecular detection and quantization are crucial for many applications including clinical diagnostics, functional proteomics, and drug discovery; however, conventional biochemical sensors cannot satisfy the stringent requirements, and this has resulted in a long-standing dilemma regarding sensitivity improvement. To this end, we have developed an ultrasensitive relay-type nanomechanical sensor based on a magneto lever. By establishing the link between very weak molecular interaction and five orders of magnitude larger magnetic force, analytes at ultratrace level can produce a clearly observable mechanical response. Initially, proof-of-concept studies showed an improved detection limit up to five orders of magnitude when employing the magneto lever, as compared with direct detection using probe alone. In this study, we subsequently demonstrated that the relay-type sensing mode was universal in application ranging from micromolecule to macromolecule detection, which can be easily extended to detect enzymes, DNA, proteins, cells, viruses, bacteria, chemicals, etc. Importantly, we found that, sensitivity was no longer subject to probe affinity when the magneto lever was sufficiently high, theoretically, even reaching single-molecule resolution.

graphic file with name 12274_2022_5049_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material (experimental section) is available in the online version of this article at 10.1007/s12274-022-5049-0.

Keywords: relay-type sensing mode, magneto lever, nanomechanical sensor, ultrasensitivity

Electronic Supplementary Material

12274_2022_5049_MOESM1_ESM.pdf (2.1MB, pdf)

Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11627803, 12072339, and 32061160475) and USTC Research Funds of the Double First-Class Initiative (No. YD2480002003).

Footnotes

Depeng Rao and Tianhao Yan contributed equally to this work.

Contributor Information

Shangquan Wu, Email: wushq@ustc.edu.cn.

Qingchuan Zhang, Email: zhangqc@ustc.edu.cn.

References

  • [1].Liu W P, Pan S T, Zhang H X, Tang Z F, Liang J, Wang Y Y, Zhang M L, Hu X D, Pang W, Duan X X. A universal biomolecular concentrator to enhance biomolecular surface binding based on acoustic NEMS resonator. ACS Cent. Sci. 2018;4:899–908. doi: 10.1021/acscentsci.8b00301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Mellman I, Warren G. The road taken: Past and future foundations of membrane traffic. Cell. 2000;100:99–112. doi: 10.1016/S0092-8674(00)81687-6. [DOI] [PubMed] [Google Scholar]
  • [3].Guo K Y, Wustoni S, Koklu A, Díaz-Galicia E, Moser M, Hama A, Alqahtani A A, Ahmad A N, Alhamlan F S, Shuaib M, et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 2021;5:666–677. doi: 10.1038/s41551-021-00734-9. [DOI] [PubMed] [Google Scholar]
  • [4].Foley E D B, Kushwah M S, Young G, Kukura P. Mass photometry enables label-free tracking and mass measurement of single proteins on lipid bilayers. Nat. Methods. 2021;18:1247–1252. doi: 10.1038/s41592-021-01261-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Xu M, Tu G P, Ji M W, Wan X D, Liu J J, Liu J, Rong H P, Yang Y L, Wang C, Zhang J T. Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multidimensional superstructures and the ultrasensitive IAPP proteins SERS detection. Nano Res. 2019;12:1375–1379. doi: 10.1007/s12274-019-2325-8. [DOI] [Google Scholar]
  • [6].Gruber K, Horlacher T, Castelli R, Mader A, Seeberger P H, Hermann B A. Cantilever array sensors detect specific carbohydrate-protein interactions with picomolar sensitivity. ACS Nano. 2011;5:3670–3678. doi: 10.1021/nn103626q. [DOI] [PubMed] [Google Scholar]
  • [7].Dhayal B, Henne W A, Doorneweerd D D, Reifenberger R G, Low P S. Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays. J. Am. Chem. Soc. 2006;128:3716–3721. doi: 10.1021/ja0570887. [DOI] [PubMed] [Google Scholar]
  • [8].Watari M, Galbraith J, Lang H P, Sousa M, Hegner M, Gerber C, Horton M A, McKendry R A. Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 2007;129:601–609. doi: 10.1021/ja065222x. [DOI] [PubMed] [Google Scholar]
  • [9].Kosaka P M, Pini V, Ruz J J, Da Silva R A, González M U, Ramos D, Calleja M, Tamayo J. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nat. Nanotechnol. 2014;9:1047–1053. doi: 10.1038/nnano.2014.250. [DOI] [PubMed] [Google Scholar]
  • [10].Li M, Xi N, Wang Y C, Liu L Q. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019;12:703–718. doi: 10.1007/s12274-018-2260-0. [DOI] [Google Scholar]
  • [11].Norman L L, Badia A. Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: An investigation of the origin of the micromechanical motion and surface stress. J. Am. Chem. Soc. 2009;131:2328–2337. doi: 10.1021/ja808400s. [DOI] [PubMed] [Google Scholar]
  • [12].Joo J, Kwon D, Yim C, Jeon S. Highly sensitive diagnostic assay for the detection of protein biomarkers using microresonators and multifunctional nanoparticles. ACS Nano. 2012;6:4375–4381. doi: 10.1021/nn301071c. [DOI] [PubMed] [Google Scholar]
  • [13].Mader A, Gruber K, Castelli R, Hermann B A, Seeberger P H, Radler J O, Leisner M. Discrimination of Escherichia coli strains using glycan cantilever array sensors. Nano Lett. 2012;12:420–423. doi: 10.1021/nl203736u. [DOI] [PubMed] [Google Scholar]
  • [14].Li M, Tang H X, Roukes M L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2007;2:114–120. doi: 10.1038/nnano.2006.208. [DOI] [PubMed] [Google Scholar]
  • [15].Wu G H, Ji H F, Hansen K, Thundat T, Datar R, Cote R, Hagan M F, Chakraborty A K, Majumdar A. Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA. 2001;98:1560–1564. doi: 10.1073/pnas.98.4.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Rodrigues I C, Bothner D, Steele G A. Coupling microwave photons to a mechanical resonator using quantum interference. Nat. Commun. 2019;10:5359. doi: 10.1038/s41467-019-12964-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Eichelsdoerfer D J, Liao X, Cabezas M D, Morris W, Radha B, Brown K A, Giam L R, Braunschweig A B, Mirkin C A. Large-area molecular patterning with polymer pen lithography. Nat. Protoc. 2013;8:2548–2560. doi: 10.1038/nprot.2013.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Yang T X, Duncan T V. Challenges and potential solutions for nanosensors intended for use with foods. Nat. Nanotechnol. 2021;16:251–265. doi: 10.1038/s41565-021-00867-7. [DOI] [PubMed] [Google Scholar]
  • [19].Kasas S, Ruggeri F S, Benadiba C, Maillard C, Stupar P, Tournu H, Dietler G, Longo G. Detecting nanoscale vibrations as signature of life. Proc. Natl. Acad. Sci. USA. 2015;112:378–381. doi: 10.1073/pnas.1415348112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Ying L S, Du L B, Zou R Y, Shi L, Zhang N, Jin J Y, Xu C Y, Zhang F R, Zhu C, Wu J Z, et al. Development of a serum miRNA panel for detection of early stage non-small cell lung cancer. Proc. Natl. Acad. Sci. USA. 2020;117:25036–25042. doi: 10.1073/pnas.2006212117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Souza P C T, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F, Patmanidis I, Abdizadeh H, Bruininks B M H, Wassenaar T A, et al. Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nat. Methods. 2021;18:382–388. doi: 10.1038/s41592-021-01098-3. [DOI] [PubMed] [Google Scholar]
  • [22].Tourancheau A, Mead E A, Zhang X S, Fang G. Discovering multiple types of DNA methylation from bacteria and microbiome using nanopore sequencing. Nat. Methods. 2021;18:491–498. doi: 10.1038/s41592-021-01109-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Janes K A, Albeck J G, Gaudet S, Sorger P K, Lauffenburger D A, Yaffe M B. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science. 2005;310:1646–1653. doi: 10.1126/science.1116598. [DOI] [PubMed] [Google Scholar]
  • [24].Kim K, Son M, Pak Y, Chee S S, Auxilia F M, Lee B K, Lee S, Kang S K, Lee C, Lee J S, et al. Erratum to: Charge transfer in graphene/polymer interfaces for CO2 detection. Nano Res. 2001;11:3957. doi: 10.1007/s12274-017-1904-9. [DOI] [Google Scholar]
  • [25].Wang S, Zhang L Q, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C Y, Teng I T, Shi M, et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano. 2017;11:3943–3949. doi: 10.1021/acsnano.7b00373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Wu S Q, Liu H, Liang X M, Wu X P, Wang B M, Zhang Q C. Highly sensitive nanomechanical immunosensor using half antibody fragments. Anal. Chem. 2014;86:4271–4277. doi: 10.1021/ac404065m. [DOI] [PubMed] [Google Scholar]
  • [27].Rao D P, Mei K N, Yan T H, Wang Y, Wu W J, Chen Y, Wang J Y, Zhang Q C, Wu S Q. Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. Nano Res. 2022;15:1003–1012. doi: 10.1007/s12274-021-3588-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Backmann N, Zahnd C, Huber F, Bietsch A, Pluckthun A, Lang H P, Guntherodt H J, Hegner M, Gerber C. A label-free immunosensor array using single-chain antibody fragments. Proc. Natl. Acad. Sci. USA. 2005;102:14587–14592. doi: 10.1073/pnas.0504917102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Liu J X, Yan L, He S L, Hu J Q. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. Nano Res. 2022;15:3504–3513. doi: 10.1007/s12274-021-3869-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Song P, Chen S X, Yan Y H, Pinto A, Cheng L Y, Dai P, Patel A A, Zhang D Y. Selective multiplexed enrichment for the detection and quantitation of low-fraction DNA variants via low-depth sequencing. Nat. Biomed. Eng. 2021;5:690–701. doi: 10.1038/s41551-021-00713-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Elledge S K, Zhou X X, Byrnes J R, Martinko A J, Lui I, Pance K, Lim S A, Glasgow J E, Glasgow A A, Turcios K, et al. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nat. Biotechnol. 2021;39:928–935. doi: 10.1038/s41587-021-00878-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Kurtz D M, Soo J, Keh L C T, Alig S, Chabon J J, Sworder B J, Schultz A, Jin M C, Scherer F, Garofalo A, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. 2021;39:1537–1547. doi: 10.1038/s41587-021-00981-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Zheng G F, Patolsky F, Cui Y, Wang W U, Lieber C M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005;23:1294–1301. doi: 10.1038/nbt1138. [DOI] [PubMed] [Google Scholar]
  • [34].Hui N, Wang J S, Wang D W, Wang P P, Luo X L, Lv S P. An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosens. Bioelectron. 2022;200:113921. doi: 10.1016/j.bios.2021.113921. [DOI] [PubMed] [Google Scholar]
  • [35].Park J, Park J S, Huang C H, Jo A, Cook K, Wang R, Lin H Y, Van Deun J, Li H Y, Min J, et al. An integrated magneto-electrochemical device for the rapid profiling of tumour extracellular vesicles from blood plasma. Nat. Biomed. Eng. 2021;5:678–689. doi: 10.1038/s41551-021-00752-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].De La Rica R, Stevens M M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012;7:821–824. doi: 10.1038/nnano.2012.186. [DOI] [PubMed] [Google Scholar]
  • [37].Ning B, Huang Z, Youngquist B M, Scott J W, Niu A, Bojanowski C M, Zwezdaryk K J, Saba N S, Fan J, Yin X M, et al. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. Nat. Nanotechnol. 2021;16:1039–1044. doi: 10.1038/s41565-021-00939-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Bull M S, Sullan R M A, Li H B, Perkins T T. Improved single molecule force spectroscopy using micromachined cantilevers. ACS Nano. 2014;8:4984–4995. doi: 10.1021/nn5010588. [DOI] [PubMed] [Google Scholar]
  • [39].Lim C, Huang J, Kim S, Lee H, Zeng H B, Hwang D S. Nanomechanics of poly(catecholamine) coatings in aqueous solutions. Angew. Chem., Int. Ed. 2016;55:3342–3346. doi: 10.1002/anie.201510319. [DOI] [PubMed] [Google Scholar]
  • [40].Hamaker H C. The London-van der Waals attraction between spherical particles. Physica. 1937;4:1058–1072. doi: 10.1016/S0031-8914(37)80203-7. [DOI] [Google Scholar]
  • [41].London F. The general theory of molecular forces. Trans. Faraday Soc. 1937;33:8. doi: 10.1039/tf937330008b. [DOI] [Google Scholar]
  • [42].Zhou J Q, Liang Y L, He X W, Chen L X, Zhang Y K. Dual-functionalized magnetic metal-organic framework for highly specific enrichment of phosphopeptides. ACS Sustainable Chem. Eng. 2017;5:11413–11421. doi: 10.1021/acssuschemeng.7b02521. [DOI] [Google Scholar]
  • [43].Liu Z, Lei S, Zou L N, Li G P, Xu L L, Ye B X. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens. Bioelectron. 2019;131:113–118. doi: 10.1016/j.bios.2019.02.020. [DOI] [PubMed] [Google Scholar]
  • [44].Yang K, Hu Y J, Dong N, Zhu G C, Zhu T F, Jiang N J. A novel SERS-based magnetic aptasensor for prostate specific antigen assay with high sensitivity. Biosens. Bioelectron. 2017;94:286–291. doi: 10.1016/j.bios.2017.02.048. [DOI] [PubMed] [Google Scholar]
  • [45].Lim B, Reddy V, Hu X H, Kim K W, Jadhav M, Abedini-Nassab R, Noh Y W, Lim Y T, Yellen B B, Kim C G. Magnetophoretic circuits for digital control of single particles and cells. Nat. Commun. 2014;5:3846. doi: 10.1038/ncomms4846. [DOI] [PubMed] [Google Scholar]
  • [46].Hamaker H C, London-V D. Waals forces in colloidal systems. Recl. Trav. Chim. Pays-Bas. 1938;57:61–72. doi: 10.1002/recl.19380570107. [DOI] [Google Scholar]
  • [47].Li C, Chen X J, Zhang Z, Tang J L, Zhang B L. Gold nanoparticle-DNA conjugates enhanced determination of dopamine by aptamer-based microcantilever array sensor. Sens. Actuators B: Chem. 2018;275:25–30. doi: 10.1016/j.snb.2018.08.024. [DOI] [Google Scholar]
  • [48].Shu W M, Laurenson S, Knowles T P J, Ferrigno P K, Seshia A A. Highly specific label-free protein detection from lysed cells using internally referenced microcantilever sensors. Biosens. Bioelectron. 2008;24:233–237. doi: 10.1016/j.bios.2008.03.036. [DOI] [PubMed] [Google Scholar]
  • [49].Zhou M H, Meng W L, Zhang C Y, Li X B, Wu J Z, Zhang N H. The pH-dependent elastic properties of nanoscale DNA films and the resultant bending signals for microcantilever biosensors. Soft Matter. 2018;14:3028–3039. doi: 10.1039/C7SM01883E. [DOI] [PubMed] [Google Scholar]
  • [50].Rodriguez M L, McGarry P J, Sniadecki N J. Review on cell mechanics: Experimental and modeling approaches. Appl. Mech. Rev. 2013;65:060801. doi: 10.1115/1.4025355. [DOI] [Google Scholar]
  • [51].Zhang N H, Meng W L, Tan Z Q. A multi-scale model for the analysis of the inhomogeneity of elastic properties of DNA biofilm on microcantilevers. Biomaterials. 2013;34:1833–1842. doi: 10.1016/j.biomaterials.2012.11.023. [DOI] [PubMed] [Google Scholar]
  • [52].Zhang N H, Tan Z Q, Li J J, Meng W L, Xu L W. Interactions of single-stranded DNA on microcantilevers. Curr. Opin. Colloid Interface Sci. 2011;16:592–596. doi: 10.1016/j.cocis.2011.04.013. [DOI] [Google Scholar]
  • [53].Weizmann Y, Patolsky F, Katz E, Willner I. Amplified DNA sensing and immunosensing by the rotation of functional magnetic particles. J. Am. Chem. Soc. 2003;125:3452–3454. doi: 10.1021/ja028850x. [DOI] [PubMed] [Google Scholar]
  • [54].Weizmann Y, Patolsky F, Lioubashevski O, Willner I. Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells. J. Am. Chem. Soc. 2004;126:1073–1080. doi: 10.1021/ja038257v. [DOI] [PubMed] [Google Scholar]
  • [55].Ma L Y, Wang C M, Zhang M H. Detecting protein adsorption and binding using magnetic nanoparticle probes. Sens. Actuators B: Chem. 2011;160:650–655. doi: 10.1016/j.snb.2011.08.043. [DOI] [Google Scholar]
  • [56].Blasberg J D, Pass H I, Goparaju C M, Flores R M, Lee S, Donington J S. Reduction of elevated plasma osteopontin levels with resection of non-small-cell lung cancer. J. Clin. Oncol. 2010;28:936–941. doi: 10.1200/JCO.2009.25.5711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12274_2022_5049_MOESM1_ESM.pdf (2.1MB, pdf)

Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever


Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES