Abstract
A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.

Keywords: drug delivery, polymer, bioresponsive, immunotherapy, cancer therapy
Acknowledgements
The authors would like to acknowledge the support from the National Key R&D Program of China (No. 2021YFA0909900), the National Natural Science Foundation of China (No. 52173142), Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents, and the grants from the Startup Package of Zhejiang University.
Footnotes
Tu Hong, Xinyuan Shen, and Madiha Zahra Syeda contributed equally to this work.
Contributor Information
Hongjun Li, Email: hongjun@zju.edu.cn.
Zhen Gu, Email: guzhen@zju.edu.cn.
Longguang Tang, Email: tanglongguang@zju.edu.cn.
References
- [1].DeBerardinis R J, Lum J J, Hatzivassiliou G, Thompson C B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20. doi: 10.1016/j.cmet.2007.10.002. [DOI] [PubMed] [Google Scholar]
- [2].Ganesh K, Massague J. Targeting metastatic cancer. Nat. Med. 2021;27:34–44. doi: 10.1038/s41591-020-01195-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [3].Janiszewska M. The microcosmos of intratumor heterogeneity: The space-time of cancer evolution. Oncogene. 2020;39:2031–2039. doi: 10.1038/s41388-019-1127-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Marusyk A, Polyak K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta Rev. Cancer. 2010;1805:105–117. doi: 10.1016/j.bbcan.2009.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].Siegel R L, Miller K D, Fuchs H E, Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022;72:7–33. doi: 10.3322/caac.21708. [DOI] [PubMed] [Google Scholar]
- [6].Li C, Wang J C, Wang Y G, Gao H L, Wei G, Huang Y Z, Yu H J, Gan Y, Wang Y J, Mei L, et al. Recent progress in drug delivery. Acta Pharm. Sin. B. 2019;9:1145–1162. doi: 10.1016/j.apsb.2019.08.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Sun T M, Zhang Y S, Pang B, Hyun D C, Yang M X, Xia Y A. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014;53:12320–12364. doi: 10.1002/anie.201403036. [DOI] [PubMed] [Google Scholar]
- [8].Lin A, Giuliano C J, Palladino A, John K M, Abramowicz C, Yuan M L, Sausville E L, Lukow D A, Liu L W, Chait A R, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019;11:eaaw8412. doi: 10.1126/scitranslmed.aaw8412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Longley D B, Johnston P G. Molecular mechanisms of drug resistance. J. Pathol. 2005;205:275–292. doi: 10.1002/path.1706. [DOI] [PubMed] [Google Scholar]
- [10].O’Sullivan D, Sanin D E, Pearce E J, Pearce E L. Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 2019;19:324–335. doi: 10.1038/s41577-019-0140-9. [DOI] [PubMed] [Google Scholar]
- [11].Van Der Jeught K, Xu H C, Li Y J, Lu X B, Ji G. Drug resistance and new therapies in colorectal cancer. World J. Gastroenterol. 2018;24:3834–3848. doi: 10.3748/wjg.v24.i34.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Liang J J, Wang H F, Ding W X, Huang J X, Zhou X F, Wang H Y, Dong X, Li G Y, Chen E G, Zhou F, et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Sci. Adv. 2020;6:eabc3646. doi: 10.1126/sciadv.abc3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Navya P N, Kaphle A, Srinivas S P, Bhargava S K, Rotello V M, Daima H K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6:23. doi: 10.1186/s40580-019-0193-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br. J. Cancer. 2007;96:1315–1319. doi: 10.1038/sj.bjc.6603707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Misra R, Acharya S, Sahoo S K. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discov. Today. 2010;15:842–850. doi: 10.1016/j.drudis.2010.08.006. [DOI] [PubMed] [Google Scholar]
- [16].Zhang Y, Li M Y, Gao X M, Chen Y H, Liu T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019;12:137. doi: 10.1186/s13045-019-0833-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Zhu C J, Ji Z H, Ma J K, Ding Z J, Shen J, Wang Q W. Recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems for cancer treatment. Pharmaceutics. 2021;13:940. doi: 10.3390/pharmaceutics13070940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [18].Zhu C J, Ma J, Ji Z, Shen J, Wang Q. Recent advances of cell membrane coated nanoparticles in treating cardiovascular disorders. Molecules. 2021;26:3428. doi: 10.3390/molecules26113428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Wang, Z. Q.; Cui, K.; Costabel, U.; Zhang, X. J. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. Exploration, in press, 10.1002/EXP.20210082. [DOI] [PMC free article] [PubMed]
- [20].An X N, Zhu A J, Luo H H, Ke H T, Chen H B, Zhao Y L. Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano. 2016;10:5947–5958. doi: 10.1021/acsnano.6b01296. [DOI] [PubMed] [Google Scholar]
- [21].Rao N V, Ko H, Lee J, Park J H. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front. Bioeng. Biotechnol. 2018;6:110. doi: 10.3389/fbioe.2018.00110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Syeda M Z, Hong T, Zhang M, Han Y F, Zhu X L, Ying S M, Tang L G. A prodrug nanoplatform via esterification of STING agonist and IDO inhibitor for synergistic cancer immunotherapy. Nano Res. 2022;10:9215–9222. doi: 10.1007/s12274-022-4598-6. [DOI] [Google Scholar]
- [23].Crucho C I C. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem. 2015;10:24–38. doi: 10.1002/cmdc.201402290. [DOI] [PubMed] [Google Scholar]
- [24].Kaur S, Prasad C, Balakrishnan B, Banerjee R. Trigger responsive polymeric nanocarriers for cancer therapy. Biomater. Sci. 2015;3:955–987. doi: 10.1039/C5BM00002E. [DOI] [PubMed] [Google Scholar]
- [25].Wagner A M, Spencer D S, Peppas N A. Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci. 2018;135:46154. doi: 10.1002/app.46154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Zhao Y, Zhang Z Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration. 2021;1:20210089. doi: 10.1002/EXP.20210089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Fleige E, Quadir M A, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012;64:866–884. doi: 10.1016/j.addr.2012.01.020. [DOI] [PubMed] [Google Scholar]
- [28].Ge Z S, Liu S Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013;42:7289–7325. doi: 10.1039/c3cs60048c. [DOI] [PubMed] [Google Scholar]
- [29].Yu B, Song N, Hu H, Chen G H, Shen Y Q, Cong H L. A degradable triple temperature-, pH-, and redox-responsive drug system for cancer chemotherapy. J. Biomed. Mater. Res. A. 2018;106:3203–3210. doi: 10.1002/jbm.a.36515. [DOI] [PubMed] [Google Scholar]
- [30].Zheng X L, Pan D Y, Zhu G N, Zhang L, Bhamra A, Chen R J, Zhang H, Gong Q Y, Gu Z W, Luo K. A dendritic polymer-based nanosystem mediates drug penetration and irreversible endoplasmic reticulum stresses in tumor via neighboring effect. Adv. Mater. 2022;34:2201200. doi: 10.1002/adma.202201200. [DOI] [PubMed] [Google Scholar]
- [31].Engin K, Leeper D B, Cater J R, Thistlethwaite A J, Tupchong L, McFarlane J D. Extracellular pH distribution in human tumours. Int. J. Hyperthermia. 1995;11:211–216. doi: 10.3109/02656739509022457. [DOI] [PubMed] [Google Scholar]
- [32].Volk T, Jähde E, Fortmeyer H P, Glüsenkamp K H, Rajewsky M F. pH in human tumour xenografts: Effect of intravenous administration of glucose. Br. J. Cancer. 1993;68:492–500. doi: 10.1038/bjc.1993.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [33].Zhang X M, Lin Y X, Gillies R J. Tumor pH and its measurement. J. Nucl. Med. 2010;51:1167–1170. doi: 10.2967/jnumed.109.068981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [34].Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020;157:142–160. doi: 10.1016/j.addr.2020.06.005. [DOI] [PubMed] [Google Scholar]
- [35].Tan R Y H, Lee C S, Pichika M R, Cheng S F, Lam K Y. PH responsive polyurethane for the advancement of biomedical and drug delivery. Polymers (Basel) 2022;14:1672. doi: 10.3390/polym14091672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [36].Su J H, Sun H P, Meng Q S, Yin Q, Tang S, Zhang P C, Chen Y, Zhang Z W, Yu H J, Li Y P. Long circulation red-blood-cell-mimetic nanoparticles with peptide-enhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016;26:1243–1252. doi: 10.1002/adfm.201504780. [DOI] [Google Scholar]
- [37].Perrault S D, Walkey C, Jennings T, Fischer H C, Chan W C W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909–1915. doi: 10.1021/nl900031y. [DOI] [PubMed] [Google Scholar]
- [38].Wang J Q, Mao W W, Lock L L, Tang J B, Sui M, Sun W L, Cui H G, Xu D, Shen Y Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano. 2015;9:7195–7206. doi: 10.1021/acsnano.5b02017. [DOI] [PubMed] [Google Scholar]
- [39].Waite C L, Roth C M. Nanoscale Drug Delivery Systems for Enhanced Drug Penetration into Solid Tumors: Current Progress and Opportunities. Crit. Rev. Biomed. Eng. 2012;40:21–41. doi: 10.1615/CritRevBiomedEng.v40.i1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Jain R K, Stylianopoulos T. Delivering Nanomedicine to Solid Tumors. Nat. Rev. Clin. Oncol. 2010;7:653–664. doi: 10.1038/nrclinonc.2010.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Huang K Y, Ma H L, Liu J, Huo S D, Kumar A, Wei T, Zhang X, Jin S B, Gan Y L, Wang P C, et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6:4483–4493. doi: 10.1021/nn301282m. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Dreher M R, Liu W G, Michelich C R, Dewhirst M W, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006;98:335–344. doi: 10.1093/jnci/djj070. [DOI] [PubMed] [Google Scholar]
- [43].Choi H S, Liu W H, Misra P, Tanaka E, Zimmer J P, Itty Ipe B, Bawendi M G, Frangioni J V. Renal clearance of quantum dots. Nat. Biotechnol. 2007;25:1165–1170. doi: 10.1038/nbt1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [44].Li H J, Du J Z, Liu J, Du X J, Shen S, Zhu Y H, Wang X Y, Ye X D, Nie S M, Wang J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano. 2016;10:6753–6761. doi: 10.1021/acsnano.6b02326. [DOI] [PubMed] [Google Scholar]
- [45].Boedtkjer E, Pedersen S F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 2020;82:103–126. doi: 10.1146/annurev-physiol-021119-034627. [DOI] [PubMed] [Google Scholar]
- [46].Liu M D, Huang L Q, Zhang W N, Wang X C, Geng Y Y, Zhang Y H, Wang L, Zhang W B, Zhang Y J, Xiao S Y, et al. A transistor-like pH-sensitive nanodetergent for selective cancer therapy. Nat. Nanotechnol. 2022;17:541–551. doi: 10.1038/s41565-022-01085-5. [DOI] [PubMed] [Google Scholar]
- [47].Elsabahy M, Wooley K L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012;41:2545–2561. doi: 10.1039/c2cs15327k. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [48].Behzadi S, Serpooshan V, Tao W, Hamaly M A, Alkawareek M Y, Dreaden E C, Brown D, Alkilany A M, Farokhzad O C, Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [49].Guo S, Li K, Hu B, Li C H, Zhang M J, Hussain A, Wang X X, Cheng Q, Yang F, Ge K, et al. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration. 2021;1:35–49. doi: 10.1002/EXP.20210008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [50].Ling X, Han W B, Jiang X M, Chen X, Rodriguez M, Zhu P P, Wu T, Lin W B. Point-source burst of coordination polymer nanoparticles for tri-modality cancer therapy. Biomaterials. 2021;270:120690. doi: 10.1016/j.biomaterials.2021.120690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Woo S R, Fuertes M B, Corrales L, Spranger S, Furdyna M J, Leung M Y K, Duggan R, Wang Y, Barber G N, Fitzgerald K, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–842. doi: 10.1016/j.immuni.2014.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [52].Deng L F, Liang H, Xu M, Yang X M, Burnette B, Arina A, Li X D, Mauceri H, Beckett M, Darga T, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–852. doi: 10.1016/j.immuni.2014.10.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [53].Gao P, Ascano M, Wu Y, Barchet W, Gaffney B L, Zillinger T, Serganov A A, Liu Y Z, Jones R A, Hartmann G, Tuschl T, Patel D J. Cyclic [G(2′, 5′)pA(3′, 5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–1107. doi: 10.1016/j.cell.2013.04.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner K P, Ludwig J, Hornung V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498:380–384. doi: 10.1038/nature12306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [55].Zhang X, Shi H P, Wu J X, Zhang X W, Sun L J, Chen C, Chen Z J. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell. 2013;51:226–235. doi: 10.1016/j.molcel.2013.05.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [56].Corrales L, McWhirter S M, Dubensky T W, Jr, Gajewski T F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 2016;126:2404–2411. doi: 10.1172/JCI86892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [57].Koshy S T, Cheung A S, Gu L, Graveline A R, Mooney D J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosyst. 2017;1:1600013. doi: 10.1002/adbi.201600013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [58].Shae D, Becker K W, Christov P, Yun D S, Lytton-Jean A K R, Sevimli S, Ascano M, Kelley M, Johnson D B, Balko J M, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019;14:269–278. doi: 10.1038/s41565-018-0342-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [59].Shae D, Baljon J J, Wehbe M, Christov P P, Becker K W, Kumar A, Suryadevara N, Carson C S, Palmer C R, Knight F C, et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines. ACS Nano. 2020;14:9904–9916. doi: 10.1021/acsnano.0c02765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [60].Hsu P H, Almutairi A. Recent progress of redox-responsive polymeric nanomaterials for controlled release. J. Mater. Chem. B. 2021;9:2179–2188. doi: 10.1039/D0TB02190C. [DOI] [PubMed] [Google Scholar]
- [61].Bansal A, Simon M C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018;217:2291–2298. doi: 10.1083/jcb.201804161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Liou G Y, Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Gou J X, Liang Y H, Miao L L, Guo W, Chao Y H, He H B, Zhang Y, Yang J Y, Wu C F, Yin T, et al. Improved tumor tissue penetration and tumor cell uptake achieved by delayed charge reversal nanoparticles. Acta Biomater. 2017;62:157–166. doi: 10.1016/j.actbio.2017.08.025. [DOI] [PubMed] [Google Scholar]
- [64].Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015;33:941–951. doi: 10.1038/nbt.3330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [65].Jia X B, He J P, Shen L Y, Chen J Z, Wei Z Y, Qin X, Niu D C, Li Y S, Shi J L. Gradient redox-responsive and two-stage rocket-mimetic drug delivery system for improved tumor accumulation and safe chemotherapy. Nano Lett. 2019;19:8690–8700. doi: 10.1021/acs.nanolett.9b03340. [DOI] [PubMed] [Google Scholar]
- [66].Benjaminsen R V, Mattebjerg M A, Henriksen J R, Moghimi S M, Andresen T L. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther. 2013;24:149–157. doi: 10.1038/mt.2012.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Vermeulen L M P, Brans T, Samal S K, Dubruel P, Demeester J, De Smedt S C, Remaut K, Braeckmans K. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano. 2018;12:2332–2345. doi: 10.1021/acsnano.7b07583. [DOI] [PubMed] [Google Scholar]
- [68].Cai K M, He X, Song Z Y, Yin Q, Zhang Y F, Uckun F M, Jiang C, Cheng J J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015;137:3458–3461. doi: 10.1021/ja513034e. [DOI] [PubMed] [Google Scholar]
- [69].Liu X H, Li Y H, Wang K Y, Chen Y Y, Shi M W, Zhang X, Pan W, Li N, Tang B. GSH-responsive nanoprodrug to inhibit glycolysis and alleviate immunosuppression for cancer therapy. Nano Lett. 2021;21:7862–7869. doi: 10.1021/acs.nanolett.1c03089. [DOI] [PubMed] [Google Scholar]
- [70].Golding J P, Wardhaugh T, Patrick L, Turner M, Phillips J B, Bruce J I, Kimani S G. Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br. J. Cancer. 2013;109:976–982. doi: 10.1038/bjc.2013.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Klebanoff C A, Finkelstein S E, Surman D R, Lichtman M K, Gattinoni L, Theoret M R, Grewal N, Spiess P J, Antony P A, Palmer D C, et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A. 2004;101:1969–1974. doi: 10.1073/pnas.0307298101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [72].Wallace A, Kapoor V, Sun J, Mrass P, Weninger W, Heitjan D F, June C, Kaiser L R, Ling L E, Albelda S M. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res. 2008;14:3966–3974. doi: 10.1158/1078-0432.CCR-08-0356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [73].Conlon K C, Lugli E, Welles H C, Rosenberg S A, Fojo A T, Morris J C, Fleisher T A, Dubois S P, Perera L P, Stewart D M, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 2015;33:74–82. doi: 10.1200/JCO.2014.57.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [74].Huang B, Abraham W D, Zheng Y R, Bustamante Lopez S C, Luo S S, Irvine D J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015;7:291. doi: 10.1126/scitranslmed.aaa5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Stephan M T, Moon J J, Um S H, Bershteyn A, Irvine D J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 2010;16:1035–1041. doi: 10.1038/nm.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [76].Tang L, Zheng Y R, Melo M B, Mabardi L, Castaño A P, Xie Y Q, Li N, Kudchodkar S B, Wong H C, Jeng E K, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 2018;36:707–716. doi: 10.1038/nbt.4181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [77].de Gracia Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A. Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide. J. Am. Chem. Soc. 2012;134:15758–15764. doi: 10.1021/ja303372u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Shim M S, Xia Y A. A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew. Chem., Int. Ed. 2013;52:6926–6929. doi: 10.1002/anie.201209633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [79].Wilson D S, Dalmasso G, Wang L X, Sitaraman S V, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 2010;9:923–928. doi: 10.1038/nmat2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [80].Yuan Y Y, Liu J, Liu B. Conjugated-polyelectrolyte-based polyprodrug: Targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew. Chem., Int. Ed. 2014;53:7163–7168. doi: 10.1002/anie.201402189. [DOI] [PubMed] [Google Scholar]
- [81].Wang Y C, Shim M S, Levinson N S, Sung H W, Xia Y N. Stimuli-responsive materials for controlled release of theranostic agents. Adv. Funct. Mater. 2014;24:4206–4220. doi: 10.1002/adfm.201400279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [82].Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol. 2008;18:165–173. doi: 10.1016/j.tcb.2008.01.006. [DOI] [PubMed] [Google Scholar]
- [83].Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Deliv. Rev. 2009;61:1250–1275. doi: 10.1016/j.addr.2009.05.010. [DOI] [PubMed] [Google Scholar]
- [84].Jeena M T, Palanikumar L, Go E M, Kim I, Kang M G, Lee S, Park S, Choi H, Kim C, Jin S M, et al. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 2017;8:26. doi: 10.1038/s41467-017-00047-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [85].Zhang W J, Hu X L, Shen Q, Xing D. Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy. Nat. Commun. 2019;10:1704. doi: 10.1038/s41467-019-09566-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [86].Shibasaki H, Kinoh H, Cabral H, Quader S, Mochida Y, Liu X Y, Toh K, Miyano K, Matsumoto Y, Yamasoba T, et al. Efficacy of pH-sensitive nanomedicines in tumors with different c-MYC expression depends on the intratumoral activation profile. ACS Nano. 2021;15:5545–5559. doi: 10.1021/acsnano.1c00364. [DOI] [PubMed] [Google Scholar]
- [87].Wang M, Sun S, Neufeld C I, Perez-Ramirez B, Xu Q B. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew. Chem., Int. Ed. 2014;53:13444–13448. doi: 10.1002/anie.201407234. [DOI] [PubMed] [Google Scholar]
- [88].Zhou Z J, Song J B, Nie L M, Chen X Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016;45:6597–6626. doi: 10.1039/C6CS00271D. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [89].Xu X D, Saw P E, Tao W, Li Y J, Ji X Y, Bhasin S, Liu Y L, Ayyash D, Rasmussen J, Huo M, et al. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater. 2017;29:1700141. doi: 10.1002/adma.201700141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [90].Grek C L, Tew K D. Redox metabolism and malignancy. Curr. Opin. Pharmacol. 2010;10:362–368. doi: 10.1016/j.coph.2010.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [91].Luo C, Sun J, Liu D, Sun B J, Miao L, Musetti S, Li J, Han X P, Du Y Q, Li L, et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016;16:5401–5408. doi: 10.1021/acs.nanolett.6b01632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [92].He H N, Sun L, Ye J X, Liu E G, Chen S H, Liang Q L, Shin M C, Yang V C. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J. Control. Release. 2016;240:67–76. doi: 10.1016/j.jconrel.2015.10.040. [DOI] [PubMed] [Google Scholar]
- [93].Cabral-Pacheco G A, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna J M, Perez-Romero B A, Guerrero-Rodriguez J F, Martinez-Avila N, Martinez-Fierro M L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020;21:9739. doi: 10.3390/ijms21249739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [94].Dong H N, Pang L, Cong H L, Shen Y Q, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug. Deliv. 2019;26:416–432. doi: 10.1080/10717544.2019.1588424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [95].Meighan S E, Meighan P C, Choudhury P, Davis C J, Olson M L, Zornes P A, Wright J W, Harding J W. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J. Neurochem. 2006;96:1227–1241. doi: 10.1111/j.1471-4159.2005.03565.x. [DOI] [PubMed] [Google Scholar]
- [96].Callmann C E, Barback C V, Thompson M P, Hall D J, Mattrey R F, Gianneschi N C. Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv. Mater. 2015;27:4611–4615. doi: 10.1002/adma.201501803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [97].Han M, Huang-Fu M Y, Guo W W, Guo N N, Chen J J, Liu H N, Xie Z Q, Lin M T, Wei Q C, Gao J Q. MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl. Mater. Interfaces. 2017;9:42459–42470. doi: 10.1021/acsami.7b10098. [DOI] [PubMed] [Google Scholar]
- [98].Gordon M R, Zhao B, Anson F, Fernandez A, Singh K, Homyak C, Canakci M, Vachet R W, Thayumanavan S. Matrix metalloproteinase-9-responsive nanogels for proximal surface conversion and activated cellular uptake. Biomacromolecules. 2018;19:860–871. doi: 10.1021/acs.biomac.7b01659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [99].Qiu N S, Liu X R, Zhong Y, Zhou Z X, Piao Y, Miao L, Zhang Q Z, Tang J B, Huang L, Shen Y Q. Esterase-activated charge-reversal polymer for fibroblast-exempt cancer gene therapy. Adv. Mater. 2016;28:10613–10622. doi: 10.1002/adma.201603095. [DOI] [PubMed] [Google Scholar]
- [100].Saw P E, Yao H R, Lin C H, Tao W, Farokhzad O C, Xu X D. Stimuli-responsive polymer-prodrug hybrid nanoplatform for multistage siRNA delivery and combination cancer therapy. Nano Lett. 2019;19:5967–5974. doi: 10.1021/acs.nanolett.9b01660. [DOI] [PubMed] [Google Scholar]
- [101].Sui B L, Cheng C, Shi S S, Wang M M, Xu P S. Esterase-activatable and glutathione-responsive triptolide nano-prodrug for the eradication of pancreatic cancer. Adv. Nanobiomed Res. 2021;1:2100040. doi: 10.1002/anbr.202100040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [102].Whitfield J B. Gamma glutamyl transferase. Crit. Rev. Clin. Lab. Sci. 2001;38:263–355. doi: 10.1080/20014091084227. [DOI] [PubMed] [Google Scholar]
- [103].Brennan P N, Dillon J F, Tapper E B. Gamma-glutamyl transferase (γ-GT)-an old dog with new tricks? Liver Int. 2022;42:9–15. doi: 10.1111/liv.15099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [104].Zhou Q, Shao S Q, Wang J Q, Xu C H, Xiang J J, Piao Y, Zhou Z X, Yu Q S, Tang J B, Liu X R, et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019;14:799–809. doi: 10.1038/s41565-019-0485-z. [DOI] [PubMed] [Google Scholar]
- [105].Syvänen S, Edén D, Sehlin D. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab′)2 fragment. Biochem. Biophys. Res. Commun. 2017;493:120–125. doi: 10.1016/j.bbrc.2017.09.065. [DOI] [PubMed] [Google Scholar]
- [106].Wang G W, Zhou Z X, Zhao Z H, Li Q Y, Wu Y L, Yan S, Shen Y Q, Huang P T. Enzyme-triggered transcytosis of dendrimer-drug conjugate for deep penetration into pancreatic tumors. ACS Nano. 2020;14:4890–4904. doi: 10.1021/acsnano.0c00974. [DOI] [PubMed] [Google Scholar]
- [107].Mu J, Lin J, Huang P, Chen X Y. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem. Soc. Rev. 2018;47:5554–5573. doi: 10.1039/C7CS00663B. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [108].Hoffman A S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 2013;65:10–16. doi: 10.1016/j.addr.2012.11.004. [DOI] [PubMed] [Google Scholar]
- [109].Webber M J, Appel E A, Meijer E W, Langer R. Supramolecular biomaterials. Nat. Mater. 2016;15:13–26. doi: 10.1038/nmat4474. [DOI] [PubMed] [Google Scholar]
- [110].Tao Z, Zhu H, Zhang J T, Huang Z M, Xiang Z, Hong T. Recent advances of eosinophils and its correlated diseases. Front. Public Health. 2022;10:954721. doi: 10.3389/fpubh.2022.954721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Lu Y, Aimetti A A, Langer R, Gu Z. Bioresponsive materials. Nat. Rev. Mater. 2016;2:16075. doi: 10.1038/natrevmats.2016.75. [DOI] [Google Scholar]
- [112].Lao Y H, Phua K K L, Leong K W. Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation. ACS Nano. 2015;9:2235–2254. doi: 10.1021/nn507494p. [DOI] [PubMed] [Google Scholar]
- [113].Naito M, Ishii T, Matsumoto A, Miyata K, Miyahara Y, Kataoka K. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem., Int. Ed. 2012;51:10751–10755. doi: 10.1002/anie.201203360. [DOI] [PubMed] [Google Scholar]
- [114].Biswas S, Kinbara K, Niwa T, Taguchi H, Ishii N, Watanabe S, Miyata K, Kataoka K, Aida T. Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP. Nat. Chem. 2013;5:613–620. doi: 10.1038/nchem.1681. [DOI] [PubMed] [Google Scholar]
- [115].Mo R, Jiang T Y, DiSanto R, Tai W Y, Gu Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014;5:3364. doi: 10.1038/ncomms4364. [DOI] [PubMed] [Google Scholar]
- [116].Wu C C, Chen T, Han D, You M X, Peng L, Cansiz S, Zhu G Z, Li C M, Xiong X L, Jimenez E, et al. Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS Nano. 2013;7:5724–5731. doi: 10.1021/nn402517v. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [117].Qian C G, Chen Y L, Zhu S, Yu J C, Zhang L, Feng P J, Tang X, Hu Q Y, Sun W J, Lu Y, et al. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics. 2016;6:1053–1064. doi: 10.7150/thno.14843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [118].Deng J, Walther A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 2020;32:2002629. doi: 10.1002/adma.202002629. [DOI] [PubMed] [Google Scholar]
- [119].Chen B L, Yan Y, Yang Y, Cao G, Wang X, Wang Y Q, Wan F J, Yin Q Q, Wang Z H, Li Y F, et al. A pyroptosis nanotuner for cancer therapy. Nat. Nanotechnol. 2022;17:788–798. doi: 10.1038/s41565-022-01125-0. [DOI] [PubMed] [Google Scholar]
- [120].Tang L G, Wang Z T, Mu Q C, Yu Z Q, Jacobson O, Li L, Yang W J, Huang C M, Kang F, Fan W P, et al. Targeting neutrophils for enhanced cancer theranostics. Adv. Mater. 2020;32:2002739. doi: 10.1002/adma.202002739. [DOI] [PubMed] [Google Scholar]
