Skip to main content
Computational and Structural Biotechnology Journal logoLink to Computational and Structural Biotechnology Journal
. 2022 Nov 10;20:6214–6236. doi: 10.1016/j.csbj.2022.11.013

Prospective bacterial and fungal sources of hyaluronic acid: A review

EV Shikina a,b, RA Kovalevsky a, AI Shirkovskaya a, PhV Toukach a,c,
PMCID: PMC9676211  PMID: 36420162

Graphical abstract

graphic file with name ga1.jpg

Abbreviations: amyE, α-amylase (B. subtilis); aprE, subtilisin E (B. subtilis); araR, repressor of arabinose operons; ATP, adenosine triphosphate; cat, acetyl-CoA:CoA transferase; CSDB, Carbohydrate Structure Database; dcas9, dead Cas9 (derived from S. pyogenes); DO, dissolved oxygen; eglS, endoglucanase (B. subtilis); epr, minor extracellular protease (B. subtilis); FDA, Food and Drug administration; GAG, glycosaminoglycan; galR, HTH-type transcriptional regulator GalR (E. coli); galS, HTH-type transcriptional regulator GalS (E. coli); galU, UTP-glucose-1-phosphate uridylyltransferase; Glc, glucose; GlcpA, glucuronic acid; GlcpNAc, N-acetylglucosamine; glmM, phosphoglucosamine mutase; glmS, l-glutamine-d-fructose-6-phosphate aminotransferase; glmU, bifunctional UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase (Corynebacterium glutamicum); GRAS, generally recognized as safe; HA, hyaluronic acid; HAS, hyaluronic acid synthase; HW HA, high-molecular weight hyaluronic acid; HYBID, hyaluronan-binding protein involved in HA depolymerization; kfiD, UDP-glucose 6-dehydrogenase; lacA (ganA), β-galactosidase (B. subtilis); ldh, lactate dehydrogenase; LW HA, low-molecular weight hyaluronic acid; mazF, endoribonuclease (E. coli); MMP-2, matrix metalloproteinase 2; mpr, extracellular metalloprotease (B. subtilis); MurNAc, N-acetylmuramic acid; MW, molecular weight; ND, no data; nprB, neutral protease B (B. subtilis); nprE, bacillolysin (B. subtilis); pfkA, ATP-dependent 6-phosphofructokinase (E. coli); pgcA, phosphoglucomutase; poxB, pyruvate:quinone oxidoreductase; pta-ackA operon, phosphate acetyltransferase and acetate kinase; RHAMM, receptor for hyaluronic acid mediated motility; sigF, RNA polymerase sigma-F factor (B. subtilis); SNFG, symbol nomenclature for glycans; thrC, threonine synthase (B. subtilis); tuaD, UDP-glucose 6-dehydrogenase (1); udgA, UDP-glucose 6-dehydrogenase (2); UDP, uridine 5′-trihydrogen diphosphate; UMP, 5′-uridylic acid; upp, uracil phosphoribosyltransferase (B. subtilis); UTP, uridine-5′-triphosphate; vHMW HA, very-high-molecular weight hyaluronic acid; wprA, cell wall associated protease (B. subtilis); xylR, xylose operon repressor (B. megaterium); zwf, glucose-6-phosphate 1-dehydrogenase

Keywords: Gram-positive bacteria, Hyaluronic acid, Microbial fermentation, Recombinant organism

Abstract

The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.

1. Introduction

Glycosaminoglycans (GAGs), also referred to as mucopolysaccharides, are a class of biomolecules consisting of linear negatively-charged polysaccharides composed of repeating disaccharide units. GAGs are involved in various biological processes, such as cell signaling [1] and extracellular matrix assembly. Due to their unique biological properties, there has been a burgeoning interest in glycosaminoglycans for medical use as coating materials for anti-inflammatory agents [2], [3] and anticoagulants [4], [5]. A review about the development of GAG applications in medicine and pharmacy has been published recently [6].

GAGs are divided into two types - sulphated and non-sulphated polysaccharides. Sulfated GAGs include heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate and keratan sulfate [7]. Hyaluronic acid (HA) or hyaluronan is the only reported non-sulfated natural glycosaminoglycan [8], [9]. HA (Fig. 1(A)) is a biodegradable linear unbranched polyanionic heteropolymer consisting of covalently linked interleaving residues of N-acetyl-d-glucosamine and d-glucuronic acid ( →4)β-d-GlcpA(1→3)β-d-GlcpNAc(1→ ). It was predicted theoretically and subsequently confirmed experimentally that HA properties depend on the polymer molecular weight [10], [11].

Fig. 1.

Fig. 1

(A) Fragment of the HA primary structure. Linear chains of HA range from n = 20 to n = 15,000 repeats [21]; (B) two repeating units of HA structure in SNFG [22] format; (C) 3D model of a fragment of the HA secondary twofold twisted helix built of repeating disaccharide units (the model was generated from a PDB file provided in [19]).

Extraction from animal sources has been considered a traditional method for obtaining hyaluronic acid for years, however it is not associated with large scale production anymore [12]. Currently, the most common industrial production process employed to obtain HA is streptococcal fermentation [13]. Fortunately, the risk of contamination of HA with endotoxins in both approaches is much lower than the one allowed by modern high requirements for biological safety in medical and cosmetic applications. Recombinant organisms that have been granted the Generally recognized as safe (GRAS) status from the Food and Drug Administration (FDA) of the USA have become prospective alternative sources of hyaluronic acid. The rising interest in recombinant producers can be seen in the increasing number of research articles over the last years [14], [15], [16].

This paper reviews the characteristics, biological activity and biosynthesis of HA from various origins. The use of fungal and microbial sources for the production of HA is summarized.

2. HA structure

As a biopolymer, HA retains the tendency to fold into highly organized structures. The primary structure of HA is presented in Fig. 1(A). The ability to adopt a secondary structure depends on the molecular weight of the polymer. The secondary structure is a tape-like twofold helix formed by twisting of repeating disaccharide units through 180° (Fig. 1(B)) and facilitated by five hydrogen bonds [17], [18]. According to calculations, the formation of a double helix is possible only if the anti-parallel duplexes differ from each other by a maximum of 10° in relative rotation [19], [20].

HA tertiary structure is formed of β-sheets based on twofold antiparallel helices [11], [23]. Both construction and destruction of the tertial structure are observed under physiological conditions (37 °C and 0.15 M NaCl) [24], while the secondary structure is conserved. The spatial structure of HA varies depending on temperature, solvent, and pH level.

The rupture of the hydrogen bond between acetamido and carboxylate groups causes reversible dissociation of the tertial structure of high-molecular weight HA (HW HA) in the aqueous solution when heated [25], [26]. Increasing the concentration of HA results in a change of its conformation from a rigid rod structure towards a random coil with a greater density of chain segments near the center. Interchain interactions of these segments increase respectively.

Conformational transition of HA also depends on the solvent. Software such as NAMD [27], which has a high performance in the simulation of large biomolecular systems, is used to estimate more precisely the influence of the solvent on secondary and tertiary structures. [28]. A detailed overview of models for calculation of solvent effects on reaction rate in various systems is given by Aumond in his doctoral thesis [29].

By virtue of the nucleophilic nature of acidic hydrolysis, the depolymerization of HA occurs at pH above 4 on a glucuronic acid residue because the lowest unoccupied molecular orbital is localized on this residue. HA decomposition at pH below 11 is a result of the destruction of the N-acetylglucosamine residue, on which the highest occupied molecular orbital is located [30]. HA depolymerization occurs faster under alkaline than acidic conditions. In basic medium, the viscosity of the HA solution is low due to the cleavage of hydrogen bonds, increased chain flexibility, and destruction of sheet and tubular structures formed in aqueous solutions [11], [31], [32].

Knowledge of the dependence of physico-chemical properties of the HA solution on the pH allows the prediction of HA action in the human organism and the specification of possible HA applications. The effect of conformation on physical properties of hyaluronan has been recently reviewed [11], [19], [32].

3. HA bioactivity

The biological role of HA depends on the interaction mechanism between HA and HA-specific receptors such as the membrane glycoprotein CD44 [40], or the receptor for hyaluronic acid mediated motility (RHAMM), also known as CD168 [33], which regulate the motility and cell proliferation of endothelial cells [34], [35]. CD44 is a cell-adhesion molecule and a cell surface receptor that implements the binding of hyaluronate. Its degree of affinity is regulated by granulocyte–macrophage colony-stimulating factor (GM-CSF), interleukin-3 (L3) and kit ligand (KL) [36], [37]. CD44 can form complexes with RHAMM [38]. RHAMM is located on the centrosome and interphase microtubules [39], [40], and is responsible for the proliferation of cancer cells [41], [42]. The CD44 clustering depends on the HA molecular weight and affects the degree of HA binding to immune cells [43].

Unlike other GAGs that bind to core proteins with high selectivity and specificity [44], HA does not form covalently linked proteoglycans [45], [46]. HA is found in the extracellular matrix (ECM) of almost all vertebrate tissues [47], most abundantly in the soft connective tissues, such as articular cartilage and synovial fluid [48]. In the human body, synovial fluid contains HA with a molecular weight of 7 × 106 Da; the aquatic and vitreous humors of the eyeball consist of macromolecules with a molecular weight of 5-6 × 106 Da [49]. Cowman [50] reviewed the distribution and biological function of HA in tissues and fluids depending on its molecular weight.

High-molecular weight HA (HW HA) is a class of polymers with a molecular weight ranging from 1 × 106 to 6 × 106 Da, whereas low molecular weight HA (LW HA) are samples with a molecular mass lower than 0.25 × 106 Da [51]. The main difference between their biological activity in situ is that LW HA shows angiogenic activity while HW HA is anti-angiogenic [52]. During the LW HA interaction with CD44, the production of the matrix metalloproteinase 2 (MMP-2) protein is stimulated. This protein induces cell invasion through extracellular matrix barriers, which leads to an increase in the angiogenic response. HM HA interaction with cellular CD44 receptors, in turn, inhibits MMP-2 production, induces cell cycle arrest, and interrupts the process of cell proliferation [53]. Although it was previously thought that only LW HA activates the immune cells [51], recent studies have shown that the immunostimulant activity of both LW HA and HW HA is comparable [11].

Notwithstanding the lack of a strict classification, polymers with a molecular weight greater than 6.1 × 106 Da are commonly called very-high-molecular weight HA (vHMW HA). vHMW HA, obtained from naked mole-rats, demonstrates suppression of CD44 protein–protein interactions [54], which explains its unique cytoprotective activity [11].

4. HA application

Hyaluronic acid has applications in various aspects of the pharmaceutical, medical, and cosmetological industry, implying strict requirements for the purity of the final product [55]. Due to this requirement, optimization of biotechnological production and improving methods of obtaining hyaluronic acid with the desired properties is a major challenge.

The unique viscosity and high rheological affinity for natural fluids has rendered a high interest in cross-linked HA in a wide range of biomedical applications, such as destruction preventer and restoration initiator of cartilage during osteoarthritis [56], [57], eye drops for dry eye syndrome [58], [59], and dermal fillers [60], [61].

Osteoarthritis is associated with the excess hyaluronan-binding protein involved in HA depolymerization (HYBID) in cartilage [62]. HYBID causes degradation of very-high-molecular-weight endogenous HA in joints [63]. The HA, formed as a result of this process, has a lower molecular weight, and poorer mechanical and viscoelastic properties [67]. Intra-articular injection of HA promotes viscoelasticity maintenance and inhibits inflammatory cytokine production [64]. As a result, this induces a short-term pain relief [65]. Over the last decades, HA has been a leading drug against osteoarthritis [66]. The meta-analysis of the recent data on the treatment of osteoarthritis with hyaluronic acid shows controversial results [67], [68], [69]. Recently published articles point to the ambiguity of the effectiveness of osteoarthritis treatment with platelet-rich plasma and hyaluronic acid [70], [71]. However, all the articles stated that HA injections can reduce pain caused by osteoarthritis.

Dry eye syndrome is characterized by a loss of tear film homeostasis and ocular surface inflammation [72]. Due to high mucoadhesion, HW HA is efficient in precorneal water retention and protection of the ocular surface [73]. Meta-analyses have shown no clinical difference in the application of HA-based versus non-HA-based medications [74] but other medical studies, nevertheless, report that a HW HA lacrimal substitute has the potential to become an alternative to autologous serum eye drops in the treatment of dry eye syndrome [59], [75], [76].

The main challenge of cosmetic dermatology is resisting face aging, and one of the possible solutions is a soft tissue augmentation by injection. The use of a filler based on poly-l-lactic acid [77] and polymethylmethacrylate [78], [79] is efficient against face aging, but is associated with potential adverse events. The effect of dermal fillers based on HA, on the other hand, is temporary, safer and rarely leads to side effects [80], [81]. HW HA injections stimulate the collagenization process and reduce the rate of atrophic scars [82], [83].

On account of the rising interest in HA for cosmetic and medical applications, the volume of the global hyaluronic acid market amounted to USD 3.5 billion in 2021 and is expected to grow with a rate of 6.8 % during 2022–2030 [84]. The major area consuming the hyaluronic acid is Asia, in particular, PRC. In 2018, the Chinise sale of hyaluronic acid amounted to 430 million tonn, which accounted for more than 80 % of the global market [85]. This part is higher than indicated by an erlier analysis as reviewed in [86], which confirms the faster relative growth of the Asian HA market. The use of HA in pharmacology and the preparation of HA-based biologically active agents have been reviewed in detail by Bayer [87].

5. HA synthesis

In industry, HA is obtained mainly by biological methods such as extraction from animal sources with application of cetylpyridinium chloride precipitation [12] or microbial fermentation [13]. Besides that, a wide range of synthetic approaches are available nowadays, such as chemical, chemoenzymatic and enzymatic methods. In the recently published reviews by the Qiu Yibin [88] and Yao Zhi-Yuan [89] groups, special attention is paid to regulating the molecular weight of the produced HA.

5.1. Chemical synthesis and modification

The most common synthetic approaches include click chemistry reactions [90] and irradiation with UV [91] or visible light [92]. The diversity of approaches to chemical synthesis of HA has been reviewed in detail by Jingmin [93].

The uniqueness of click reactions stems from a high thermodynamic driving force and high yields of reaction product. This has caused a rising interest in such reactions, in particular in bio-orthogonal methods for obtaining a cross-linked hydrogel [94]. One of the most common methods, the copper-catalyzed click cyclization, results in azide-alkyne cycloaddition [95]. The main disadvantage of this reaction is the high contamination of the target product with copper [96] and the difficulties in achieving a high water content. An alternative to copper click reactions is a reaction between azide and dibenzyl cyclooctyne [97] or between thiol and alkene derivatives for radical-initiated thiol-ene click reactions [98], [99] which are now actively used. Ya Li summarized the data on recent advances in click-chemistry with an emphasis on the variety of obtained biopolymers, HA in particular [100].

The main problem of obtaining a cross-linked HA is the contamination by residual chemical crosslinking agents. The best methods free of toxic chemical crosslinking agents are self-oxidation by catechol groups [101] and UV or visible light irradiation [92]. Due to the tyramine self-crosslinking initiated by the irradiation in the presence of riboflavin as photoinitiator [102], tyramine-substituted hyaluronate can be obtained [92].

Detailed discussion of the chemical synthesis and modification of the hyaluronic acid is out of the scope of this review, and has been reviewed elsewhere [103].

5.2. Chemoenzymatic synthesis

Chemoenzymatic synthesis combines the high specificity of enzyme-catalyzed reactions and the flexibility of chemical derivatization [104]. In recent years, enzyme cascades, reported as efficient tools for multi-stage synthesis, have increasingly drawn attention [105]. This approach is especially useful for obtaining non-natural chemicals [106], [107]. Recent studies have shown a high efficiency of using enzyme cascades immobilized by magnetic beads for obtaining HW HA [108]. Several reviews on strategies for chemoenzymatic synthesis with an emphasis on the use of enzyme cascades have been published recently [106], [109].

5.3. Enzymatic synthesis

Enzymatic methods can be used for obtaining a monodisperse HA through degradation by hyaluronidase [110]. Various sources of hyaluronidase were reported [111]. Bacterial hyaluronidases from the β-endoglycosidase family degrade hyaluronic acid to a disaccharide with a 4,5-unsaturated glucuronic acid residue by β-elimination, while bacterial β-exoglycosidases, such as β-glucuronidase and β-N-acetyl-hexosaminidase, remove a single monosaccharide unit [112]. Enzymatic crosslinking by regenerated silk-fibroin is used to produce hyaluronic acid-tyramine hydrogels with high values of compressive modulus [113]. The use of mammalian enzymes makes it possible to work without a pH restriction due to the wide pH range of the enzymatic activity, but these enzymes lack absolute substrate specificity [114]. Reviews on HA enzymatic synthesis have been recently published [106].

5.4. Extraction from animal sources

The general approach for HA extraction from animal sources is tissue hydrolysis with subsequent removal of proteins and HA purification [115]. The most widespread animal source of high molecular weight HA is the rooster comb [116]. The isolation of HA from animal sources is complicated by formation of stable complexes of HA with proteoglycans [117]. The problems with animal sources are difficult purification, risk of cross-viral infection, and seasonal source variability. Over the past decade, several reviews have been devoted to the description of different extraction and purification methods of HA from marine animals [118]. Currently, for the industrial production of hyaluronic acid microbial fermentation is preferred more often than extraction from animal sources [16], [119].

5.5. Fermentation

For economic reasons, microbial fermentation has been used for commercial production of HA for decades. The major problems in industrial production of HA include 1) the inhibition of HA synthesis as a result of the accumulation of lactic acid, which is one of the coproducts of enzymatic synthesis [120]; and 2) the decrease of HA yield due to loss of mixture saturation with oxygen upon growing substrate viscosity [121]. The former problem can be solved by expression of the bacterial hemoglobin gene Vhb in the organism that produces HA [122].

In a recently published review, the economic benefits of the production of HW HA by native and recombinant organisms were analyzed based on costs associated with production, fermentation time, and product yield [123]. According to this review, the product yields and molecular weight (Fig. 2) achieved by native sources always exceeded those from the recombinant organisms. However, the use of recombinant organisms is not economically inefficient, since this analysis did not take into account the costs for biosafety equipment in large-scale production.

Fig. 2.

Fig. 2

Ranges of molecular weights of hyaluronic acid from various sources. 1 - S. equi ssp. equi, 2 – S. iniae, 3 – Lactobacillus acidophilus, 4 - Streptomyces albulus, 5 – Agrobacterium, 6 – Saccharomyces cerevisiae, 7 – Kluyveromyces lactis, 8 – Pichia pastoris.

6. HA biosynthesis

Enzymes of the Hyaluronic Acid Synthase (HAS) family synthesize HA in both eukaryotes and prokaryotes, and are located in the inner plasma membrane [124]. HA in mammals is produced by fibroblasts [125] and is located on the cell surface or in the extracellular matrix. In vertebrates, the HAS family consists of three isoenzymes, namely HAS1, HAS2, and HAS3. The functional catalytic glycosyltransferase unit in the HAS sequence is a polypeptide monomer that simultaneously transfers two distinct sugars [126]. Hyaluronan synthases are classified into two groups: Class I HASs, shorter than 280 amino acids, and Class II HASs, longer than 280 amino acids [127]. The only known representative of Class II HASs is a HAS from Pasteurella multocida [128]. According to the Carbohydrate Structure Database (CSDB) [129], the abovementioned disaccharide unit is a part of multiple products of prokaryotes (68 glycans were reported to contain a β-d-GlcpA-(1→3)-β-d-GlcpNAc fragment; 116 glycans were reported to contain a β-d-GlcpNAc-(1→4)-β-d-GlcpA fragment), and 24 articles reported pure hyaluronic acid polymers in association with various, mainly bacterial, taxa [130]. Inasmuch as HA is a natural component in a host organism, the presence of hyaluronic acid in the polysaccharide cell capsule of Streptococcus and Pasteurella is a virulence factor for these organisms [131], [132]. According to CSDB glycosyltransferase database [133], transferase activity to synthesize these bonds was predicted for seven enzymes of five serogroups of E. coli (Uniprot IDs A0A0B1DH13, A0A0A8J741, A0A0A8J775, Q8GMK1, Q8GMJ5, B5L396, D8WNA7 [134]).

The direction of chain elongation and the mechanism of HA biosynthesis has been a subject of discussion for decades. Earlier theory suggested that all HASs attach new sugar residues to the non-reducing end of HA [135]. However, the latest research indicates that the attachment by a native bacterial synthase occurs at the reducing end [136]. HASs from vertebrates [137] and P. multocida [126], as well as recombinant synthases, add new monosaccharides to the non-reducing end [138]. The translocation of HA is mediated via HAS, and combines HA extrusion across the cell membrane with HA synthesis [124], [139]. The scheme of HA translocation, chain growth at the reducing end, and multifunctionality of class I HAS is shown in (Fig. 3). Owing to transcriptional control, HA is produced during the growth phase rather than during the stationary phase in wild type strains [140].

Fig. 3.

Fig. 3

Scheme of the in vitro HA translocation and chain growth at the reducing end by class I hyaluronan synthases. HA is synthesized on the inner surface of the plasma membrane [141]. Residue icons are given in accordance with SNFG standard. The blue line stands for the cell wall. Two simultaneous pathways are shown - adding GlcNAc-UDP (A) or GlcA-UDP (B) to the polysaccharide chain [139]. The chain growth is sequentially performed by HAS in a continuously alternating manner. For pathway A, HAS functions such as GlcNAc-UDP acceptor binding, HA-GlcA-UDP donor binding, and HA-GlcA-UDP:GlcNAc-UDP, β1–3(HA-GlcA-)-transfer are required; for pathway B, GlcA-UDP acceptor binding, HA-GlcNAc-UDP donor binding, and HA-GlcNAc-UDP:GlcA-UDP, β1–4(HA-GlcNAc-)-transfer are required; both pathways end with HA translocation [124].

Metabolic engineering is used to obtain recombinant organisms capable of HA production. That requires the reconstruction of the HA biosynthetic pathway in the chosen organism by expression of genes from natural producers that are responsible for the production of enzymes involved in the HA biosynthesis. The genus Streptococcus, specifically Streptococcus zooepidemicus [142], [143], [144], and P. multocida [145], [146] are primarily used as gene origin for expression. Currently, HA synthase can also be cloned from eukaryotes, notably Xenopus laevis [147], [148], small rodents (rats, hamsters and rabbits) [149], [150], pigs [151], cows [152], and humans [153], [154]. Chlorovirus PBCV-1, whose open reading frame A98R is an equally authentic hyaluronan synthase, is also of interest as gene origin for expression [155]. The key advantage of recombinant organisms is the opportunity to prevent contamination with toxins in the target product, resulting in a lesser pathogenicity. This causes a product cost depreciation due to the absence of the need for further purification. The main disadvantage in the case of recombinant bacteria is a decrease in yield due to plasmid instability [16].

UDP-GlcNAc and UDP-GlcA are indispensable precursors for HA biosynthesis. In pure form, UDP-GlcA is found as a component within the cell wall in native HA-producing bacteria. Usually, these bacteria (e.g. E. coli [156]) are pathogenic or conditionally pathogenic. In HA non-producing bacteria, UDP-GlcA can be obtained by using UDP-glucose dehydrogenase for catalytic oxidation of UDP-Glc, which is naturally synthesized as one of the cell wall precursors [157]. UDP-GlcNAc is present in almost all bacteria since it is a precursor of UDP-MurNAc, which in turn is a precursor of peptidoglycans [158], [159], [160]. A noteworthy feature of hyaluronic acid biosynthesis in comparison with other GAGs is the transportation of the UDP-GlcNAc and UDP-GlcA from the cytoplasm to the plasma membrane instead of sulfation in the Golgi apparatus [7], [161].

Insomuch as HA biosynthesis is an energy demanding process, consuming three moles of ATP and two moles of UTP per mole of HA [162], consideration of the metabolic cost is necessary to create a recombinant organism, whose HA productivity could surpass the yields of HA in a native source. Co-expression of Vitreoscilla hemoglobin and HA-expressing genes has been proposed as one of the ways to compensate for the energy costs of HA biosynthesis [163], [164].

7. Production of HA with streptococci

The genus Streptococcus includes over 50 species [165]. Streptococci are classified into four groups based on criteria proposed by Sherman – growth initiation temperature, growth medium, stability at 60 °C, reducing properties, and capability of obtaining ammonia from peptones [166]. Streptococcus groups A and C are human pathogens [167], [168]. Group A Streptococcus causes diseases of varying severity, such as meningitis [169], pharyngitis [170], streptococcal toxic shock syndrome [167], and poststreptococcal glomerulonephritis [171]. The pathogenesis of Streptococcus group A is reviewed in detail by Cunningham [172] and Carapetis [173], and the pathogenesis of group C by Kłos [174]. S. zooepidemicus presents the most interest for industry [175] and has been actively used for fermentative production of HA since the 1980s [13].

The genes hasA, hasB, hasC, hasD and hasE are responsible for the synthesis of HA in S. zooepidemicus [181]. The enzyme products encoded by these genes and their functions in S. zooepidemicus are listed in (Table 1). The scheme of HA biosynthesis in S. zooepidemicus is presented in (Fig. 4). The main by-products in the fermentative production of HA are lactic acid, small amounts of ethanol, carbon dioxide, acetic and formic acids [182]. Expression of the polyhydroxybutyrate synthase operon is an efficient way to reduce the concentration of free lactic acid, which prevents the formation of HA [120]. Since streptococci HAS enzymes use Mg2+ and Mn2+ ions as cofactors [183], the addition of MgCl2 to the cultivation medium for recombinant organisms, in which Streptococcus genes are being expressed, allows achievement of a greater yield of HA [184]. Presumably, this is due to the ability of the divalent ion to stabilize the intermediate compounds of the pyrophosphate group, and to form a complex with a sugar nucleotide that increases the activity of the glycosyltransferases [185], [186]. Fermentation conditions, yield and molecular weight of HA obtained from different streptococci species are presented in (Table 2).

Table 1.

Proteins involved in HA biosynthesis by S. zooepidemicus, and their functions.

Gene Enzyme Function Reference
hasA Hyaluronic acid synthase HA synthesis and transport [176]
hasB UDP-glucose dehydrogenase UDP-GlcA biosynthesis [177], [178]
hasC UDP-glucose pyrophosphorylase UDP-GlcA biosynthesis [179]
hasD Acetyltransferase and pyrophosphorylase (bifunctional) UDP-GlcNAc biosynthesis [180]
hasE Phosphoglucoisomerase UDP-GlcNAc biosynthesis [180]

Fig. 4.

Fig. 4

Biosynthetic pathways of HA production by S. zooepidemicus. Italized enzyme names are shown beside the arrows.

Table 2.

Overview of HA from Streptococci sp.: fermentation conditions, yield and molecular weight.

Strain Fermentation conditions HA yield (g/l) HA MW
(×106 Da)
Reference
S. zooepidemicus ATCC 39,920 Medium: 50 g/l sucrose; 3,5 g/l yeast extract; 10 g/l casein enzyme hydrolysate; 2 g/l K2HPO4; 1.5 g/l NaCl; 0.4 g/l MgSO4·7H2O
Aeration: 2 vvm
Temperature: 37 °C
Duration: 28 h
pH: 7
Impeller speed: 400 rpm
5.00 3.50–3.90 [175]
S. zooepidemicus 3523 Medium: 50 g/l glucose; 10 g/l yeast extract; 3 g/l MgSO4·7H2O; 1.5 g/l K2HPO4; 3 g/l KH2PO4; 5 g/l NH4Cl
Aeration: ND
Temperature: 37 °C
Duration: 12–14 h
pH: 7
Impeller speed: 400 rpm
2.80 1.59 [242]
S. zooepidemicus HA-13–06 Medium: 70 g/l glucose; 10 g/l yeast extract; 5 g/l tryptone; 0.4 g/l MgSO4·7H2O; 1.8 g/l K2HPO4
Aeration: 1 vvm
Temperature: from 31 °C to 37 °C
Duration: 24 h
pH: from 8.0 to 7.0
Impeller speed: 250 rpm
4.75 2.36 [12]
S. zooepidemicus MTCC 3523 Medium: 20.0 g/l palmyra palm jaggery; 2.5 g/l yeast extract; 2.5 g/l peptic digest of animal tissue; 2.5 g/l casein enzyme hydrolysate; 5.0 g/l peptic digest of soybean meal; 5 g/l beef extract; 0.5 g/l ascorbic acid; 0.25 g/l MgSO4; 19.0 g/l disodium β glycerophosphate
Aeration: 1 vvm
Temperature: 37 °C
Duration: overnight
pH: 7
Impeller speed: 180 rpm
5.96 0.93–0.96 [243]
S. zooepidemicus ATCC 39,920 Medium: 85.35 g/l sugarcane molasses, 50 g/l yeast extract; 2.5 g/l K2HPO4; 2.0 g/l NaCl; 1.5 g/l MgSO4
Aeration: 0.5 vvm
Temperature: 37 °C
Duration: 24
pH: 8
Impeller speed: 100 rpm
2.83 1.35 [244]
S. zooepidemicus ATCC 35,246 Medium: 50 g/l glucose; 5 g/l yeast extract; 5.00 g/l cheese whey protein (Lowry); 2.00 g/l KH2PO4; 0.50 g/l K2HPO4; 0.50 g/l MgSO4; 0.50 g/l (NH4)2SO4
Aeration: 1 vvm
Temperature: 37 °C
Duration: 16
pH: 6.7
Impeller speed: 500 rpm
4.02 3.71 [245]
S. zooepidemicus ATCC 35,246 Medium: 50 g/l glucose; 5 g/l yeast extract; 8.5 g/l cheese whey protein (Lowry); 2.00 g/l KH2PO4; 0.50 g/l K2HPO4; 0.50 g/l MgSO4; 0.50 g/l (NH4)2SO4
Aeration: 1 vvm
Temperature: 37 °C
Duration: 16
pH: 6.7
Impeller speed: 500 rpm
3.19 3.32 [245]
S. zooepidemicus WSH-24 Medium: 70 g/l sucrose; 25 g/l yeast extract; 1.3 g/l K2SO4; 2.0 g/l MgSO4·7H2O; 6.2 g/l Na2HPO4·12H2O; 0.005 g/l FeSO4·7H2O; 2.5 ml trace element solution (2.0 g/l CaCl2, 0.046 g/l ZnCl2 and 0.019 g/l CuSO4·5H2O)
Aeration: ND
Temperature: 37 °C
Duration: 16 h
pH: from 7 to 8.5 for 1 h
Impeller speed: 200 rpm
6.5 ND [121]
S. zooepidemicus ATCC 35,246 Medium: 50 g/l glucose, 5 g/l yeast extract, 15 g/l viscera without hydrolysis (autoclaved at 101 °C for 1 h) from Scyliorhinus canicula; 2.0 g/l K2HPO4; 2.0 g/l KH2PO4; 0.5 g/l MgSO4; 0.5 g/l (NH4)2SO4
Aeration: without aeration
Temperature: 37 °C
Duration: 18 h
pH: 6.7
Impeller speed: 500 rpm
2.53 ND [246]
S. equi ssp. equi RSKK 677 Medium: 9.9 g/l peptone, 79.86 g/l sucrose, 28 g/l yeast extract; 0.51 g/l K2SO4; 1.25 g/l MgSO4; 10.38 g/l Na2HPO4; 0.008 g/l FeSO4; 1.23 g/l NaC
Aeration: ND
Temperature: 37 °C
Duration: 24 h
pH: 7.8
Impeller speed: 187 rpm
12.01 0.0794 [247]
S. iniae Medium: 10 g/l peptone, 20 g/l glucose, 20 g/l yeast extract; 20 g/l beef extract; 2 g/l MgSO4··5H2O; 2 g/l KH2PO4
Aeration: ND
Temperature: ND
Duration: 15 h
pH: 7.4
Impeller speed: ND
0.12 0.30 [248]

ND – no data.

7.1. Streptococcus equi subsp. zooepidemicus (formerly, S. zooepidemicus)

S. zooepidemicus is one of the most commonly used biological sources of HA in commercial production [187]. Its main drawback is its high pathogenicity. S. zooepidemicus is an opportunistic pathogen that causes both respiratory [188] and neurological [189], [190] diseases of varying severity, namely pneumonia [191], [192], meningitis [193], [194], purulent pericarditis [195], bacterial arthritis [196] and endometritis [197], affecting multiple mammal species, in particular, dogs [198], [199], horses [200], [201], sheep [202], pigs [203], cats [204], [205], rodents [206] and humans [207], [208].

The impact of varying conditions on the yield of the final product was determined as follows (listed in significance-decreasing order): temperature > oxygen level > mixing rate > pH during fermentation [209]. It was experimentally shown that the molecular weight of HA obtained under anaerobic conditions (1.22 × 106 Da) is almost half the size of the molecular weight of HA obtained under aerobic conditions (2.19 × 106 Da) at a level of dissolved oxygen (DO) of 50 % [210]. Initially, the critical DO level for S. zooepidemicus was defined as <2 % [210], but further studies indicated that the critical level was 5 % [211]. If the level of dissolved oxygen is above the critical level, the impact of aeration rate and agitation speed on the HA yield is significantly reduced [187]. An efficient strategy to increase the yield of HA is a two-stage fermentation. Changes in yield and molecular weight of HA in S. zooepidemicus HA-13–06 can be observed by varying the fermentation conditions at the stages of accumulation and optimization of molecular weight [12]. The maximum molecular weight and yield of HA were 2.36 × 106 Da and 4.75 g/l, respectively [12].

Generally, a mixture of sugars, yeast, various peptones and sera is used as a nutrient source. With an increase in sucrose concentration and a decrease in casein concentration, the density of the mixture and the HA yield increase [175]. But an increase in the primary glucose concentration results in a non-linear increase of molecular weight of synthesized HA and a decrease in product yield [27]. Peptones are a nutrient source necessary for fermentation by Gram-positive bacteria because of the limited ability of the latter to produce B-vitamins and some amino acids [212], [213], [214]. It has been suggested that molasses as the main carbon source, and sheep wool peptone after alkaline hydrolysis by KOH as main peptone source could be efficiently used as a cheap complex substrate for the fermentative production of HA [215]. Despite the economic benefits of sheep wool peptones, the use of plant peptones in the production of HA for pharmaceutical and cosmetic applications is preferable due to the purity requirements [216]. The introduction of amino acids such as lysine, cysteine, glutamic acid and arginine into the nutrient medium also increases the HA yield [217]. The presence of microelements and mineral nutrients, such as Mg and P in the nutrient medium significantly increases the yield of HA in S. zooepidemicus strains [215]. A study has been undertaken to clarify the possibility of obtaining HA with predetermined characteristics by adding ions of various metals. It has been demonstrated that the presence of Na+ ions in the cultivation medium significantly reduced the concentration of produced HA [218], which was associated with the ability of monovalent ions to inhibit hyaluronan synthase, thereby reducing the reaction yield.

The overexpression of genes involved in UDP-GlcpA biosynthesis makes it possible to obtain a LW HA and increase the yield [219]. Overexpression of genes implementing the biosynthesis of UDP-GlcpNAc, in contrast, increases the molecular weight and reduces the yield. Overexpression of genes for production of HA synthase contributes to an increase in yield and a decrease in molecular weigh [220]. The elimination of genes encoding hyaluronidase leads to an increase in the yield of high-molecular HA [221].

7.2. Streptococcus equi subsp. equi

Streptococcus equi subsp. equi is a β-hemolytic Lancefield group C streptococcus, whose distinctive feature among other β-hemolytic streptococci is the ability to evade phagocytosis [222]. Consideration of DNA hybridization shows that S. equi subsp. equi is a subtype of S. zooepidemicus [223], although it was previously mistakenly classified as an archetype of S. zooepidemicus. S. equi subsp. equi is known as an opportunistic pathogen that causes strangles abscesses in horses [224], [225], [226], local tissue necrosis in fish [227], and invasive infections in immunocompromised patients [228].

It was experimentally shown on S. equi subsp. equi that 4-methylumbelliferone reduces the yield of HA due to inhibition of enzymatic activity of HAS in intact cells [229].

7.3. Streptococcus pyogenes

Streptococcus pyogenes is a β-hemolytic group A streptococcus [230], a human pathogen [165], [231], which causes puerperal sepsis [232], tonsillitis [233], toxic shock syndrome [234], [235], and necrotizing fasciitis [236], [237].

SpHAS (HAS gene from S. pyogenes) encodes two enzymes, HASB and HASC [179]. SpHAS has been shown to be 30 % identical to the DG42 gene known as xlHAS from X. laevis [238], [239]. SpHAS expression in Escherichia coli with the availability of UDP-GlcA and UDP-GlcNAc afforded in vitro synthesis of HW HA [240]. Though encapsulated S. pyogenes is a natural source of HA [241], it is highly pathogenic, and thus is neither used as a native producer nor as a gene origin for expression in commercial HA production.

8. Production of HA with other gram-positive bacteria

The main drawback of the implementation of streptococci is their high pathogenicity. This makes it necessary to explore new organisms that could be used in the industrial production of HA. Insofar as there are no native HA producers among Gram-positive bacteria except streptococci [143], [162] all potential HA-producing strains are recombinant organisms obtained with the aid of gene expression. To create a recombinant organism that could synthesize HA, the expression of genes encoding the HasA enzyme from exogenous sources is enough [249]. Fermentation conditions, yield and molecular weight of HA obtained from gram-positive bacteria except streptococci are presented in (Table 3).

Table 3.

Overview of HA fermentation conditions, yield and molecular weight of HA obtained from gram-positive bacteria except Streptococci.

Host organism Gene and origin Fermentation conditions HA yield (g/l) HA MW (×106Da) Ref.
L. acidophilus PTCC1643 hasA and hasC co-expression assembled with plasmid pJH181.3 Medium: 20 g/l lactose, De Man, Rogosa and Sharpe broth, 12.26 g/l pyruvate, 1.27 ml/l trace elements, 3 g/l urea, 3 g/l (NH4)2SO4
Aeration: ND
Temperature: 38 °C
Duration: 48
pH: ND
Impeller speed: ND
1.7 < 0.027 [327]
C. glutamicum ATCC13032 hasA (from S. equisimilis) and hasB induced by Ptac promoter Medium: 40 g/l glucose, 11 g/l yeast extract, 30 g/l (NH4)2SO4, 1 g/l KH2PO4, 0.5 g/l K2HPO4, 5 g/l MgSO4, 0.01 g/l FeSO4·7H2O, 0.01 g/l MnSO4·7H2O
Aeration: 1 vvm
Temperature: 28 °C
Duration: 48
pH: 7.2
Impeller speed: 600 rpm
8.3 1.30 [249]
C.
glutamicum ATCC13032
hasA, hasB and aceE induced by Ptac promoter, Δldh, ΔackA-pta, Δcat, ΔpoxB, Δzwf Medium: 20 g/l corn syrup powder, 40 g/l glucose, 1 g/l KH2PO4, 0.5 g/l K2HPO4, 30 g/l (NH4)2SO4, 10 mg/l FeSO4·7H2O, 10 mg/l MnSO4·7H2O, 50 μg/ml kanamycin
Aeration: 1 vvm
Temperature: 28 °C
Duration: 24 h
pH: 7.2
Impeller speed: 600 rpm
28.7 0.21 [279]
C.
glutamicum ATCC13032
hasA (from S. equisimilis) and hasB induced by Ptac promoter, Δldh Medium: 40 g/l glucose, 20 g/l corn syrup powder, 30 g/l (NH4)2SO4, 1 g/l KH2PO4, 0.5 g/l K2HPO4, 5 g/l MgSO4, 0.01 g/l FeSO4·7H2O, 0.01 g/l MnSO4·7H2O, 5 μg/ml chloramphenicol
Aeration: 1 vvm
Temperature: 28 °C
Duration: 48 h
pH: 7.2
Impeller speed: 600 rpm
21.6 1.28 [142]
S. albulus CRM003 hasA (from S. zooepidemicus FERM BP878), udgA, glmU, gtaB (from S. avermitilis NBRC14893) induced by Ppls promoter Medium: 50 g/l glucose, 5 g/l yeast extract, 1 g/l (NH4)2SO4, 1.6 g/l Na2HPO4, 1.4 g/l KH2PO4, 0.5 g/l MgSO4·7H2O, 0.04 g/l ZnSO4·7H2O, 0.03 g/l FeSO4·7H2O
Aeration: 3.5 vvm
Temperature: 30 °C
Duration: 30
pH: 6.8 (first-stage fermentation), 4.2 (second-stage fermentation))
Impeller speed: 150 rpm (first-stage fermentation), 500 rpm (second-stage fermentation))
3.60 2.20 [143]
B. subtilis 168 hasA (from S. zooepidemicus) induced by PxylA promoter, co-overexpression of tuaD, glmU and gtaB-glmM-glmS (induced by Pveg promoter), ΔlacA Medium: 2 g/l tryptone, 20 g/l yeast extract, 20 g/l xylose, 15 g/l sucrose, 1.5 g/l MgSO4·7H2O
Aeration: 2.0 vvm
Temperature: 37 °C
Duration: 24 h
pH: 7.0
Impeller speed: 600 rpm (first-stage fermentation), 800 rpm (second-stage fermentation))
3.16 1.40–1.83 [314]
B. subtilis WB600 (ΔnprE, ΔaprE, ΔnprB, Δbpr, Δmpr, and Δepr) hasA (from S. ubris), hasB and hasC co-expression, Δupp, ΔsigF Medium: 20 g/l sucrose, 3 g/l (NH4)2SO4, 6.5 g/l KH2PO4, 4.5 g/l Na2HPO4, 2 g/l sodium citrate, 3 g/l MgSO4·7H2O, 0.5 g/l CaCl2·2H2O, 6 ml/l of a trace metallic elements solution (100 g/l citric acid, 20 g/l FeSO4·7H2O, 5 g/l MnSO4·H2O, 2 g/l CuSO4·5H2O, 2 g/l ZnCl2)
Aeration: ND
Temperature: 32 °C
Duration: 54
pH: ND
Impeller speed: ND
3.65 < 0.39 [317]
B. subtilis 1A751 (ΔaprA3 ΔeglS102 ΔbglT) seHas (from S. equisimilis) and tuaD induced by Pgrac promoter at the amyE locus, dcas9 (derived from S. pyogenes) and xylR (from Bacillus megaterium) induced by PxylA,Bm promoter at the lacA locus, ftsZ-gRNA.P79NT(15C-U) cassette induced by PxylA.SphI+1 promoter at the wprA locus Medium: 20 g/l sucrose, 10 g/l yeast extract, 1 g/l (NH4)2SO4, 9.15 g/l K2HPO4·3H2O; 3 g/l KH2PO4, 1 g/l trisodium citrate·2H2O, 2.5 g/l casamino acids, 5.5 mg/l CaCl2, 13.5 mg/l FeCl2·6H2O, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·6H2O, 0.6 mg/l Na2MoO4·2H2O
Aeration: ND
Temperature: 37
Duration: overnight
pH: ND
Impeller speed: 280 rpm
1.46 1.67 [328], [329]
B. subtilis 1A751 (ΔaprA3 ΔeglS102 ΔbglT) seHas (from S. equisimilis) and tuaD induced by Pgrac promoter at the amyE locus, dcas9 (derived from S. pyogenes) and xylR (from Bacillus megaterium) induced by PxylA,Bm promoter at the lacA locus, pgsA and clsA induced by Pgrac promoter at the thrC locus, ftsZ-gRNA.P533NT cassette induced by PxylA.SphI+1 promoter at the wprA locus Medium: 20 g/l sucrose, 10 g/l yeast extract, 1 g/l (NH4)2SO4, 9.15 g/l K2HPO4·3H2O; 3 g/l KH2PO4, 1 g/l trisodium citrate·2H2O, 2.5 g/l casamino acids, 5.5 mg/l CaCl2, 13.5 mg/l FeCl2·6H2O, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·6H2O, 0.6 mg/l Na2MoO4·2H2O
Aeration: ND
Temperature: 37
Duration: overnight
pH: ND
Impeller speed: 280 rpm
1.25 2.10 [328], [329]
B. subtilis
1A751
seHas (S. equisimilis) and tuaD induced by Pgrac.UPmod promoter at the amyE locus, dcas9 (derived from S. pyogenes) and xylR (from B. megaterium) induced by PxylA,Bm promoter at the lacA locus, araE induced by Pgrac.ΔUP promoter at the vpr locus, araR and zwf-gRNA.P92NT(15C-A cassette induced by PxylA.SphI+1 promoter and mazF (from E. coli) induced by ParaE promoter at the wprA locus Medium: 20 g/l sucrose, 1 g/l (NH4)2SO4, 9.15 g/l K2HPO4·3H2O, 3 g/l KH2PO4, 1 g/l trisodium citrate·2H2O, 10 g/l yeast extract, 2.5 g/l casamino acids, 5.5 mg/l CaCl2, 13.5 mg/l FeCl2·6H2O, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·6H2O, 0.6 mg/l Na2MoO4·2H2O
Aeration: ND
Temperature: 37 °C
Duration: 10 h
pH: ND
Impeller speed: 280 rpm
∼1.3 1.64 [14]
B. subtilis 1A751 seHas (S. equisimilis) and tuaD induced by Pgrac.UPmod promoter at the amyE locus, dcas9 (derived from S. pyogenes) and xylR (from B. megaterium) induced by PxylA,Bm promoter at the lacA locus, araE induced by Pgrac.ΔUP promoter at the vpr locus, araR and zwf-gRNA.P603NT(15G-U) cassette induced by PxylA.SphI+1 promoter and mazF (from E. coli) induced by ParaE promoter at the wprA locus Medium: 20 g/l sucrose, 1 g/l (NH4)2SO4, 9.15 g/l K2HPO4·3H2O, 3 g/l KH2PO4, 1 g/l trisodium citrate·2H2O, 10 g/l yeast extract, 2.5 g/l casamino acids, 5.5 mg/l CaCl2, 13.5 mg/l FeCl2·6H2O, 1 mg/l MnCl2·4H2O, 1.7 mg/l ZnCl2, 0.43 mg/l CuCl2·2H2O, 0.6 mg/l CoCl2·6H2O, 0.6 mg/l Na2MoO4·2H2O
Aeration: ND
Temperature: 37 °C
Duration: 10 h
pH: ND
Impeller speed: 280 rpm
∼0.9 1.77 [14]
L. lactis NZ9000 hasA (from S. uberis 0140 J ATCC BAA-854) and hasB (from S. zooepidemicus ATCC 35246) co-expression under control of nisin-inducible promoter pNZ8148 Medium: M17 medium with 1 % glucose and 10 mg/L chloramphenicol
Aeration: ND
Temperature: 30 °C
Duration: 24 h
pH: ND
Impeller speed: 200 rpm
∼0.2 ∼2.20 [330]
L. lactis NZ9000 hasA and hasB (from S. equi subsp. zooepidemicus ATCC 35246) co-expression under control of nisin-inducible promoter pNZ8148 Medium: 5 g/l brain heart infusion, 5 g/l yeast extract, 30 g/l glucose, 0.5 g/l MgSO4·7H2O, 0.5 g/l ascorbic acid, 0.5 g/l KH2PO4, 1.5 g/l K2HPO4
Aeration: ND
Temperature: 30 °C
Duration: 30
pH: 7
Impeller speed: 200 rpm
∼0.7 ∼1.18 [331]
L. lactis NZ9000 hasA, hasB and hasE (from S. equi subsp. zooepidemicus ATCC 35246) co-expression under control of nisin-inducible promoter pNZ8148 Medium: 5 g/l brain heart infusion, 5 g/l yeast extract, 30 g/l glucose, 0.5 g/l MgSO4·7H2O, 0.5 g/l ascorbic acid, 0.5 g/l KH2PO4, 1.5 g/l K2HPO4
Aeration: ND
Temperature: 30 °C
Duration: 30
pH: 7
Impeller speed: 200 rpm
∼1.3 ∼1.10 [331]

8.1. Lactobacillus

The genus Lactobacillus is widely used in food industry for the production of yeast bread [250], [251] and dairy products [252], [253], [254]. Extensive medical research has confirmed that lactobacilli are efficient as probiotics against enteropathogenic bacteria [255], [256]. Oral administration and application on damaged tissues using heat-killed Lactobacillus plantarum L-137, inter alia, initiates HA biosynthesis in mammals [257]. Currently, the genus Lactobacillus includes over 40 species according to the NCBI taxonomy database [258]. Twelve species, namely L. acidophilus, L. bulgaricus, L. casei, L. delbrueckii, L. fermentum, L. gasseri, L. helveticus, L. johnsonii, L. plantarum, L. reuteri, L. sakei and L. salivarius, which lack pgdA and GlcNAc deacetylase genes, represent potential recombinant organisms for HA biosynthesis. LacA promoter from Lactococcus lactis’ 8-kb lactose operon can be used to efficiently regulate gene expression in lactobacilli [259].

As exemplified on L. acidophilus FTDC 1231, the addition of Fe2+ and Cu2+ ions to the cultivation medium leads to a higher HA yield due to an increase of free binding energy between substrates towards UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase [260]. Subsequent examination of the effects of the addition of various metal ions to the nutrient medium for the growth of Lactobacillus rhamnosus FTDC 8313 have proven that the addition of Mn2+ and Mg2+ synergistically increases the binding of substrates with glucose-6-phosphate dehydrogenase, phosphogluconate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, phosphopyruvate hydratase, and pyruvate kinase, which facilitates an increase in HA yield [261].

8.2. Corynebacterium glutamicum

Corynebacterium glutamicum is a non-pathogenic and non-sporulating bacteria classified as GRAS. It is widely used for large-scale production of various organic compounds, such as organic acids [262], [263], alcohols [264], [265], [266] and pyrazine [267], [268], [269], and has a special significance in the industrial production of amino acids [270], [271], [272], [273], [274]. In a detailed survey, the variety of applications of this organism in industry was analyzed by Becker [275]. Rapid growth, high yields and absence of capsules makes C. glutamicum a promising recombinant organism for the production of heterologous proteins [276]. The issue of the recombinant protein expression in C. glutamicum is narrowly reviewed by Liu [277] and Lee [278].

C. glutamicum encapsulates itself by the produced HA, which leads to hyper hyaluronan production. The analysis of the final product yield allows proposing the theory that overexpression of hasD or hasE causes metabolic stress in recombinant organisms. The expression of glmM, which encodes a phosphoglucosamine mutase, has no benefit in HA production [279]. Depending on the gene origin, hasA expression is implemented to varying extents; sphasA expression from S. pyogenes is the most efficient strategy [280] along with the combination of hasAB operons allowing a HA yield of 8.4 g/l [142]. An examination of the effect of operon co-expression on the output indicates that the co-expression of hasABC operons leads to yields of 2.15 ± 0.10 g/l, which is twice the values obtained during co-expression of hasAB operons. Moreover, if glmU expression and induction are sequentially carried out during fermentation, a dramatic decline is observed in the amount of HA obtained [281]. The overexpression of the ftsZ gene increases 13.5-fold the ability of the organism to produce HA due to proliferation of single-cell HASs on the cell surface [282].

8.3. Streptomyces

Streptomyces is widely used to obtain antibiotics [283], [284]. Streptomyces lividans and Streptomyces albus are of particular importance for industry because of their high throughput [285], [286], [287]. The potential of using Streptomyces for the production of secondary metabolites is reviewed in detail by Baltz [288].

The main problem of the biosynthesis of HA by recombinant Streptomyces is its production of hyaluronidase, which digests the produced HA [289]. The co-expression of udgA and hasA genes from S. zooepidemicus results in a sharp decrease in the amount of product [143]. Unlike the hyaluronidase from streptococci, the activity of the hyaluronidase from Streptomyces roseofulvus S10 (LC314796) rises markedly in the presence of Mg2+, but decreases in the presence of Mn2+ and Zn2+ ions [290].

8.4. Synechococcus

Thanks to its capacity to adapt to changing conditions [291] and low requirements to the cultivation medium [292], Synechococcus can be found in various aquatic biomes around the world [293]. The ability to implement oxygen photosynthesis in adverse environmental conditions turns it into a key participant in Earth’s carbon cycle [294]. Synechococcus has already attracted attention as a glycogen producer [295], [296], [297], which can be applied in advanced biofuel production [298], [299]. Depending on the amount of ambient CO2, the affinity of this organism to external inorganic carbon varies, reflecting its potential to accumulate CO2 inside the cell [300], [301].

It has been shown that by elimination of the gene encoding the endogenous cellulose synthase and by optimization of fermentation conditions, Synechococcus sp. PCC 7002 gained the potential to become a new economically acceptable and safe source of HA from carbon dioxide by photosynthetic transformation [302].

8.5. Bacillus

Recognized as having GRAS status and possessing a well-developed biosynthetic capability associated with high product yields, the genus Bacillus is a valuable model for laboratory and industrial applications [303]. This includes production of d-form amino acids [304], [305], antibiotics [306], [307], vitamins B2 and K2 [308], [309], [310], [311] as well as economically important enzymes such as alpha-amylases [312], [313]. Its main advantages, compared to streptococci strains, are low requirements for nutrient medium and absence of exotoxins [162]. Despite its commercial availability and the number of its advantages, attempts to create a recombinant Bacillus strain, whose productivity would be higher than that of streptococci, have so far failed.

The expression of the heterologous HA synthase gene leads to the accumulation of HA, in particular the co-overexpression of tuaD and gtaB genes increases HA production to 2.48 g/L [314]. Simultaneous overexpression of the hasA, hasB and hasC genes leads to an increase in molecular weight of the produced HA compared to overexpression of the hasD gene only [315], [316]. N-terminal engineering causes the HA yield to rise dramatically from 5.96 g/L to 19.38 g/L [314]. The fermentation temperature affects the molecular weight of HA; in particular, during the fermentation at 48 ⁰C B. subtilis WmB strains produce HA with a molecular weight of 6.97 × 106 Da [317].

8.6. Lactococcus lactis

Lactococcus lactis has a number of commercial applications, in particular, in the production of dairy products [318], [319]. L. lactis has GRAS status, which qualifies it as a metabolically engineered organism [320], [321]. When all five genes encoding enzymes involved in HA biosynthesis, namely hasA, hasB, hasC, hasD and hasE, are co-expressed, a segregation instability of the recombinant organism occurs [322]. The degree of nisA promoter induction is associated with the presence of NisR and NisK proteins [323]. The application of nisin as an inducer of gene expression is not correlated with the rising molecular weight, but multiplies the product yield [324]. The initial concentration of nisin affects the HA yield, the optimal concentration for recombinant L. lactis CES15 being 7.5 ng/ml. At this level, a yield of 6.09 g/l was achieved (hasA was expressed from Streptococcus equi subsp. zooepidemicus RSKK 677) [325]. Lactose-induced UDP-glucose dehydrogenase has a significantly increased activity, which allows the achievement of higher concentrations of the synthesized HA [326].

9. Production of HA with gram-negative bacteria

Among gram-negative bacteria, only P. multocida natively synthesizes HA. Due to its high pathogenicity, it is used as pmHas gene origin only, but not as a HA source [332], [333]. Escherichia coli belongs to endotoxin-free organisms, thus it is a promising recombinant organism for the HA production [184]. Useful means for obtaining recombinant E. coli are PCR-based homologous Lambda Red recombineering [334], [335] and seamless modification using a negative selection marker system based on kil counter-selection [336], [337]. Due to its well-characterized genetics, the E. coli lac operon promoter is a successful genomic tool for control of recombinant protein production in bacteria [338], [339]. Relevant strategies for production optimization of recombinant proteins using E. coli as bacterial host for industrial applications were considered by Bhatwa [340]. A list of HA fermentation conditions, yield and molecular weight of HA obtained from gram-negative bacteria is presented in (Table 4).

Table 4.

Overview of HA fermentation conditions, yield and molecular weight of HA obtained from gram-negative bacteria.

Host organism Gene and origin Fermentation conditions HA yield (g/l) HA MW (×106Da) Reference
E. coli BL21 hasA (from S. zooepidemicus ATCC 39920) induced by TAC promoter Medium: 50 g/l glucose, 15 g/l tryptone, 5 g/l yeast extract, 2 g/l KH2PO4, 2 g/l K2HPO4, 0.5 MgSO4·7H2O, 1.0 mM of IPTG
Aeration: ND
Temperature: 37 °C
Duration: 12 h
pH: 7
Impeller speed: 200 rpm
0.53 0.0346 [371]
E. coli K12 W3110 hasA (from S. zooepidemicus ATCC 35246) assembled with plasmid pTac15k under the control of the TAC promoter, galU and udgA overexpression assembled with plasmid pTrc99a under the control of the TAC promoter, ΔgalR, ΔgalS, Δzwf, ΔpfkA Medium: 3 g/l galactose, 3 g/l glucose, 5 g/l yeast extract, 10 g/l peptone, 10 g/l NaCl, 50 μg/ml ampicillin, 25 μg/ml kanamycin, 17.5 μg/ml chloramphenicol, 1 mM of IPTG
Aeration: ND
Temperature: 37 °C
Duration: ND
pH: ND
Impeller speed: 200 rpm
0.03 0.00139 [15]
E. coli Top10 hasA (from Streptococcus equisimilis) and ugd and galF (from E. coli K12 MG1655) expression assembled with arabinose inducible plasmid pMBAD Medium: LB liquid medium. 100 g/l ampicillin, 10 mM MgCl2, 0.1 g/l l-arabinose, 2.5 g/l K2HPO4, 1.0 g/l sorbitol, 10 g/l glucose (added at 5 h)
Aeration: ND
Temperature: room temperature
Duration: 48 h
pH: ND
Impeller speed: ND
0.26 0.51 [184]
E. coli Top10 hasA (from Streptococcus equisimilis) and ugd and galF (from E. coli K12 MG1655) expression assembled with arabinose inducible plasmid pMBAD Medium: LB liquid medium. 100 g/l ampicillin, 10 mM MgCl2, 0.1 g/l l-arabinose
Aeration: ND
Temperature: room temperature
Duration: 72 h
pH: ND
Impeller speed: ND
0.20 1.70 [184]
Agrobacterium ATCC31749 has (from P. multocida subsp. multocida ATCC 15742) assembled with plasmid pBQ and kfiD gene induced by T5 promoter expression assembled with plasmid pBQHas Medium: 125 mM sucrose, 50 mM N-acetylglucosamine, 10 mM lactose, 30 mM K2HPO4·3H2O, 20 mM MgSO4·7H2O, 17 mM sodium citrate, 2 mM MnCl2, 5 g/L casamino acid.
Aeration: ND
Temperature: 30 °C
Duration: 70 h
pH: ND
Impeller speed: 250 rpm
0.30 1.56 [375]

ND – no data;

9.1. Pasteurella multocida

P. multocida is a widespread causative agent of pasteurellosis [341], [342] and haemorrhagic septicaemia [343], [344] in animals. P. multocida is classified as serogroup A, B, D, E, or F based on the cell wall composition [345]. Hyaluronan and related compounds such as heparin and chondroitin are components of the extracellular capsules of P. multocida serogroups A, D and F [346], [347]. Extrusion of HA into the extracellular matrix is P. multocida serogroup A distinctive feature [346], [348], [349], [350].

The gene responsible for the biosynthesis of HA in P. multocida serogroup A can be divided into three regions – HA export, synthesis, and phospholipid substitution regions [351], [352], [353]. In serogroup A, the locus proteins responsible for the synthesis of HA are encoded by five genes (hyaA, hyaB, hyaC, hyaD and hyaE) [345]. The hyaA and hyaC (PmuhasB) genes encode enzymes whose functions are similar to a glycosyltransferase and UDP-glycodehydrogenase, while hyaD (PmuhasA) is similar to HAS from P. multocida and EpsI from S. thermophilus [354], [355]. The pmCS isolated from P. multocida Type F is 90 % identical to pmHas [356] and is active in the pH range from 6.5 to 8.6 [357]. Like in streptococci, the co-factors for pmHas are Mg2+ and Mn2+, with Mn2+ having a greater influence [350], which indicates a difference in the kinetic optima of these organisms. When the terminal part of pmHas is replaced, binding to the GlcA-transferase domain increases sharply due to increased flexibility [358]. The transfer of GlcNAc and GlcA is catalyzed by two different glycosyltransferase sites [332], which are assumed to coexist in a single polypeptide [359].

9.2. Escherichia coli

E. coli is a well-documented genus [360] widely used in biochemical industry [361], [362]. Most E. coli strains are harmless to humans, however, there are pathogenic strains that are the prominent cause of enteritis [363], diarrhea [364], septicemia [365], and other symptoms.

In E. coli, the ugd gene encodes an enzyme with a function analogous to that of hasB in streptococci; for their part, galF is similar to hasC, and glmU is akin to hasD, with sequence similarity of 54.2 %, 36.9 % and 39.4 %, respectively, compared to genes from S. pyogenes M1 GAS [184]. The substrates UDP-GlcA and UDP-GlcNAc, necessary for HA production, are not synthesized by E. coli. Therefore exogenous polysaccharide is used as an acceptor substrate [366]. The central part, also known as region 2 in the capsular family of genes of E. coli strain K4, contains a gene encoding a bifunctional enzyme that includes two conserved glycosyltransferase sites responsible for the synthesis of a specific K-antigen [367], [368], [369]. The functions of KfoC are identical to those of the hyaluronan synthase from P. multocida [370]. The addition of phosphorus and sorbitol salts such as isopropyl β-D-1-thiogalactopyranoside (IPTG) [371] leads to an increase of the HA molecular weight.

9.3. Agrobacterium

Agrobacterium is classified as a Gram-negative α-proteobacterium, commonly used as a genome-editing tool to generate transgenic plants [372]. The variety of applications of Agrobacterium in plant biotechnology was studied by Sardesai and Subramanyam [373].

Curdlan (1,3-β-d-glucan) producing Agrobacterium species are of interest for the oligosaccharide synthesis on account of their propensity for highly efficient regeneration of UDP-glucose [374], however, the use of curdlan-deficient mutants for the production of HA does not contribute to an increase in product yield [375]. The concentration of UDP-glucose is proportional to that of uridine monophosphate (UMP) [376]. As demonstrated by Mao et al., coexpression of the HA synthase gene from P. multocida and kfiD gene encoding UDP-glucose dehydrogenase from E. coli K5 enables Agrobacterium to produce HA [375], albeit the use of two T5 promoters is recommended for a successful expression of the kfiD gene [375].

10. Production of HA with fungi

In biotechnology, fungi have a number of undeniable advantages over bacteria – fast growth, easy genetic manipulation, and absence of endotoxins and viral DNA. They are capable of producing a variety of substances, including HA and its derivatives [377]. However, the main disadvantage of using yeast is the high risk of hyperglycosylation of recombinant proteins [378], [379], [380]. The most promising hosts for the production of heterologous proteins among yeasts are Saccharomyces cerevisiae [381], [382], [383] and Pichia pastoris [384], [385], [386]. The HA yield by recombinant yeasts in which mammalian genes were expressed does not exceed that from recombinant organisms with bacterial gene expression [148]. Their low activity is presumably associated with post-translational regulation [387]. An overview of HA fermentation conditions, yield and molecular weight of HA obtained from fungi is presented in (Table 5).

Table 5.

Overview of HA from fungi: fermentation conditions, yield and molecular weight.

Host organism Gene and origin Fermentation conditions HA yield (g/l) HA MW (×106Da) Ref.
S. cerevisiae INSc1 DG42 gene (from X. laevis) expression assembled with plasmid pYES2 Medium: uracil-deficient synthetic media with 1.5 % raffinose and 5 % glycerol
Aeration: ND
Temperature: ND
Duration: ND
pH: ND
Impeller speed: ND
ND ∼0.067 [399]
K. lactis GG799 hasB (from X. laevis) and hasA gene (from P. multocida) expression induced by PLAC4-inductive promoter Medium: 7.5 g/l yeast extract, 10 g/l peptone, 40 g/l glucose, 2.5 g/l K2HPO4, 0.9 g/l MgSO4·7H2O, 5 g/l NaCl, 0.4 g/l glutamine, 0.6 g/l glutamate.
Aeration: 2 vvm
Temperature: 30
Duration: 24
pH: 6
Impeller speed: 200 rpm
1.89 2.097 [148]
P. pastoris GS115 xhasA2 (from X. laevis) and hasC, hasD, (from P. pastoris GS115) genes assembled with plasmid pAO815 and xhasB (from X. laevis), hasC, hasD, hasE (from P. pastoris GS115) genes assembled with plasmid pGAPZB overexpression Medium: YPD medium (1 % yeast extract, 2 % peptone, 2 % glucose), 40 g/l glucose, 7.5 g/l yeast extract, 10 g/l peptone, 2.5 g/l K2HPO4, 0.5 g/l MgSO4, 5 g/l NaCl, 0.4 g/l glutamine, 0.6 g/l glutamic acid, 0.2 g/l oxalic acid
Aeration: 0.7 vvm
Temperature: 30
Duration: 48
pH: 7
Impeller speed: 500 rpm
1.70 1.20 [408]

ND – no data.

10.1. Cryptococcus neoformans

Cryptococcus neoformans is a pathogenic yeast that causes meningitis [388] and fungal meningoencephalitis [389]. The latter is especially harmful to immunocompromised patients. Due to the pathogenicity of C. neoformans, it has not been previously used as a HA producer.

The cps-1 gene from C. neoformans encodes a protein analogous to the hyaluronic acid synthase of higher eukaryotes [390]. The presence of HA as a capsule component provides virulence to C. neoformans [391]. C. neoformans can be used as an origin of the cps-1 gene for heterogeneous expression [392].

10.2. Saccharomyces cerevisiae

Saccharomyces cerevisiae is a fully sequenced [393], [394] non-methylotrophic yeast recognized as a GRAS organism. The FDA has approved the use of S. cerevisiae for the production of pharmaceuticals, e.g. artemisinin [395] and emodin [396]. A detailed review on biologically active secondary metabolites of S. cerevisiae used in pharmacology has been published [397].

The activity of glycosyltransferases of S. cerevisiae has been painstakingly explored [133]. Due to the fact that S. cerevisiae contains intrinsic UDP-glucose, the reconstruction of the UDP-GlcpA synthesis pathway is possible with the genes UGD1 and UXS3 from Arabidopsis thaliana [398]. It was demonstrated that the presence of Mg2+ ions is required for HA synthesis in vitro [399]. The co-expression of UDP-dehydrogenase and CPS1p genes from C. neoformans in S. cerevisiae allows attainment of a high level of hyaluronic acid [392].

10.3. Kluyveromyces lactis

Kluyveromyces lactis is a non-methylotrophic yeast with GRAS status that is involved in industrial scale production of secreted and intracellular enzymes, such as lactase [400], [401], bovine prochymosin [401] and inulinase [402]. The prospects of using K. lactis for applications in food industry and biotechnology were reviewed by Karim [403]. The highest HA titers were achieved by co-expression of hasA gene from P. multocida with has B gene from X. leavis [148].

10.4. Pichia pastoris

Pichia pastoris is a methylotrophic yeast that is in contrast to H. polymorpha not thermotolerant. P. pastoris, as well as S. cerevisiae, is extensively used as an expression system for recombinant protein production [404], in particular for biosynthesis of intricate bioactive molecules such as parasin I peptide [405] and streptavidin [406]. It was previously reported by Farinha that P. pastoris could be used as a source of valuable polysaccharides, e.g. a chitin-glucan copolymer complex with a molar ratio of chitin to β-glucan of 12:88 [407].

In recombinant P. pastoris strains, UDP-GlcA has a more significant influence on HA synthesis than UDP-GlcNAc. This was experimentally confirmed by the finding that the HA amount produced by organisms with a higher xhasB copy number did not significantly exceed the HA yield in organisms with a lower number of xhasB [408]. Lowering of the temperature at the cultivation stage leads to a decrease in the concentration of produced HA [408].

11. Conclusion and perspective

Due to the variety of applications, the commercial interest in large-scale and cost-effective production of HA remains strong and is growing steadily. S. zooepidemicus has been studied the most among all reported biological sources of HA because it was historically used for HA manufacturing. In this review, we summarized the key factors limiting HA production by S. zooepidemicus, however, these factors need to be further clarified.

Recombinant organisms are considered safe and cost-effective alternative sources of HA due to the absence of the need for purification from toxins. Among gram-positive and gram-negative bacteria, Bacillus sp. and Escherichia coli, respectively, have the greatest potential because of their commercial availability, however, their productivity still cannot be compared with that of native producers due to the instability of plasmids used for gene expression. Fungi are superior to bacteria in growth rate and are less demanding on the nutrient medium, moreover they are simpler to genetically manipulate. These factors make them one of the most promising organisms for modern HA production.

Obtaining HA via microbial and fungal fermentation is still highly efficient on an industrial scale due to the simplicity of implementation and minimal economic costs.

CRediT authorship contribution statement

E.V. Shikina: Writing – original draft, Visualization. R.A. Kovalevsky: Writing – original draft, Formal analysis. A.I. Shirkovskaya: Writing – review & editing. Ph.V. Toukach: Supervision, Conceptualization, Data curation, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  • 1.Linhardt R.J., Toida T. Role of glycosaminoglycans in cellular communication. Acc Chem Res. 2004;37(7):431–438. doi: 10.1021/ar030138x. [DOI] [PubMed] [Google Scholar]
  • 2.Severin I.C., Soares A., Hantson J., Teixeira M., Sachs D., Valognes D., et al. Glycosaminoglycan analogs as a novel anti-inflammatory strategy. Front Immunol. 2012;3:293. doi: 10.3389/fimmu.2012.00293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Voynow J.A., Zheng S., Kummarapurugu A.B. Glycosaminoglycans as multifunctional anti-elastase and anti-inflammatory drugs in cystic fibrosis lung disease. Front Pharmacol. 2020;11:1011. doi: 10.3389/fphar.2020.01011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kowitsch A., Zhou G., Groth T. Medical application of glycosaminoglycans: a review. J Tissue Eng Regener Med. 2018;12(1):23–41. doi: 10.1002/term.2398. [DOI] [PubMed] [Google Scholar]
  • 5.Lin L., Li S., Gao N., Wang W., Zhang T., Yang L., et al. The toxicology of native fucosylated glycosaminoglycans and the safety of their depolymerized products as anticoagulants. Mar Drugs. 2021;19(9):487. doi: 10.3390/md19090487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lepedda A.J., Nieddu G., Formato M., Baker M.B., Fernandez-Perez J., Moroni L. Glycosaminoglycans: from vascular physiology to tissue engineering applications. Front Chem. 2021;9 doi: 10.3389/fchem.2021.680836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Prydz K. Determinants of glycosaminoglycan (GAG) structure. Biomolecules. 2015;5(3):2003–2022. doi: 10.3390/biom5032003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Turino G.M., Cantor J.O. Hyaluronan in respiratory injury and repair. Am J Respir Crit Care Med. 2003;167(9):1169–1175. doi: 10.1164/rccm.200205-449PP. [DOI] [PubMed] [Google Scholar]
  • 9.Ghiselli G. Drug-mediated regulation of glycosaminoglycan biosynthesis. Med Res Rev. 2017;37(5):1051–1094. doi: 10.1002/med.21429. [DOI] [PubMed] [Google Scholar]
  • 10.Potenzone R., Hopfinger A.J. Conformational analysis of glycosaminoglycans. III. Conformational properties of hyaluronic acid and sodium hyaluronate. Polym J. 1978;10(2):181–199. doi: 10.1295/polymj.10.181. [DOI] [Google Scholar]
  • 11.Snetkov P., Zakharova K., Morozkina S., Olekhnovich R., Uspenskaya M. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers. 2020;12(8):1800. doi: 10.3390/polym12081800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Liu J., Wang Y., Li Z., Ren Y., Zhao Y., Zhao G. Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation. RSC Adv. 2018;8(63):36167–36171. doi: 10.1039/c8ra07349j. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chong B.F., Blank L.M., McLaughlin R., Nielsen L.K. Microbial hyaluronic acid production. Appl Biochem Biotechnol. 2005;66(4):341–351. doi: 10.1007/s00253-004-1774-4. [DOI] [PubMed] [Google Scholar]
  • 14.Westbrook A.W., Ren X., Oh J., Moo-Young M., Chou C.P. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metab Eng. 2018;47:401–413. doi: 10.1016/j.ymben.2018.04.016. [DOI] [PubMed] [Google Scholar]
  • 15.Woo J.E., Seong H.J., Lee S.Y., Jang Y.S. Metabolic engineering of Escherichia coli for the production of hyaluronic acid from glucose and galactose. Front Bioeng Biotechnol. 2019;7:351. doi: 10.3389/fbioe.2019.00351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Manfrao-Netto J.H.C., Queiroz E.B., de Oliveira Junqueira A.C., Gomes A.M.V., Gusmao de Morais D., Paes H.C., et al. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol. 2022;132(2):822–840. doi: 10.1111/jam.15242. [DOI] [PubMed] [Google Scholar]
  • 17.Blundell C.D., Deangelis P.L., Almond A. Hyaluronan: the absence of amide-carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models. Biochem J. 2006;396(3):487–498. doi: 10.1042/BJ20060085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sasaki T., Miyata M. Characterization of hidden chirality: two-fold helicity in β-strands. Symmetry. 2019;11(4):499. doi: 10.3390/sym11040499. [DOI] [Google Scholar]
  • 19.Haxaire K., Braccini I., Milas M., Rinaudo M., Perez S. Conformational behavior of hyaluronan in relation to its physical properties as probed by molecular modeling. Glycobiology. 2000;10(6):587–594. doi: 10.1093/glycob/10.6.587. [DOI] [PubMed] [Google Scholar]
  • 20.Varela-Aramburu S., Su L., Mosquera J., Morgese G., Schoenmakers S.M.C., Cardinaels R., et al. Introducing hyaluronic acid into supramolecular polymers and hydrogels. Biomacromolecules. 2021;22(11):4633–4641. doi: 10.1021/acs.biomac.1c00927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Owen SC, Kuo J-W, Prestwich GD. 2.14 Hyaluronic Acid. In Comprehensive Biomaterials II. Elsevier; 2017. pp. 306–331. [DOI] [Google Scholar]
  • 22.Neelamegham S., Aoki-Kinoshita K., Bolton E., Frank M., Lisacek F., Lutteke T., et al. Updates to the symbol nomenclature for glycans guidelines. Glycobiology. 2019;29(9):620–624. doi: 10.1093/glycob/cwz045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Fittolani G., Seeberger P.H., Delbianco M. Helical polysaccharides. Pept Sci. 2019;112:1. doi: 10.1002/pep2.24124. [DOI] [Google Scholar]
  • 24.Scott J.E., Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proc Natl Acad Sci USA. 1999;96(9):4850–4855. doi: 10.1073/pnas.96.9.4850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Giubertoni G., Burla F., Martinez-Torres C., Dutta B., Pletikapic G., Pelan E., et al. Molecular origin of the elastic state of aqueous hyaluronic acid. J Phys Chem B. 2019;123(14):3043–3049. doi: 10.1021/acs.jpcb.9b00982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Mihajlovic M., Fermin L., Ito K., van Nostrum C.F., Vermonden T. Hyaluronic acid-based supramolecular hydrogels for biomedical applications. Multifunct Mater. 2021;4(3) doi: 10.1088/2399-7532/ac1c8a. [DOI] [Google Scholar]
  • 27.NIH Center for macromolecular modeling & bioinformatics. NAMD molecular dynamics software, https://www.ks.uiuc.edu/Research/namd/2.10/ug/node1.html accessed on 2022 Nov 5.
  • 28.Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–1802. doi: 10.1002/jcc.20289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Aumond J.P.A. Massachusetts Institute of Technology; 1999. model for the calculations of solvent effects on reaction rates for process design purposes. [Google Scholar]
  • 30.Maleki A., Kjøniksen A.-L., Nyström B. Effect of pH on the behavior of hyaluronic acid in dilute and semidilute aqueous solutions. Macromol Symp. 2008;274(1):131–140. doi: 10.1002/masy.200851418. [DOI] [Google Scholar]
  • 31.Berezney J.P., Saleh O.A. Electrostatic effects on the conformation and elasticity of hyaluronic acid, a moderately flexible polyelectrolyte. Macromolecules. 2017;50(3):1085–1089. doi: 10.1021/acs.macromol.6b02166. [DOI] [Google Scholar]
  • 32.Taweechat P., Pandey R.B., Sompornpisut P. Conformation, flexibility and hydration of hyaluronic acid by molecular dynamics simulations. Carbohydr Res. 2020;493 doi: 10.1016/j.carres.2020.108026. [DOI] [PubMed] [Google Scholar]
  • 33.Shan G., Meihe L., Minchao K., Rui Z., Xiaopeng W., Guangjian Z., et al. Identification and validation of osteopontin and receptor for hyaluronic acid-mediated motility (RHAMM, CD168) for potential immunotherapeutic significance of in lung squamous cell carcinoma. Int Immunopharmacol. 2022;107 doi: 10.1016/j.intimp.2022.108715. [DOI] [PubMed] [Google Scholar]
  • 34.Maxwell C.A., Keats J.J., Crainie M., Sun X., Yen T., Shibuya E., et al. RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol Biol Cell. 2003;14(6):2262–2276. doi: 10.1091/mbc.e02-07-0377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yang C., Li C., Zhang P., Wu W., Jiang X. Redox responsive hyaluronic acid nanogels for treating RHAMM (CD168) over-expressive cancer, both primary and metastatic tumors. Theranostics. 2017;7(6):1719–1734. doi: 10.7150/thno.18340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Obut M., Oglak S.C. Expression of CD44 and IL-10 in normotensive and preeclamptic placental tissue. Ginekol Pol. 2020;91(6):334–341. doi: 10.5603/GP.2020.0058. [DOI] [PubMed] [Google Scholar]
  • 37.Sevic I., Vitale D.L., Spinelli F.M., Valenzuela M. The hyaluronic acid–CD44 interaction in the physio- and pathological stem cell niche. Proteoglycans in Stem Cells. 2021;9:237–262. doi: 10.1007/978-3-030-73453-4_10. [DOI] [Google Scholar]
  • 38.Turley E.A., Noble P.W., Bourguignon L.Y. Signaling properties of hyaluronan receptors. J Biol Chem. 2002;277(7):4589–4592. doi: 10.1074/jbc.R100038200. [DOI] [PubMed] [Google Scholar]
  • 39.Kuwabara H., Yoneda M., Hayasaki H., Nakamura T., Mori H. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules. Biochem Biophys Res Commun. 2006;339(3):971–976. doi: 10.1016/j.bbrc.2005.11.101. [DOI] [PubMed] [Google Scholar]
  • 40.Wolf K.J., Shukla P., Springer K., Lee S., Coombes J.D., Choy C.J., et al. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. PNAS. 2020;117(21):11432–11443. doi: 10.1073/pnas.1914294117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Song J.M., Molla K., Anandharaj A., Cornax I., MG O.S., Kirtane A.R., Panyam J., Kassie F. Triptolide suppresses the in vitro and in vivo growth of lung cancer cells by targeting hyaluronan-CD44/RHAMM signaling. Oncotarget. 2017;8(16):26927–26940. doi: 10.18632/oncotarget.15879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Song J.M., Im J., Nho R.S., Han Y.H., Upadhyaya P., Kassie F. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog. 2019;58(3):321–333. doi: 10.1002/mc.22930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Ariyoshi W., Takahashi N., Hida D., Knudson C.B., Knudson W. Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides. Arthritis Rheum. 2012;64(1):187–197. doi: 10.1002/art.33329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Shi D., Sheng A., Chi L. Glycosaminoglycan-protein interactions and their roles in human disease. Front Mol Biosci. 2021;8 doi: 10.3389/fmolb.2021.639666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sosicka P, Ng BG, Freez HH. In: Comprehensive Glycoscience. 2nd ed. Barchi J., editor. Elsevier; 2021. 5.19 - Congenital Disorders of Glycosylation; pp. 294–334. [DOI] [Google Scholar]
  • 46.Allahverdian S., Ortega C., Francis G.A. Smooth muscle cell-proteoglycan-lipoprotein interactions as drivers of atherosclerosis. Handb Exp Pharmacol. 2022;270:335–358. doi: 10.1007/164_2020_364. [DOI] [PubMed] [Google Scholar]
  • 47.Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10(4):1558–1570. doi: 10.1016/j.actbio.2013.12.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Temple-Wong M.M., Ren S., Quach P., Hansen B.C., Chen A.C., Hasegawa A., et al. Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Res Therapy. 2016;18:18. doi: 10.1186/s13075-016-0922-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Balazs E.A. The role of hyaluronan in the structure and function of the biomatrix of connective tissues. Struct Chem. 2009;20(2):233–243. doi: 10.1007/s11224-009-9428-x. [DOI] [Google Scholar]
  • 50.Cowman M.K., Lee H.G., Schwertfeger K.L., McCarthy J.B., Turley E.A. The content and size of hyaluronan in biological fluids and tissues. Front Immunol. 2015;6:261. doi: 10.3389/fimmu.2015.00261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Tavianatou A.G., Caon I., Franchi M., Piperigkou Z., Galesso D., Karamanos N.K. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286(15):2883–2908. doi: 10.1111/febs.14777. [DOI] [PubMed] [Google Scholar]
  • 52.Cortes H., Caballero-Florán I.H., Mendoza-Muñoz N., Córdova-Villanueva E.N., Escutia-Guadarrama L., Figueroa-González G., et al. Hyaluronic acid in wound dressings. Cell Mol Biol. 2020;66(4):191–198. doi: 10.14715/cmb/2020.66.4.23. [DOI] [PubMed] [Google Scholar]
  • 53.Ferrari L.F., Khomula E.V., Araldi D., Levine J.D. CD44 signaling mediates high molecular weight hyaluronan-induced antihyperalgesia. J Neurosci. 2018;38(2):308–321. doi: 10.1523/JNEUROSCI.2695-17.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Takasugi M., Firsanov D., Tombline G., Ning H., Ablaeva J., Seluanov A., et al. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat Commun. 2020;11(1):2376. doi: 10.1038/s41467-020-16050-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic acid in the third millennium. Polymers. 2018;10(7):701. doi: 10.3390/polym10070701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Zhao K., Wen Y., Bunpetch V., Lin J., Hu Y., Zhang X., et al. Hype or hope of hyaluronic acid for osteoarthritis: integrated clinical evidence synthesis with multi-organ transcriptomics. J Orthopaedic Transl. 2022;32:91–100. doi: 10.1016/j.jot.2021.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Calvet J., Khorsandi D., Tio L., Monfort J. Evaluation of a single-shot of a high-density viscoelastic solution of hyaluronic acid in patients with symptomatic primary knee osteoarthritis: the no-dolor study. BMC Musculoskeletal Disord. 2022;23(1):442. doi: 10.1186/s12891-022-05383-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Jun J.H., Bang S.P., Park H.S., Yoon D., Ahn J.Y., Kim S.J., et al. A randomized multicenter clinical evaluation of sequential application of 0.3% and 0.15% hyaluronic acid for treatment of dry eye. Jpn J Ophthalmol. 2022;66(1):58–67. doi: 10.1007/s10384-021-00885-x. [DOI] [PubMed] [Google Scholar]
  • 59.Hynnekleiv L., Magno M., Vernhardsdottir R.R., Moschowits E., Tonseth K.A., Dartt D.A., et al. Hyaluronic acid in the treatment of dry eye disease. Acta Ophthalmolologica. 2022 doi: 10.1111/aos.15159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Li K., Meng F., Li Y.R., Tian Y., Chen H., Jia Q., et al. Application of nonsurgical modalities in improving facial aging. Int J Dent. 2022;2022:8332631. doi: 10.1155/2022/8332631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Trevidic P., Kim H.J., Harb A., Ho W.W.S., Liew S. Consensus recommendations on the use of hyaluronic acid-based fillers for nonsurgical nasal augmentation in Asian patients. Plast Reconstr Surg. 2022;149(2):384–394. doi: 10.1097/PRS.0000000000008722. [DOI] [PubMed] [Google Scholar]
  • 62.Shimizu H., Shimoda M., Mochizuki S., Miyamae Y., Abe H., Chijiiwa M., et al. Hyaluronan-binding protein involved in hyaluronan depolymerization is up-regulated and involved in hyaluronan degradation in human osteoarthritic cartilage. Am J Pathol. 2018;188(9):2109–2119. doi: 10.1016/j.ajpath.2018.05.012. [DOI] [PubMed] [Google Scholar]
  • 63.Wang C.T., Lin Y.T., Chiang B.L., Lin Y.H., Hou S.M. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthritis Cartilage. 2006;14(12):1237–1247. doi: 10.1016/j.joca.2006.05.009. [DOI] [PubMed] [Google Scholar]
  • 64.Miyazaki T., Sakamoto T., Aoki N., Nakajima H., Oki H., Matsumine A. Does hyaluronic acid injection prevent the progression of knee osteoarthritis? Osteoarthritis and Cartilage. 2020;28:S500. doi: 10.1016/j.joca.2020.02.785. [DOI] [Google Scholar]
  • 65.Checinski M., Sikora M., Checinska K., Nowak Z., Chlubek D. The administration of hyaluronic acid into the temporomandibular joints’ cavities increases the mandible’s mobility: a systematic review and meta-analysis. J Clin Med. 2022;11(7):1901. doi: 10.3390/jcm11071901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Grand View Research. Hyaluronic acid market size, share & trends analysis report by application (dermal fillers, osteoarthritis (single injection, three injection, five injection), ophthalmic, vesicoureteral reflux), by region, and segment forecasts, 2020 – 2027, https://www.grandviewresearch.com/industry-analysis/hyaluronic-acid-market accessed on 2021 Jan 10.
  • 67.Wu Y.Z., Huang H.T., Ho C.J., Shih C.L., Chen C.H., Cheng T.L., et al. Molecular weight of hyaluronic acid has major influence on its efficacy and safety for viscosupplementation in hip osteoarthritis: a systematic review and meta-analysis. Cartilage. 2021;13:169S–184S. doi: 10.1177/19476035211021903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Hummer C.D., Angst F., Ngai W., Whittington C., Yoon S.S., Duarte L., et al. High molecular weight Intraarticular hyaluronic acid for the treatment of knee osteoarthritis: a network meta-analysis. BMC Musculoskeletal Disord. 2020;21(1):702. doi: 10.1186/s12891-020-03729-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Pereira T.V., Jüni P., Saadat P., Xing D., Yao L., Bobos P., et al. Viscosupplementation for knee osteoarthritis: systematic review and meta-analysis. Br Med J. 2022;378:e069722. doi: 10.1136/bmj-2022-069722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Zhao J., Huang H., Liang G., Zeng L.F., Yang W., Liu J. Effects and safety of the combination of platelet-rich plasma (PRP) and hyaluronic acid (HA) in the treatment of knee osteoarthritis: a systematic review and meta-analysis. BMC Musculoskeletal Disord. 2020;21(1):224. doi: 10.1186/s12891-020-03262-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Belk J.W., Kraeutler M.J., Houck D.A., Goodrich J.A., Dragoo J.L., McCarty E.C. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2021;49(1):249–260. doi: 10.1177/0363546520909397. [DOI] [PubMed] [Google Scholar]
  • 72.The definition and classification of dry eye disease: report of the definition and classification subcommittee of the International Dry Eye Workshop (2007). The Ocular Surface2007;5(2): 75-92. doi: 10.1016/s1542-0124(12)70081-2. [DOI] [PubMed]
  • 73.Iwashita H., Mabuchi K., Itokawa T., Okajima Y., Suzuki T., Hori Y. Evaluation of the lubricating effect of hyaluronic acid on contact lenses using a pendulum-type friction tester under mimicking physiological conditions. Eye Contact Lens. 2022;48(2):83–87. doi: 10.1097/ICL.0000000000000853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Yang Y.J., Lee W.Y., Kim Y.J., Hong Y.P. A meta-analysis of the efficacy of hyaluronic acid eye drops for the treatment of Dry Eye Syndrome. Int J Environ Res Public Health. 2021;18(5):2383. doi: 10.3390/ijerph18052383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Beck R., Stachs O., Koschmieder A., Mueller-Lierheim W.G.K., Peschel S., van Setten G.B. hyaluronic acid as an alternative to autologous human serum eye drops: initial clinical results with high-molecular-weight hyaluronic acid eye drops. Case Rep Ophthalmol. 2019;10(2):244–255. doi: 10.1159/000501712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.De-Hita-Cantalejo C., Sanchez-Gonzalez M.C., Silva-Viguera C., Garcia-Romera M.C., Feria-Mantero R., Sanchez-Gonzalez J.M. Efficacy of hyaluronic acid 0.3%, cyanocobalamin, electrolytes, and P-Plus in menopause patients with moderate dry eye disease. Graefe’s Arch Clin Exp Ophthalmol. 2022;260(2):529–535. doi: 10.1007/s00417-021-05415-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Cabral L.R.B., Teixeira L.N., Gimenez R.P., Demasi A.P.D., de Brito Junior R.B., de Araujo V.C., et al. Effect of hyaluronic acid and poly-L-lactic acid dermal fillers on collagen synthesis: an in vitro and in vivo study. Clin Cosmetic Invest Dermatol. 2020;13:701–710. doi: 10.2147/CCID.S266015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Ronan S.J., Eaton L., Lehman A., Pilcher B., Erickson C.P. Histologic characterization of polymethylmethacrylate dermal filler biostimulatory properties in human skin. Dermatol Surg. 2019;45(12):1580–1584. doi: 10.1097/DSS.0000000000001877. [DOI] [PubMed] [Google Scholar]
  • 79.Lorenc Z.P., Pilcher B., McArthur T., Patel N. Rheology of polymethylmethacrylate-collagen gel filler: physiochemical properties and clinical applications. Aesthetic Surg J. 2021;41(3):NP88-NP93. doi: 10.1093/asj/sjaa314. [DOI] [PubMed] [Google Scholar]
  • 80.Wongprasert P., Dreiss C.A., Murray G. Evaluating hyaluronic acid dermal fillers: a critique of current characterization methods. Dermatol Ther. 2022;35(6):e15453. doi: 10.1111/dth.15453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Master M., Roberts S. Long-term MRI follow-up of hyaluronic acid dermal filler. Plast Reconstructive Surg Global Open. 2022;10(4):e4252. doi: 10.1097/GOX.0000000000004252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Tam C., Khong J., Tam K., Vasilev R., Wu W., Hazany S. A comprehensive review of non-energy-based treatments for atrophic acne scarring. Clin Cosmetic Invest Dermatol. 2022;15:455–469. doi: 10.2147/CCID.S350040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Chilicka K., Rusztowicz M., Szygula R., Nowicka D. Methods for the improvement of acne scars used in dermatology and cosmetology: a review. J Clin Med. 2022;11(10):2744. doi: 10.3390/jcm11102744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Grand View Research. Facial injectable market size, share & trends analysis report by product (collagen, hyaluronic acid, botulinum toxin type a, calcium hydroxylapatite, polymer fillers), by application, by region, and segment forecasts, 2022-2030, https://www.grandviewresearch.com/industry-analysis/facial-injectables-industry accessed on 2022 Nov 4.
  • 85.Ucm R., Aem M., Lhb Z., Kumar V., Taherzadeh M.J., Garlapati V.K., et al. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications. Bioengineered. 2022;13(4):9645–9661. doi: 10.1080/21655979.2022.2057760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Juncan A.M., Moisa D.G., Santini A., Morgovan C., Rus L.L., Vonica-Tincu A.L., et al. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules. 2021;26(15):4429. doi: 10.3390/molecules26154429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Bayer I.S. Hyaluronic acid and controlled release: a review. Molecules. 2020;25(11):2649. doi: 10.3390/molecules25112649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Qiu Y., Ma Y., Huang Y., Li S., Xu H., Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym. 2021;269 doi: 10.1016/j.carbpol.2021.118320. [DOI] [PubMed] [Google Scholar]
  • 89.Yao Z.Y., Qin J., Gong J.S., Ye Y.H., Qian J.Y., Li H., et al. Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym. 2021;264 doi: 10.1016/j.carbpol.2021.118015. [DOI] [PubMed] [Google Scholar]
  • 90.Takahashi A., Suzuki Y., Suhara T., Omichi K., Shimizu A., Hasegawa K., et al. In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules. 2013;14(10):3581–3588. doi: 10.1021/bm4009606. [DOI] [PubMed] [Google Scholar]
  • 91.Donnelly P.E., Chen T., Finch A., Brial C., Maher S.A., Torzilli P.A. Photocrosslinked tyramine-substituted hyaluronate hydrogels with tunable mechanical properties improve immediate tissue-hydrogel interfacial strength in articular cartilage. J Biomater Sci Polym Ed. 2017;28(6):582–600. doi: 10.1080/09205063.2017.1289035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Hong B.M., Park S.A., Park W.H. Effect of photoinitiator on chain degradation of hyaluronic acid. Biomater Res. 2019;23:21. doi: 10.1186/s40824-019-0170-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Li J., Qiao M., Ji Y., Lin L., Zhang X., Linhardt R.J. Chemical, enzymatic and biological synthesis of hyaluronic acids. Int J Biol Macromol. 2020;152:199–206. doi: 10.1016/j.ijbiomac.2020.02.214. [DOI] [PubMed] [Google Scholar]
  • 94.Ahmed M.K., Kumer A., Imran A.B. Facile fabrication of polymer network using click chemistry and their computational study. R Soc Open Sci. 2021;8(3) doi: 10.1098/rsos.202056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Manzi G., Zoratto N., Matano S., Sabia R., Villani C., Coviello T., et al. “Click” hyaluronan based nanohydrogels as multifunctionalizable carriers for hydrophobic drugs. Carbohydr Polym. 2017;174:706–715. doi: 10.1016/j.carbpol.2017.07.003. [DOI] [PubMed] [Google Scholar]
  • 96.Piluso S., Hiebl B., Gorb S.N., Kovalev A., Lendlein A., Neffe A.T. Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int J Artif Organs. 2011;34(2):192–197. doi: 10.5301/ijao.2011.6394. [DOI] [PubMed] [Google Scholar]
  • 97.Park S.H., Park J.Y., Ji Y.B., Ju H.J., Min B.H., Kim M.S. An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold. Acta Biomater. 2020;117:108–120. doi: 10.1016/j.actbio.2020.09.013. [DOI] [PubMed] [Google Scholar]
  • 98.Zhang Y., Liu S., Li T., Zhang L., Azhar U., Ma J., et al. Cytocompatible and non-fouling zwitterionic hyaluronic acid-based hydrogels using thiol-ene “click” chemistry for cell encapsulation. Carbohydr Polym. 2020;236 doi: 10.1016/j.carbpol.2020.116021. [DOI] [PubMed] [Google Scholar]
  • 99.Darling N.J., Xi W., Sideris E., Anderson A.R., Pong C., Carmichael S.T., et al. Click by click microporous annealed particle (MAP) scaffolds. Adv Healthcare Mater. 2020;9(10):e1901391. doi: 10.1002/adhm.201901391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Li Y., Wang X., Han Y., Sun H.Y., Hilborn J., Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater. 2021;16(2) doi: 10.1088/1748-605X/abc0b3. [DOI] [PubMed] [Google Scholar]
  • 101.Hong B.M., Hong G.L., Gwak M.A., Kim K.H., Jeong J.E., Jung J.Y., et al. Self-crosslinkable hyaluronate-based hydrogels as a soft tissue filler. Int J Biol Macromol. 2021;185:98–110. doi: 10.1016/j.ijbiomac.2021.06.047. [DOI] [PubMed] [Google Scholar]
  • 102.Kim E., Kim M.H., Song J.H., Kang C., Park W.H. Dual crosslinked alginate hydrogels by riboflavin as photoinitiator. Int J Biol Macromol. 2020;154:989–998. doi: 10.1016/j.ijbiomac.2020.03.134. [DOI] [PubMed] [Google Scholar]
  • 103.Hintze V., Schnabelrauch M., Rother S. Chemical modification of hyaluronan and their biomedical applications. Front Chem. 2022;10 doi: 10.3389/fchem.2022.830671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Zhang X., Lin L., Huang H., Linhardt R.J. Chemoenzymatic synthesis of glycosaminoglycans. Acc Chem Res. 2020;53(2):335–346. doi: 10.1021/acs.accounts.9b00420. [DOI] [PubMed] [Google Scholar]
  • 105.Wang Z., Sundara Sekar B., Li Z. Recent advances in artificial enzyme cascades for the production of value-added chemicals. Bioresour Technol. 2021;323 doi: 10.1016/j.biortech.2020.124551. [DOI] [PubMed] [Google Scholar]
  • 106.Gottschalk J., Elling L. Current state on the enzymatic synthesis of glycosaminoglycans. Curr Opin Chem Biol. 2021;61:71–80. doi: 10.1016/j.cbpa.2020.09.008. [DOI] [PubMed] [Google Scholar]
  • 107.Zhou Y., Wu S., Mao J., Li Z. Bioproduction of benzylamine from renewable feedstocks via a nine-step artificial enzyme cascade and engineered metabolic pathways. ChemSusChem. 2018;11(13):2221–2228. doi: 10.1002/cssc.201800709. [DOI] [PubMed] [Google Scholar]
  • 108.Gottschalk J., Assmann M., Kuballa J., Elling L. Repetitive synthesis of high-molecular-weight hyaluronic acid with immobilized enzyme cascades. ChemSusChem. 2022;15(9):e202101071. doi: 10.1002/cssc.202101071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Li W., McArthur J.B., Chen X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr Res. 2019;472:86–97. doi: 10.1016/j.carres.2018.11.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Jing W., DeAngelis P.L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem. 2004;279(40):42345–42349. doi: 10.1074/jbc.M402744200. [DOI] [PubMed] [Google Scholar]
  • 111.Vivas-Ruiz D.E., Gonzalez-Kozlova E.E., Delgadillo J., Palermo P.M., Sandoval G.A., Lazo F., et al. Biochemical and molecular characterization of the hyaluronidase from Bothrops atrox Peruvian snake venom. Biochimie. 2019;162:33–45. doi: 10.1016/j.biochi.2019.03.022. [DOI] [PubMed] [Google Scholar]
  • 112.Burnaugh A.M., Frantz L.J., King S.J. Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol. 2008;190(1):221–230. doi: 10.1128/JB.01251-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Ziadlou R., Rotman S., Teuschl A., Salzer E., Barbero A., Martin I., et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater Sci Eng, C. 2021;120 doi: 10.1016/j.msec.2020.111701. [DOI] [PubMed] [Google Scholar]
  • 114.Stern R. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology. 2003;13(12):105–115. doi: 10.1093/glycob/cwg112. [DOI] [PubMed] [Google Scholar]
  • 115.Lago G., Oruna L., Cremata J., Perez C., Coto G., Lauzan E., et al. Isolation, purification and characterization of hyaluronan from human umbilical cord residues. Carbohydr Polym. 2005;62(4):321–326. doi: 10.1016/j.carbpol.2005.04.014. [DOI] [Google Scholar]
  • 116.Rosa C.S.d., Tovar A.F., Mourão P., Pereira R., Barreto P., Beirão L.H. Purification and characterization of hyaluronic acid from chicken combs. Ciência Rural. 2012;42(9):1682–1687. doi: 10.1590/s0103-84782012005000056. [DOI] [Google Scholar]
  • 117.Hardingham T.E., Muir H. Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem J. 1974;139(3):565–581. doi: 10.1042/bj1390565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Abdallah M.M., Fernandez N., Matias A.A., Bronze M.D.R. Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: extraction and purification methods. Carbohydr Polym. 2020;243 doi: 10.1016/j.carbpol.2020.116441. [DOI] [PubMed] [Google Scholar]
  • 119.Samadi M., Khodabandeh Shahraky M., Tabandeh F., Aminzadeh S., Dina M. Enhanced hyaluronic acid production in Streptococcus zooepidemicus by an optimized culture medium containing hyaluronidase inhibitor. Prep Biochem Biotech. 2022;52(4):413–423. doi: 10.1080/10826068.2021.1955710. [DOI] [PubMed] [Google Scholar]
  • 120.Zhang J., Hao N., Chen G.Q. Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid. Appl Biochem Biotechnol. 2006;71(2):222–227. doi: 10.1007/s00253-005-0164-x. [DOI] [PubMed] [Google Scholar]
  • 121.Liu L., Wang M., Du G., Chen J. Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Lett Appl Microbiol. 2008;46(3):383–388. doi: 10.1111/j.1472-765X.2008.02325.x. [DOI] [PubMed] [Google Scholar]
  • 122.Lu J.F., Zhu Y., Sun H.L., Liang S., Leng F.F., Li H.Y. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection. Lett Appl Microbiol. 2016;62(4):316–322. doi: 10.1111/lam.12546. [DOI] [PubMed] [Google Scholar]
  • 123.Torres-Acosta M.A., Castaneda-Aponte H.M., Mora-Galvez L.M., Gil-Garzon M.R., Banda-Magana M.P., Marcellin E., et al. Comparative economic analysis between endogenous and recombinant production of hyaluronic acid. Front Bioeng Biotechnol. 2021;9 doi: 10.3389/fbioe.2021.680278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Weigel P.H. Hyaluronan synthase: the mechanism of initiation at the reducing end and a pendulum model for polysaccharide translocation to the cell exterior. Int J Cell Biol. 2015;2015 doi: 10.1155/2015/367579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Egedal J.H., Xie G., Packard T.A., Laustsen A., Neidleman J., Georgiou K., et al. Hyaluronic acid is a negative regulator of mucosal fibroblast-mediated enhancement of HIV infection. Mucosal Immunol. 2021;14(5):1203–1213. doi: 10.1038/s41385-021-00409-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.DeAngelis P.L. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J Biol Chem. 1999;274(37):26557–26562. doi: 10.1074/jbc.274.37.26557. [DOI] [PubMed] [Google Scholar]
  • 127.Agarwal G. K, VK, Prasad SB, Bhaduri A, Jayaraman G. Biosynthesis of hyaluronic acid polymer: dissecting the role of sub structural elements of hyaluronan synthase. Sci Rep2019; 9(1): 12510. doi: 10.1038/s41598-019-48878-8. [DOI] [PMC free article] [PubMed]
  • 128.DeAngelis P.L. Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol Life Sci. 1999;56(7–8):670–682. doi: 10.1007/s000180050461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Toukach P.V., Egorova K.S. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. Nucleic Acids Res. 2016;44(D1):1229–1236. doi: 10.1093/nar/gkv840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Carbohydrate Structure Database. CSDB record search by ID, http://csdb.glycoscience.ru/database/core/search_id.php?id_list=1022,4702,11746,21669,25252,26901,28454,28720,29813,29830,43173,47837,47868,48433,48505,48511,48622,48816,112947,116463,117092,121712,128684 accessed on 2022 Nov 5.
  • 131.Golinska E., van der Linden M., Wiecek G., Mikolajczyk D., Machul A., Samet A., et al. Virulence factors of Streptococcus pyogenes strains from women in peri-labor with invasive infections. Eur J Clin Microbiol Infect Dis. 2016;35(5):747–754. doi: 10.1007/s10096-016-2593-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Vu-Khac H., Trinh T.T.H., Nguyen T.T.G., Nguyen X.T., Nguyen T.T. Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. Veterinary World. 2020;13(5):896–904. doi: 10.14202/vetworld.2020.896-904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Egorova K.S., Smirnova N.S., Toukach P.V. CSDB_GT, a curated glycosyltransferase database with close-to-full coverage on three most studied nonanimal species. Glycobiology. 2021;31(5):524–529. doi: 10.1093/glycob/cwaa107. [DOI] [PubMed] [Google Scholar]
  • 134.Carbohydrate Structure Database. CSDB glycosyltransferase search by ID, http://csdb.glycoscience.ru/database/core/search_gtr.php?id_list=2529,2763,2767,2770,2530,2638,2764 accessed on 2022 Nov 5.
  • 135.Stoolmiller A.C., Dorfman A. The biosynthesis of hyaluronic acid by Streptococcus. J Biol Chem. 1969;244(2):236–246. [PubMed] [Google Scholar]
  • 136.Tlapak-Simmons V.L., Baron C.A., Gotschall R., Haque D., Canfield W.M., Weigel P.H. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J Biol Chem. 2005;280(13):13012–13018. doi: 10.1074/jbc.M409788200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Bodevin-Authelet S., Kusche-Gullberg M., Pummill P.E., DeAngelis P.L., Lindahl U. Biosynthesis of hyaluronan: direction of chain elongation. J Biol Chem. 2005;280(10):8813–8818. doi: 10.1074/jbc.M412803200. [DOI] [PubMed] [Google Scholar]
  • 138.Prehm P. Biosynthesis of hyaluronan: direction of chain elongation. Biochem J. 2006;398(3):469–473. doi: 10.1042/BJ20060431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Hubbard C., McNamara J.T., Azumaya C., Patel M.S., Zimmer J. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan. J Mol Biol. 2012;418(1–2):21–31. doi: 10.1016/j.jmb.2012.01.053. [DOI] [PubMed] [Google Scholar]
  • 140.Choi S., Choi W., Kim S., Lee S.Y., Noh I., Kim C.W. Purification and biocompatibility of fermented hyaluronic acid for its applications to biomaterials. Biomater Res. 2014;18:6. doi: 10.1186/2055-7124-18-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Vigetti D., Deleonibus S., Moretto P., Karousou E., Viola M., Bartolini B., et al. Role of UDP-N-acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J Biol Chem. 2012;287(42):35544–35555. doi: 10.1074/jbc.M112.402347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Cheng F., Luozhong S., Guo Z., Yu H., Stephanopoulos G. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation. Biotechnol J. 2017;12(10):1700268. doi: 10.1002/biot.201700191. [DOI] [PubMed] [Google Scholar]
  • 143.Yoshimura T., Shibata N., Hamano Y., Yamanaka K. Heterologous production of hyaluronic acid in an epsilon-poly-L-lysine producer, Streptomyces albulus. Appl Environ Microbiol. 2015;81(11):3631–3640. doi: 10.1128/AEM.00269-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Zhang L., Huang H., Wang H., Chen J., Du G., Kang Z. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett. 2016;38(12):2103–2108. doi: 10.1007/s10529-016-2193-1. [DOI] [PubMed] [Google Scholar]
  • 145.de Oliveira J.D., Carvalho L.S., Gomes A.M., Queiroz L.R., Magalhaes B.S., Parachin N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact. 2016;15(1):119. doi: 10.1186/s12934-016-0517-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Pasomboon P, Chumnanpuen P, T E.K. Comparison of hyaluronic acid biosynthetic genes from different strains of Pasteurella multocida. Bioinformatics and biology insights2021, 15: 11779322211027406. 10.1177/11779322211027406. [DOI] [PMC free article] [PubMed]
  • 147.Nardini M., Ori M., Vigetti D., Gornati R., Nardi I., Perris R. Regulated gene expression of hyaluronan synthases during Xenopus laevis development. Gene Expr Patterns. 2004;4(3):303–308. doi: 10.1016/j.modgep.2003.10.006. [DOI] [PubMed] [Google Scholar]
  • 148.Gomes A.M.V., Netto C.M.J.H., Carvalho L.S., Parachin N.S. Heterologous hyaluronic acid production in Kluyveromyces lactis. Microorganisms. 2019;7(9):294. doi: 10.3390/microorganisms7090294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Huang Y., Askew E.B., Knudson C.B., Knudson W. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention. Matrix Biol. 2016;56:74–94. doi: 10.1016/j.matbio.2016.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Ohno S., Tanimoto K., Fujimoto K., Ijuin C., Honda K., Tanaka N., et al. Molecular cloning of rabbit hyaluronic acid synthases and their expression patterns in synovial membrane and articular cartilage. BBA. 2001;1520(1):71–78. doi: 10.1016/s0167-4781(01)00256-1. [DOI] [PubMed] [Google Scholar]
  • 151.Miyake Y., Sakurai M., Tanaka S., Tunjung W.A., Yokoo M., Matsumoto H., et al. Expression of hyaluronan synthase 1 and distribution of hyaluronan during follicular atresia in pig ovaries. Biol Reprod. 2009;80(2):249–257. doi: 10.1095/biolreprod.108.067694. [DOI] [PubMed] [Google Scholar]
  • 152.Schoenfelder M., Einspanier R. Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biol Reprod. 2003;69(1):269–277. doi: 10.1095/biolreprod.102.011577. [DOI] [PubMed] [Google Scholar]
  • 153.Wang S., Zhen L., Liu Z., Ai Q., Ji Y., Du G., et al. Identification and analysis of the promoter region of the human HAS3 gene. Biochem Biophys Res Commun. 2015;460(4):1008–1014. doi: 10.1016/j.bbrc.2015.03.142. [DOI] [PubMed] [Google Scholar]
  • 154.Nazeri A., Niazi A., Afsharifar A., Taghavi S.M., Moghadam A., Aram F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep. 2021;11(1):17966. doi: 10.1038/s41598-021-97139-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.DeAngelis P.L., Jing W., Graves M.V., Burbank D.E., Van Etten J.L. Hyaluronan synthase of chlorella virus PBCV-1. Science. 1997;278(5344):1800–1803. doi: 10.1126/science.278.5344.1800. [DOI] [PubMed] [Google Scholar]
  • 156.Jann K., Jann B. Polysaccharide antigens of Escherichia coli. Res Vet Sci. 1987;9(Suppl 5):517–526. doi: 10.1093/clinids/9.supplement_5.s517. [DOI] [PubMed] [Google Scholar]
  • 157.Chen W.Y., Marcellin E., Steen J.A., Nielsen L.K. The role of hyaluronic acid precursor concentrations in molecular weight control in Streptococcus zooepidemicus. Mol Biotechnol. 2014;56(2):147–156. doi: 10.1007/s12033-013-9690-4. [DOI] [PubMed] [Google Scholar]
  • 158.Murakami R., Muramatsu Y., Minami E., Masuda K., Sakaida Y., Endo S., et al. A novel assay of bacterial peptidoglycan synthesis for natural product screening. J Antibiot. 2009;62(3):153–158. doi: 10.1038/ja.2009.4. [DOI] [PubMed] [Google Scholar]
  • 159.van Dam V., Olrichs N., Breukink E. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies. ChemBioChem. 2009;10(4):617–624. doi: 10.1002/cbic.200800678. [DOI] [PubMed] [Google Scholar]
  • 160.Liu Y., Breukink E. The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics. 2016;5(3):28. doi: 10.3390/antibiotics5030028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Dick G., Akslen-Hoel L.K., Grondahl F., Kjos I., Maccarana M., Prydz K. PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Glycobiology. 2015;25(1):30–41. doi: 10.1093/glycob/cwu084. [DOI] [PubMed] [Google Scholar]
  • 162.Widner B., Behr R., Von Dollen S., Tang M., Heu T., Sloma A., et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol. 2005;71(7):3747–3752. doi: 10.1128/AEM.71.7.3747-3752.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Wang Z.X., Li N., Xu J.W. Effects of efficient expression of Vitreoscilla hemoglobin on production, monosaccharide composition, and antioxidant activity of exopolysaccharides in Ganoderma lucidum. Microorganisms. 2021;9(8):1551. doi: 10.3390/microorganisms9081551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Du Y., Cheng F., Wang M., Xu C., Yu H. Indirect pathway metabolic engineering strategies for enhanced biosynthesis of hyaluronic acid in engineered Corynebacterium glutamicum. Front Bioeng Biotechnol. 2021;9 doi: 10.3389/fbioe.2021.768490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Bessen D.E. Population biology of the human restricted pathogen, Streptococcus pyogenes. Infect Genet Evol. 2009;9(4):581–593. doi: 10.1016/j.meegid.2009.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Sherman J.M., Wing H.U. Streptococcus Durans N.SP. J Dairy Sci. 1937;20(3):165–167. doi: 10.3168/jds.S0022-0302(37)95679-0. [DOI] [Google Scholar]
  • 167.Stevens D.L. Invasive group A streptococcus infections. Clin Infect Dis. 1992;14(1):2–11. doi: 10.1093/clinids/14.1.2. [DOI] [PubMed] [Google Scholar]
  • 168.Beres S.B., Sesso R., Pinto S.W., Hoe N.P., Porcella S.F., Deleo F.R., et al. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS One. 2008;3(8):e3026. doi: 10.1371/journal.pone.0003026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.O'Brien K.L., Beall B., Barrett N.L., Cieslak P.R., Reingold A., Farley M.M., et al. Epidemiology of invasive group A streptococcus disease in the United States, 1995–1999. Clin Infect Dis. 2002;35(3):268–276. doi: 10.1086/341409. [DOI] [PubMed] [Google Scholar]
  • 170.Johnson D.R., Stevens D.L., Kaplan E.L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis. 1992;166(2):374–382. doi: 10.1093/infdis/166.2.374. [DOI] [PubMed] [Google Scholar]
  • 171.Walker M.J., Barnett T.C., McArthur J.D., Cole J.N., Gillen C.M., Henningham A., et al. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev. 2014;27(2):264–301. doi: 10.1128/CMR.00101-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Cunningham M.W. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000;13(3):470–511. doi: 10.1128/cmr.13.3.470-511.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Carapetis J.R., Steer A.C., Mulholland E.K., Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–694. doi: 10.1016/s1473-3099(05)70267-x. [DOI] [PubMed] [Google Scholar]
  • 174.Klos M., Wojkowska-Mach J. Pathogenicity of virulent species of group C Streptococci in human. Can J Infect Dis Med Microbiol. 2017;2017:9509604. doi: 10.1155/2017/9509604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Rangaswamy V., Jain D. An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus. Biotechnol Lett. 2008;30(3):493–496. doi: 10.1007/s10529-007-9562-8. [DOI] [PubMed] [Google Scholar]
  • 176.Crater D.L., van de Rijn I. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J Biol Chem. 1995;270(31):18452–18458. doi: 10.1074/jbc.270.31.18452. [DOI] [PubMed] [Google Scholar]
  • 177.Dougherty B.A., van de Rijn I. Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity. J Biol Chem. 1993;268(10):7118–7124. doi: 10.1016/s0021-9258(18)53153-7. [DOI] [PubMed] [Google Scholar]
  • 178.Chen J., Gao J., Yu Y., Yang S. A hyaluronan-based polysaccharide peptide generated by a genetically modified Streptococcus zooepidemicus. Carbohydr Res. 2019;478:25–32. doi: 10.1016/j.carres.2019.04.005. [DOI] [PubMed] [Google Scholar]
  • 179.Crater D.L., Dougherty B.A., van de Rijn I. Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose pyrophosphorylase activity. J Biol Chem. 1995;270(48):28676–28680. doi: 10.1074/jbc.270.48.28676. [DOI] [PubMed] [Google Scholar]
  • 180.Blank L.M., Hugenholtz P., Nielsen L.K. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci. J Mol Evol. 2008;67(1):13–22. doi: 10.1007/s00239-008-9117-1. [DOI] [PubMed] [Google Scholar]
  • 181.Zhang Y., Luo K., Zhao Q., Qi Z., Nielsen L.K., Liu H. Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus. Appl Biochem Biotechnol. 2016;100(8):3611–3620. doi: 10.1007/s00253-016-7286-1. [DOI] [PubMed] [Google Scholar]
  • 182.Mundt J.O. The ecology of the streptococci. Microb Ecol. 1982;8(4):355–369. doi: 10.1007/BF02010675. [DOI] [PubMed] [Google Scholar]
  • 183.Weigel P.H., Hascall V.C., Tammi M. Hyaluronan synthases. J Biol Chem. 1997;272(22):13997–14000. doi: 10.1074/jbc.272.22.13997. [DOI] [PubMed] [Google Scholar]
  • 184.Yu H., Stephanopoulos G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng. 2008;10(1):24–32. doi: 10.1016/j.ymben.2007.09.001. [DOI] [PubMed] [Google Scholar]
  • 185.Petrova P., Koca J., Imberty A. Molecular dynamics simulations of solvated UDP-glucose in interaction with Mg2+ cations. Eur J Biochem/FEBS. 2001;268(20):5365–5374. doi: 10.1046/j.0014-2956.2001.02469.x. [DOI] [PubMed] [Google Scholar]
  • 186.Tlapak-Simmons V.L., Baron C.A., Weigel P.H. Characterization of the purified hyaluronan synthase from Streptococcus equisimilis. Biochemistry. 2004;43(28):9234–9242. doi: 10.1021/bi049468v. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Liu L., Liu Y., Li J., Du G., Chen J. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact. 2011;10:99. doi: 10.1186/1475-2859-10-99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Jovanovic M., Stevanovic G., Tosic T., Stosovic B., Zervos M.J. Streptococcus equi subsp. zooepidemicus meningitis. J Med Microbiol. 2008;57(Pt 3):373–375. doi: 10.1099/jmm.0.47487-0. [DOI] [PubMed] [Google Scholar]
  • 189.Kittang B.R., Pettersen V.K., Oppegaard O., Skutlaberg D.H., Dale H., Wiker H.G., et al. Zoonotic necrotizing myositis caused by Streptococcus equi subsp. zooepidemicus in a farmer. BMC Infect Dis. 2017;17(1):147. doi: 10.1186/s12879-017-2262-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Quist E.M., Dougherty J.J., Chaffin M.K., Porter B.F. Equine rhabdomyolysis. Vet Pathol. 2011;48(6):E52–E58. doi: 10.1177/0300985811414034. [DOI] [PubMed] [Google Scholar]
  • 191.Byun J.W., Yoon S.S., Woo G.H., Jung B.Y., Joo Y.S. An outbreak of fatal hemorrhagic pneumonia caused by Streptococcus equi subsp. zooepidemicus in shelter dogs. J Vet Sci. 2009;10(3):269–271. doi: 10.4142/jvs.2009.10.3.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Pesavento P.A., Hurley K.F., Bannasch M.J., Artiushin S., Timoney J.F. A clonal outbreak of acute fatal hemorrhagic pneumonia in intensively housed (shelter) dogs caused by Streptococcus equi subsp. zooepidemicus. Vet Pathol. 2008;45(1):51–53. doi: 10.1354/vp.45-1-51. [DOI] [PubMed] [Google Scholar]
  • 193.Yamaguchi R., Nakamura S., Hori H., Kato Y., Une Y. Purulent meningoventriculitis caused by Streptococcus equi subspecies zooepidemicus in a snow leopard (Panthera uncia) J Comp Pathol. 2012;147(2–3):397–400. doi: 10.1016/j.jcpa.2012.02.002. [DOI] [PubMed] [Google Scholar]
  • 194.Aida Z., Lamia A., Souheil Z., Badreddine K., Monika B., Rim A., et al. Meningitis due to Streptococcus equi in a 73 year old woman with an osteodural defect. IDCases. 2020;21:e00779. doi: 10.1016/j.idcr.2020.e00779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Held J., Schmitz R., van der Linden M., Nuhrenberg T., Hacker G., Neumann F.J. Purulent pericarditis and pneumonia caused by Streptococcus equi subsp. zooepidemicus. J Med Microbiol. 2014;63(Pt 2):313–316. doi: 10.1099/jmm.0.066290-0. [DOI] [PubMed] [Google Scholar]
  • 196.Friederichs J., Hungerer S., Werle R., Militz M., Buhren V. Human bacterial arthritis caused by Streptococcus zooepidemicus: report of a case. Int J Infect Dis. 2010;14(Suppl 3):e233–e235. doi: 10.1016/j.ijid.2009.08.009. [DOI] [PubMed] [Google Scholar]
  • 197.Widders P.R., Warner S., Huntington P.J. Immunisation of mares to control endometritis caused by Streptococcus zooepidemicus. Res Vet Sci. 1995;58(1):75–81. doi: 10.1016/0034-5288(95)90093-4. [DOI] [PubMed] [Google Scholar]
  • 198.Priestnall S.L., Mitchell J.A., Walker C.A., Erles K., Brownlie J. New and emerging pathogens in canine infectious respiratory disease. Vet Pathol. 2014;51(2):492–504. doi: 10.1177/0300985813511130. [DOI] [PubMed] [Google Scholar]
  • 199.Piva S., Zanoni R.G., Specchi S., Brunetti B., Florio D., Pietra M. Chronic rhinitis due to Streptococcus equi subspecies zooepidemicus in a dog. Vet Rec. 2010;167(5):177–178. doi: 10.1136/vr.c3607. [DOI] [PubMed] [Google Scholar]
  • 200.Lindahl S.B., Aspan A., Baverud V., Paillot R., Pringle J., Rash N.L., et al. Outbreak of upper respiratory disease in horses caused by Streptococcus equi subsp. zooepidemicus ST-24. Vet Microbiol. 2013;166(1–2):281–285. doi: 10.1016/j.vetmic.2013.05.006. [DOI] [PubMed] [Google Scholar]
  • 201.Laus F., Preziuso S., Spaterna A., Beribe F., Tesei B., Cuteri V. Clinical and epidemiological investigation of chronic upper respiratory diseases caused by beta-haemolytic Streptococci in horses. Comp Immunol Microbiol Infect Dis. 2007;30(4):247–260. doi: 10.1016/j.cimid.2007.02.003. [DOI] [PubMed] [Google Scholar]
  • 202.Steward K.F., Robinson C., Holden M.T.G., Harris S.R., Ros A.F., Perez G.C., et al. Diversity of Streptococcus equi subsp. zooepidemicus strains isolated from the Spanish sheep and goat population and the identification, function and prevalence of a novel arbutin utilisation system. Vet Microbiol. 2017;207:231–238. doi: 10.1016/j.vetmic.2017.06.020. [DOI] [PubMed] [Google Scholar]
  • 203.Sitthicharoenchai P., Derscheid R., Schwartz K., Macedo N., Sahin O., Chen X., et al. Cases of high mortality in cull sows and feeder pigs associated with Streptococcus equi subsp. zooepidemicus septicemia. J Vet Diagn Invest. 2020;32(4):565–571. doi: 10.1177/1040638720927669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Pesavento P.A., Murphy B.G. Common and emerging infectious diseases in the animal shelter. Vet Pathol. 2014;51(2):478–491. doi: 10.1177/0300985813511129. [DOI] [PubMed] [Google Scholar]
  • 205.Britton A.P., Blum S.E., Legge C., Sojonky K., Zabek E.N. Multi-locus sequence typing of Streptococcus equi subspecies zooepidemicus strains isolated from cats. J Vet Diagn Invest. 2018;30(1):126–129. doi: 10.1177/1040638717732372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Mitchell C.M., Johnson L.K., Crim M.J., Wiedmeyer C.E., Pugazhenthi U., Tousey S., et al. Diagnosis, surveillance and management of Streptococcus equi subspecies zooepidemicus Infections in chinchillas (Chinchilla lanigera) Comp Med. 2020;70(4):370–375. doi: 10.30802/AALAS-CM-20-000012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Pelkonen S., Lindahl S.B., Suomala P., Karhukorpi J., Vuorinen S., Koivula I., et al. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg Infect Dis. 2013;19(7):1041–1048. doi: 10.3201/eid1907.121365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Minces L.R., Brown P.J., Veldkamp P.J. Human meningitis from Streptococcus equi subsp. zooepidemicus acquired as zoonoses. Epidemiol Infect. 2011;139(3):406–410. doi: 10.1017/S0950268810001184. [DOI] [PubMed] [Google Scholar]
  • 209.Zakeri A., Rasaee M. Identification of wild type Streptococcus zooepidemicus and optimization of culture medium and fermentation conditions for production of hyaluronic acid. Biosci Biotechnol Res Asia. 2016;13(1):189–198. doi: 10.13005/bbra/2022. [DOI] [Google Scholar]
  • 210.Xu-Jie Duan L.Y., Zhang X., Tan W.-S. Effect of oxygen and shear stress on molecular weight of hyaluronic acid. J Microbiol Biotechnol. 2008;18(4):718–724. [PubMed] [Google Scholar]
  • 211.Huang W.-C., Chen S.-J., Chen T.-L. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation. Biochem Eng J. 2006;32(3):239–243. doi: 10.1016/j.bej.2006.10.011. [DOI] [Google Scholar]
  • 212.Hofvendahl K., Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources(1) Enzyme Microb Technol. 2000;26(2–4):87–107. doi: 10.1016/s0141-0229(99)00155-6. [DOI] [PubMed] [Google Scholar]
  • 213.Neu A.K., Pleissner D., Mehlmann K., Schneider R., Puerta-Quintero G.I., Venus J. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresour Technol. 2016;211:398–405. doi: 10.1016/j.biortech.2016.03.122. [DOI] [PubMed] [Google Scholar]
  • 214.Schlegel C., Chodorski J., Huster M., Davoudi N., Huttenlochner K., Bohley M., et al. Analyzing the influence of microstructured surfaces on the lactic acid production of Lactobacillus delbrueckii lactis in a flow-through cell system. Eng Life Sci. 2017;17(8):865–873. doi: 10.1002/elsc.201700045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Arslan N.P., Aydogan M.N. Evaluation of sheep wool protein hydrolysate and molasses as low-cost fermentation substrates for hyaluronic acid production by Streptococcus zooepidemicus ATCC 35246. Waste Biomass Valorization. 2020:925–935. doi: 10.1007/s12649-020-01062-w. [DOI] [Google Scholar]
  • 216.Benedini L.J., Santana M.H. Effects of soy peptone on the inoculum preparation of Streptococcus zooepidemicus for production of hyaluronic acid. Bioresour Technol. 2013;130:798–800. doi: 10.1016/j.biortech.2012.12.161. [DOI] [PubMed] [Google Scholar]
  • 217.Liu L., Sun J., Xu W., Du G., Chen J. Modeling and optimization of microbial hyaluronic acid production by Streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm. Biotechnol Prog. 2009;25(6):1819–1825. doi: 10.1002/btpr.278. [DOI] [PubMed] [Google Scholar]
  • 218.Pires A.M., Eguchi S.Y., Santana M.H. The influence of mineral ions on the microbial production and molecular weight of hyaluronic acid. Appl Biochem Biotechnol. 2010;162(8):2125–2135. doi: 10.1007/s12010-010-8987-z. [DOI] [PubMed] [Google Scholar]
  • 219.Chen S.-J., Chen J.-L., Huang W.-C., Chen H.-L. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J Chem Eng. 2009;26(2):428–432. doi: 10.1007/s11814-009-0072-3. [DOI] [Google Scholar]
  • 220.Chen W.Y., Marcellin E., Hung J., Nielsen L.K. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem. 2009;284(27):18007–18014. doi: 10.1074/jbc.M109.011999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Pourzardosht N., Rasaee M.J. Improved yield of high molecular weight hyaluronic acid production in a stable strain of streptococcus zooepidemicus via the elimination of the hyaluronidase-encoding gene. Mol Biotechnol. 2017;59(6):192–199. doi: 10.1007/s12033-017-0005-z. [DOI] [PubMed] [Google Scholar]
  • 222.Mallicote M. Update on Streptococcus equi subsp equi infections. Vet Clin North Am Equine Pract. 2015;31(1):27–41. doi: 10.1016/j.cveq.2014.11.003. [DOI] [PubMed] [Google Scholar]
  • 223.Chanter N., Collin N., Holmes N., Binns M., Mumford J. Characterization of the Lancefield group C streptococcus 16S–23S RNA gene intergenic spacer and its potential for identification and sub-specific typing. Epidemiol Infect. 1997;118(2):125–135. doi: 10.1017/s0950268896007285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Boyle A.G., Timoney J.F., Newton J.R., Hines M.T., Waller A.S., Buchanan B.R. Streptococcus equi infections in horses: guidelines for treatment, control, and prevention of strangles-revised consensus statement. J Vet Intern Med. 2018;32(2):633–647. doi: 10.1111/jvim.15043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Cordoni G., Williams A., Durham A., Florio D., Zanoni R.G., La Ragione R.M. Rapid diagnosis of strangles (Streptococcus equi subspecies equi) using PCR. Res Vet Sci. 2015;102:162–166. doi: 10.1016/j.rvsc.2015.08.008. [DOI] [PubMed] [Google Scholar]
  • 226.Tiouajni M., Durand D., Blondeau K., Graille M., Urvoas A., Valerio-Lepiniec M., et al. Structural and functional analysis of the fibronectin-binding protein FNE from Streptococcus equi spp. equi. FEBS J. 2014;281(24):5513–5531. doi: 10.1111/febs.13092. [DOI] [PubMed] [Google Scholar]
  • 227.Miller J.D., Neely M.N. Zebrafish as a model host for streptococcal pathogenesis. Acta Trop. 2004;91(1):53–68. doi: 10.1016/j.actatropica.2003.10.020. [DOI] [PubMed] [Google Scholar]
  • 228.Torpiano P., Nestorova N., Vella C. Streptococcus equi subsp. equi meningitis, septicemia and subdural empyema in a child. IDCases. 2020;21:e00808. doi: 10.1016/j.idcr.2020.e00808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Kakizaki I., Takagaki K., Endo Y., Kudo D., Ikeya H., Miyoshi T., et al. Inhibition of hyaluronan synthesis in Streptococcus equi FM100 by 4-methylumbelliferone. Eur J Biochem/FEBS. 2002;269(20):5066–5075. doi: 10.1046/j.1432-1033.2002.03217.x. [DOI] [PubMed] [Google Scholar]
  • 230.Lancefield R.C. A serological differentiation of human and other groups of hemolytic Streptococci. J Exp Med. 1933;57(4):571–595. doi: 10.1084/jem.57.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Musser J.M., Hauser A.R., Kim M.H., Schlievert P.M., Nelson K., Selander R.K. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc Natl Acad Sci USA. 1991;88(7):2668–2672. doi: 10.1073/pnas.88.7.2668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Cabal A., Schmid D., Lepuschitz S., Stoger A., Blaschitz M., Allerberger F., et al. Nosocomial outbreak of Streptococcus pyogenes puerperal sepsis. Clin Microbiol Infect. 2019;25(4):521–523. doi: 10.1016/j.cmi.2018.11.028. [DOI] [PubMed] [Google Scholar]
  • 233.Anjos L.M., Marcondes M.B., Lima M.F., Mondelli A.L., Okoshi M.P. Streptococcal acute pharyngitis. Rev Soc Bras Med Trop. 2014;47(4):409–413. doi: 10.1590/0037-8682-0265-2013. [DOI] [PubMed] [Google Scholar]
  • 234.Bohach G.A., Fast D.J., Nelson R.D., Schlievert P.M. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol. 1990;17(4):251–272. doi: 10.3109/10408419009105728. [DOI] [PubMed] [Google Scholar]
  • 235.Wolf J.E. Streptococcal toxic shock—like syndrome. Arch Dermatol. 1995;131(1):73–77. doi: 10.1001/archderm.1995.01690130075014. [DOI] [PubMed] [Google Scholar]
  • 236.May A.K., Daniels T.L., Obremskey W.T., Kaiser A.B., Talbot T.R., 3rd, Steroids in the treatment of group A streptococcal necrotizing soft tissue infection. Surgical Infections. 2011;12(1):77–81. doi: 10.1089/sur.2010.035. [DOI] [PubMed] [Google Scholar]
  • 237.Minodier P., Chaumoitre K., Vialet R., Imbert G., Bidet P. Fatal streptococcal toxic shock syndrome in a child with varicella and necrotizing fasciitis of the face. Eur J Emerg Med. 2008;15(4):231–233. doi: 10.1097/MEJ.0b013e3282f08d3d. [DOI] [PubMed] [Google Scholar]
  • 238.Rosa F., Sargent T.D., Rebbert M.L., Michaels G.S., Jamrich M., Grunz H., et al. Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis. Dev Biol. 1988;129(1):114–123. doi: 10.1016/0012-1606(88)90166-2. [DOI] [PubMed] [Google Scholar]
  • 239.Varki A. Does DG42 synthesize hyaluronan or chitin?: a controversy about oligosaccharides in vertebrate development. Proc Natl Acad Sci USA. 1996;93(10):4523–4525. doi: 10.1073/pnas.93.10.4523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.DeAngelis P.L., Weigel P.H. Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme. Biochemistry. 1994;33(31):9033–9039. doi: 10.1021/bi00197a001. [DOI] [PubMed] [Google Scholar]
  • 241.Pierce W.A., Jr., White A.G. Hyaluronic acid formation by Streptococcus pyogenes. Proc Soc Exp Biol Med. 1954;87(1):50–54. doi: 10.3181/00379727-87-21282. [DOI] [PubMed] [Google Scholar]
  • 242.Mohan N., Pavan S.S., Achar A., Swaminathan N., Sivaprakasam S. Calorespirometric investigation of Streptococcus zooepidemicus metabolism: thermodynamics of anabolic payload contribution by growth and hyaluronic acid synthesis. Biochem Eng J. 2019;152 doi: 10.1016/j.bej.2019.107367. [DOI] [Google Scholar]
  • 243.Rohit S.G., Jyoti P.K., Subbi R.R.T., Naresh M., Senthilkumar S. Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochem Eng J. 2018;137:284–293. doi: 10.1016/j.bej.2018.06.011. [DOI] [Google Scholar]
  • 244.Pan N.C., Pereira H.C.B., da Silva M.L.C., Vasconcelos A.F.D., Celligoi M. Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses. Appl Biochem Biotechnol. 2017;182(1):276–293. doi: 10.1007/s12010-016-2326-y. [DOI] [PubMed] [Google Scholar]
  • 245.Amado I.R., Vazquez J.A., Pastrana L., Teixeira J.A. Cheese whey: a cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chem. 2016;198:54–61. doi: 10.1016/j.foodchem.2015.11.062. [DOI] [PubMed] [Google Scholar]
  • 246.Vazquez J.A., Pastrana L., Pineiro C., Teixeira J.A., Perez-Martin R.I., Amado I.R. Production of hyaluronic acid by streptococcus zooepidemicus on protein substrates obtained from scyliorhinus canicula discards. Mar Drugs. 2015;13(10):6537–6549. doi: 10.3390/md13106537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Güngör G., Gedikli S., Toptaş Y., Akgün D.E., Demirbilek M., Yazıhan N., et al. Bacterial hyaluronic acid production through an alternative extraction method and its characterization. J Chem Technol Biotechnol. 2019;94(6):1843–1852. doi: 10.1002/jctb.5957. [DOI] [Google Scholar]
  • 248.Guan F., Jin J., Zhao H., Hong L., Shen Z., Zhu Y. [Hyaluronic acid production by Streptococcus iniae and its application in rabbit skin’s regeneration] Sheng wu gong cheng xue bao = Chin J Biotechnol. 2016;32(8):1104–1114. doi: 10.13345/j.cjb.150517. [DOI] [PubMed] [Google Scholar]
  • 249.Cheng F., Gong Q., Yu H., Stephanopoulos G. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J. 2016;11(4):574–584. doi: 10.1002/biot.201500404. [DOI] [PubMed] [Google Scholar]
  • 250.Vogel R.F., Pavlovic M., Ehrmann M.A., Wiezer A., Liesegang H., Offschanka S., et al. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact. 2011;10(Suppl 1):S6. doi: 10.1186/1475-2859-10-S1-S6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Scheirlinck I., Van der Meulen R., De Vuyst L., Vandamme P., Huys G. Molecular source tracking of predominant lactic acid bacteria in traditional Belgian sourdoughs and their production environments. J Appl Microbiol. 2009;106(4):1081–1092. doi: 10.1111/j.1365-2672.2008.04094.x. [DOI] [PubMed] [Google Scholar]
  • 252.Auclair J., Accolas J.P. Use of thermophilic lactic starters in the dairy industry. Antonie Van Leeuwenhoek. 1983;49(3):313–326. doi: 10.1007/BF00399506. [DOI] [PubMed] [Google Scholar]
  • 253.Nagaoka S. Yogurt production. Methods Mol Biol. 1887;2019:45–54. doi: 10.1007/978-1-4939-8907-2_5. [DOI] [PubMed] [Google Scholar]
  • 254.Hébert E.M., Raya R.R., Tailliez P., de Giori G.S. Characterization of natural isolates of Lactobacillus strains to be used as starter cultures in dairy fermentation. Int J Food Microbiol. 2000;59(1–2):19–27. doi: 10.1016/s0168-1605(00)00282-8. [DOI] [PubMed] [Google Scholar]
  • 255.Ehrmann M.A., Kurzak P., Bauer J., Vogel R.F. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol. 2002;92(5):966–975. doi: 10.1046/j.1365-2672.2002.01608.x. [DOI] [PubMed] [Google Scholar]
  • 256.Ahmed Z., Vohra M.S., Khan M.N., Ahmed A., Khan T.A. Antimicrobial role of Lactobacillus species as potential probiotics against enteropathogenic bacteria in chickens. J Infect Dev Countries. 2019;13(2):130–136. doi: 10.3855/jidc.10542. [DOI] [PubMed] [Google Scholar]
  • 257.Nakai H., Hirose Y., Murosaki S., Yoshikai Y. Lactobacillus plantarum L-137 upregulates hyaluronic acid production in epidermal cells and fibroblasts in mice. Microbiol Immunol. 2019;63(9):367–378. doi: 10.1111/1348-0421.12725. [DOI] [PubMed] [Google Scholar]
  • 258.National Center for Biotechnology Information. NCBI Taxonomy database, https://www.ncbi.nlm.nih.gov/taxonomy accessed on 2022 Nov 5.
  • 259.van Rooijen R.J., Gasson M.J., de Vos W.M. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol. 1992;174(7):2273–2280. doi: 10.1128/jb.174.7.2273-2280.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Choi S.B., Lew L.C., Hor K.C., Liong M.T. Fe2+ and Cu2+ increase the production of hyaluronic acid by lactobacilli via affecting different stages of the pentose phosphate pathway. Appl Biochem Biotechnol. 2014;173(1):129–142. doi: 10.1007/s12010-014-0822-5. [DOI] [PubMed] [Google Scholar]
  • 261.Lew L.C., Choi S.B., Tan P.L., Liong M.T. Mn(2+) and Mg(2+) synergistically enhanced lactic acid production by Lactobacillus rhamnosus FTDC 8313 via affecting different stages of the hexose monophosphate pathway. J Appl Microbiol. 2014;116(3):644–653. doi: 10.1111/jam.12399. [DOI] [PubMed] [Google Scholar]
  • 262.Kallscheuer N., Marienhagen J. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids. Microb Cell Fact. 2018;17(1):70. doi: 10.1186/s12934-018-0923-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Conrady M., Lemoine A., Limberg M.H., Oldiges M., Neubauer P., Junne S. Carboxylic acid consumption and production by Corynebacterium glutamicum. Biotechnol Prog. 2019;35(3):e2804. doi: 10.1002/btpr.2804. [DOI] [PubMed] [Google Scholar]
  • 264.Rados D., Carvalho A.L., Wieschalka S., Neves A.R., Blombach B., Eikmanns B.J., et al. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Fact. 2015;14:171. doi: 10.1186/s12934-015-0362-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Yu X., Liu X., Gao X., Luo X., Yang Y., Li Y., et al. Development of a novel platform for recombinant protein production in Corynebacterium glutamicum on ethanol. Synth Syst Biotechnol. 2022;7(2):765–774. doi: 10.1016/j.synbio.2022.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Ko Y.J., Cha J., Jeong W.Y., Lee M.E., Cho B.H., Nisha B., et al. Bio-isopropanol production in Corynebacterium glutamicum: metabolic redesign of synthetic bypasses and two-stage fermentation with gas stripping. Bioresour Technol. 2022;354 doi: 10.1016/j.biortech.2022.127171. [DOI] [PubMed] [Google Scholar]
  • 267.Dickschat J.S., Wickel S., Bolten C.J., Nawrath T., Schulz S., Wittmann C. Pyrazine biosynthesis in Corynebacterium glutamicum. Eur J Org Chem. 2010;2010(14):2687–2695. doi: 10.1002/ejoc.201000155. [DOI] [Google Scholar]
  • 268.Eng T., Sasaki Y., Herbert R.A., Lau A., Trinh J., Chen Y., et al. Production of tetra-methylpyrazine using engineered Corynebacterium glutamicum. Metab Eng Commun. 2020;10:e00115. doi: 10.1016/j.mec.2019.e00115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 269.Li J., Lu J., Ma Z., Li J., Chen X., Diao M., et al. A green route for high-yield production of tetramethylpyrazine from non-food raw materials. Front Bioeng Biotechnol. 2021;9 doi: 10.3389/fbioe.2021.792023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Lv Y., Wu Z., Han S., Lin Y., Zheng S. Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol. 2011;193(21):6096–6097. doi: 10.1128/JB.06074-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Blombach B., Seibold G.M. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl Biochem Biotechnol. 2010;86(5):1313–1322. doi: 10.1007/s00253-010-2537-z. [DOI] [PubMed] [Google Scholar]
  • 272.Becker J., Zelder O., Hafner S., Schroder H., Wittmann C. From zero to hero–design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng. 2011;13(2):159–168. doi: 10.1016/j.ymben.2011.01.003. [DOI] [PubMed] [Google Scholar]
  • 273.Xiao J., Wang D., Wang L., Jiang Y., Xue L., Sui S., et al. Increasing L-lysine production in Corynebacterium glutamicum by engineering amino acid transporters. Amino Acids. 2020;52(10):1363–1374. doi: 10.1007/s00726-020-02893-6. [DOI] [PubMed] [Google Scholar]
  • 274.Li C.L., Ruan H.Z., Liu L.M., Zhang W.G., Xu J.Z. Rational reformation of Corynebacterium glutamicum for producing L-lysine by one-step fermentation from raw corn starch. Appl Microbiol Biotechnol. 2022;106(1):145–160. doi: 10.1007/s00253-021-11714-z. [DOI] [PubMed] [Google Scholar]
  • 275.Becker J., Rohles C.M., Wittmann C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng. 2018;50:122–141. doi: 10.1016/j.ymben.2018.07.008. [DOI] [PubMed] [Google Scholar]
  • 276.Wendisch V.F., Bott M., Kalinowski J., Oldiges M., Wiechert W. Emerging Corynebacterium glutamicum systems biology. J Biotechnol. 2006;124(1):74–92. doi: 10.1016/j.jbiotec.2005.12.002. [DOI] [PubMed] [Google Scholar]
  • 277.Liu X., Yang Y., Zhang W., Sun Y., Peng F., Jeffrey L., et al. Expression of recombinant protein using Corynebacterium glutamicum: progress, challenges and applications. Crit Rev Biotechnol. 2016;36(4):652–664. doi: 10.3109/07388551.2015.1004519. [DOI] [PubMed] [Google Scholar]
  • 278.Lee M.J., Kim P. Recombinant protein expression system in Corynebacterium glutamicum and its application. Front Immunol. 2018;9:2523. doi: 10.3389/fmicb.2018.02523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Cheng F., Yu H., Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metab Eng. 2019;55:276–289. doi: 10.1016/j.ymben.2019.07.003. [DOI] [PubMed] [Google Scholar]
  • 280.Wang Y., Hu L., Huang H., Wang H., Zhang T., Chen J., et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun. 2020;11(1):3120. doi: 10.1038/s41467-020-16962-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281.Karami M., Shahraky M.K., Ranjbar M., Tabandeh F., Morshedi D., Aminzade S. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol Lett. 2021;43(1):133–142. doi: 10.1007/s10529-020-03035-4. [DOI] [PubMed] [Google Scholar]
  • 282.Zheng Y., Cheng F., Zheng B., Yu H. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering. Synth Syst Biotechnol. 2020;5(4):316–323. doi: 10.1016/j.synbio.2020.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Kumbhar C., Mudliar P., Bhatia L., Kshirsagar A., Watve M. Widespread predatory abilities in the genus Streptomyces. Arch Microbiol. 2014;196(4):235–248. doi: 10.1007/s00203-014-0961-7. [DOI] [PubMed] [Google Scholar]
  • 284.Singhal S. Digest: structuring interactions in streptomyces. Evolut Int J Org Evolut. 2020;74(1):207–209. doi: 10.1111/evo.13874. [DOI] [PubMed] [Google Scholar]
  • 285.Brana A.F., Rodriguez M., Pahari P., Rohr J., Garcia L.A., Blanco G. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Arch Microbiol. 2014;196(5):345–355. doi: 10.1007/s00203-014-0977-z. [DOI] [PubMed] [Google Scholar]
  • 286.Lee Y., Lee N., Jeong Y., Hwang S., Kim W., Cho S., et al. The transcription unit architecture of Streptomyces lividans TK24. Front Immunol. 2019;10:2074. doi: 10.3389/fmicb.2019.02074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Li H., Wei J., Dong J., Li Y., Li Y., Chen Y., et al. Enhanced triacylglycerol metabolism contributes to efficient oil utilization and high-level production of salinomycin in Streptomyces albus ZD11. Appl Environ Microbiol. 2020;86(16) doi: 10.1128/AEM.00763-20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Baltz R.H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol. 2010;37(8):759–772. doi: 10.1007/s10295-010-0730-9. [DOI] [PubMed] [Google Scholar]
  • 289.Derby M.A., Pintar J.E. The histochemical specificity of Streptomyces hyaluronidase and chondroitinase ABC. The Histochemical Journal. 1978;10(5):529–547. doi: 10.1007/BF01003135. [DOI] [PubMed] [Google Scholar]
  • 290.Reda F., El-Shanawany S. Characterization and immobilization of a novel hyaluronidase produced by Streptomyces roseofulvus. Egypt J Bot. 2019;60(1):213–224. doi: 10.21608/ejbo.2019.6242.1248. [DOI] [Google Scholar]
  • 291.Kim Y., Jeon J., Kwak M.S., Kim G.H., Koh I., Rho M. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS One. 2018;13(1):e0190266. doi: 10.1371/journal.pone.0190266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Selao T.T., Wlodarczyk A., Nixon P.J., Norling B. Growth and selection of the cyanobacterium Synechococcus sp. PCC 7002 using alternative nitrogen and phosphorus sources. Metab Eng. 2019;54:255–263. doi: 10.1016/j.ymben.2019.04.013. [DOI] [PubMed] [Google Scholar]
  • 293.Zwirglmaier K., Jardillier L., Ostrowski M., Mazard S., Garczarek L., Vaulot D., et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 2008;10(1):147–161. doi: 10.1111/j.1462-2920.2007.01440.x. [DOI] [PubMed] [Google Scholar]
  • 294.Flombaum P., Gallegos J.L., Gordillo R.A., Rincon J., Zabala L.L., Jiao N., Karl D.M., Li W.K., Lomas M.W., Veneziano D., et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USAerica. 2013;110(24):9824–9829. doi: 10.1073/pnas.1307701110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 295.Levi C., Preiss J. Regulatory properties of the ADP-glucose pyrophosphorylase of the blue-green bacterium Synechococcus 6301. Plant Physiol. 1976;58(6):753–756. doi: 10.1104/pp.58.6.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 296.Suzuki E., Umeda K., Nihei S., Moriya K., Ohkawa H., Fujiwara S., et al. Role of the GlgX protein in glycogen metabolism of the cyanobacterium, Synechococcus elongatus PCC 7942. BBA. 2007;1770(5):763–773. doi: 10.1016/j.bbagen.2007.01.006. [DOI] [PubMed] [Google Scholar]
  • 297.Aikawa S., Nishida A., Ho S.H., Chang J.S., Hasunuma T., Kondo A. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnol Biofuels. 2014;7:88. doi: 10.1186/1754-6834-7-88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Meunier C.F., Rooke J.C., Leonard A., Xie H., Su B.L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chem Commun. 2010;46(22):3843–3859. doi: 10.1039/c001799j. [DOI] [PubMed] [Google Scholar]
  • 299.Vu T.T., Hill E.A., Kucek L.A., Konopka A.E., Beliaev A.S., Reed J.L. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J. 2013;8(5):619–630. doi: 10.1002/biot.201200315. [DOI] [PubMed] [Google Scholar]
  • 300.Badger M.R., Andrews T.J. Photosynthesis and inorganic carbon usage by the marine cyanobacterium, Synechococcus sp. Plant Physiol. 1982;70(2):517–523. doi: 10.1104/pp.70.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Badger M.R., Bassett M., Comins H.N. A model for HCO(3) accumulation and photosynthesis in the cyanobacterium Synechococcus sp.: theoretical predictions and experimental observations. Plant Physiol. 1985;77(2):465–471. doi: 10.1104/pp.77.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Zhang L., Toscano Selão T., Nixon P.J., Norling B. Photosynthetic conversion of CO2 to hyaluronic acid by engineered strains of the cyanobacterium Synechococcus sp. PCC 7002. Algal Res. 2019;44 doi: 10.1016/j.algal.2019.101702. [DOI] [Google Scholar]
  • 303.Cerminati S., Leroux M., Anselmi P., Peiru S., Alonso J.C., Priem B., et al. Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Appl Microbiol Biotechnol. 2021;105(8):3075–3086. doi: 10.1007/s00253-021-11246-6. [DOI] [PubMed] [Google Scholar]
  • 304.Kuramitsu H.K., Snoke J.E. The biosynthesis of D-amino acids in Bacillus licheniformis. BBA. 1962;62(1):114–121. doi: 10.1016/0006-3002(62)90496-1. [DOI] [PubMed] [Google Scholar]
  • 305.Leiman S.A., May J.M., Lebar M.D., Kahne D., Kolter R., Losick R. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J Bacteriol. 2013;195(23):5391–5395. doi: 10.1128/JB.00975-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 306.Wang J., Guo R., Wang W., Ma G., Li S. Insight into the surfactin production of Bacillus velezensis B006 through metabolomics analysis. J Ind Microbiol Biotechnol. 2018;45(12):1033–1044. doi: 10.1007/s10295-018-2076-7. [DOI] [PubMed] [Google Scholar]
  • 307.Ferreira W.T., Hong H.A., Hess M., Adams J.R.G., Wood H., Bakun K., et al. Micellar antibiotics of Bacillus. Pharmaceutics. 2021;13(8):1296. doi: 10.3390/pharmaceutics13081296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 308.Tannler S., Zamboni N., Kiraly C., Aymerich S., Sauer U. Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng. 2008;10(5):216–226. doi: 10.1016/j.ymben.2008.06.002. [DOI] [PubMed] [Google Scholar]
  • 309.Wang G., Bai L., Wang Z., Shi T., Chen T., Zhao X. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biotechnol. 2014;30(6):1893–1900. doi: 10.1007/s11274-014-1611-6. [DOI] [PubMed] [Google Scholar]
  • 310.Mahdinia E., Demirci A., Berenjian A. Implementation of fed-batch strategies for vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Appl Biochem Biotechnol. 2018;102(21):9147–9157. doi: 10.1007/s00253-018-9340-7. [DOI] [PubMed] [Google Scholar]
  • 311.Wang H., Liu H., Wang L., Zhao G., Tang H., Sun X., et al. Improvement of menaquinone-7 production by Bacillus subtilis natto in a novel residue-free medium by increasing the redox potential. Appl Microbiol Biotechnol. 2019;103(18):7519–7535. doi: 10.1007/s00253-019-10044-5. [DOI] [PubMed] [Google Scholar]
  • 312.Nwokoro O., Anthonia O. Studies on the production of alkaline alpha-amylase from Bacillus subtilis CB-18. Acta Scientiarum Polonorum Technologia Alimentaria. 2015;14(1):71–75. doi: 10.17306/J.AFS.2015.1.8. [DOI] [PubMed] [Google Scholar]
  • 313.Msarah M.J., Ibrahim I., Hamid A.A., Aqma W.S. Optimisation and production of alpha amylase from thermophilic Bacillus spp. and its application in food waste biodegradation. Heliyon. 2020;6(6):e04183. doi: 10.1016/j.heliyon.2020.e04183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Jin P., Kang Z., Yuan P., Du G., Chen J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng. 2016;35:21–30. doi: 10.1016/j.ymben.2016.01.008. [DOI] [PubMed] [Google Scholar]
  • 315.Jia Y., Zhu J., Chen X., Tang D., Su D., Yao W., et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol. 2013;132:427–431. doi: 10.1016/j.biortech.2012.12.150. [DOI] [PubMed] [Google Scholar]
  • 316.Chien L.J., Lee C.K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog. 2007;23(5):1017–1022. doi: 10.1021/bp070036w. [DOI] [PubMed] [Google Scholar]
  • 317.Yingying Li G.L., Zhao X., Shao Y., Wu M., Ma T. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. 3 Biotech. 2019;9(6):225. doi: 10.1007/s13205-019-1749-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 318.Yerlikaya O. Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. J Dairy Sci. 2019;102(1):124–134. doi: 10.3168/jds.2018-14983. [DOI] [PubMed] [Google Scholar]
  • 319.Tarazanova M., Huppertz T., Kok J., Bachmann H. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis. Microb Biotechnol. 2018;11(4):770–780. doi: 10.1111/1751-7915.13278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 320.Casalta E., Montel M.C. Safety assessment of dairy microorganisms: the Lactococcus genus. Int J Food Microbiol. 2008;126(3):271–273. doi: 10.1016/j.ijfoodmicro.2007.08.013. [DOI] [PubMed] [Google Scholar]
  • 321.Cano-Garrido O., Rueda F.L., Sanchez-Garcia L., Ruiz-Avila L., Bosser R., Villaverde A., et al. Expanding the recombinant protein quality in Lactococcus lactis. Microb Cell Fact. 2014;13:167. doi: 10.1186/s12934-014-0167-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 322.Sheng J.Z., Ling P.X., Zhu X.Q., Guo X.P., Zhang T.M., He Y.L., et al. Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer. J Appl Microbiol. 2009;107(1):136–144. doi: 10.1111/j.1365-2672.2009.04185.x. [DOI] [PubMed] [Google Scholar]
  • 323.Prasad S.B., Jayaraman G., Ramachandran K.B. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl Biochem Biotechnol. 2010;86(1):273–283. doi: 10.1007/s00253-009-2293-0. [DOI] [PubMed] [Google Scholar]
  • 324.Zhou X.X., Li W.F., Ma G.X., Pan Y.J. The nisin-controlled gene expression system: construction, application and improvements. Biotechnol Adv. 2006;24(3):285–295. doi: 10.1016/j.biotechadv.2005.11.001. [DOI] [PubMed] [Google Scholar]
  • 325.Eichenbaum Z., Federle M.J., Marra D., de Vos W.M., Kuipers O.P., Kleerebezem M., et al. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol. 1998;64(8):2763–2769. doi: 10.1128/AEM.64.8.2763-2769.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 326.Sunguroglu C., Sezgin D.E., Aytar Celik P., Cabuk A. Higher titer hyaluronic acid production in recombinant Lactococcus lactis. Prep Biochem Biotech. 2018;48(8):734–742. doi: 10.1080/10826068.2018.1508036. [DOI] [PubMed] [Google Scholar]
  • 327.Chahuki F.F., Aminzadeh S., Jafarian V., Tabandeh F., Khodabandeh M. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int J Biol Macromol. 2019;121:870–881. doi: 10.1016/j.ijbiomac.2018.10.112. [DOI] [PubMed] [Google Scholar]
  • 328.Westbrook A.W., Ren X., Moo-Young M., Chou C.P. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng. 2018;115(1):216–231. doi: 10.1002/bit.26459. [DOI] [PubMed] [Google Scholar]
  • 329.Westbrook A.W., Moo-Young M., Chou C.P. Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol. 2016;82(16):4876–4895. doi: 10.1128/AEM.01159-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 330.Schulte S., Doss S.S., Jeeva P., Ananth M., Blank L.M., Jayaraman G. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan. Appl Biochem Biotechnol. 2019;103(18):7567–7581. doi: 10.1007/s00253-019-10023-w. [DOI] [PubMed] [Google Scholar]
  • 331.Jeeva P., Shanmuga Doss S., Sundaram V., Jayaraman G. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures. Appl Biochem Biotechnol. 2019;103(11):4363–4375. doi: 10.1007/s00253-019-09769-0. [DOI] [PubMed] [Google Scholar]
  • 332.DeAngelis P.L., Jing W., Drake R.R., Achyuthan A.M. Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. J Biol Chem. 1998;273(14):8454–8458. doi: 10.1074/jbc.273.14.8454. [DOI] [PubMed] [Google Scholar]
  • 333.Mao Z., Shin H.D., Chen R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl Biochem Biotechnol. 2009;84(1):63–69. doi: 10.1007/s00253-009-1963-2. [DOI] [PubMed] [Google Scholar]
  • 334.Song J., Dong H., Ma C., Zhao B., Shang G. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain. FEMS Microbiol Lett. 2010;309(2):178–183. doi: 10.1111/j.1574-6968.2010.02036.x. [DOI] [PubMed] [Google Scholar]
  • 335.Jensen S.I., Nielsen A.T. Multiplex genome editing in Escherichia coli. Methods Mol Biol. 2018;1671:119–129. doi: 10.1007/978-1-4939-7295-1_8. [DOI] [PubMed] [Google Scholar]
  • 336.Li Y., Chen R., Yang M., Chen W. Combination of novel counter-selection system kil and pSim6 plasmid in recombination engineering. Sheng wu gong cheng xue bao = Chinese Journal of Biotechnology. 2019;35(9):1761–1770. doi: 10.13345/j.cjb.190079. [DOI] [PubMed] [Google Scholar]
  • 337.Chen W., Li Y., Wu G., Zhao L., Lu L., Wang P., et al. Simple and efficient genome recombineering using kil counter-selection in Escherichia coli. J Biotechnol. 2019;294:58–66. doi: 10.1016/j.jbiotec.2019.01.024. [DOI] [PubMed] [Google Scholar]
  • 338.Makoff A.J., Oxer M.D. High level heterologous expression in E. coli using mutant forms of the lac promoter. Nucleic Acids Res. 1991;19(9):2417–2421. doi: 10.1093/nar/19.9.2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 339.Huang C.J., Lin H., Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 2012;39(3):383–399. doi: 10.1007/s10295-011-1082-9. [DOI] [PubMed] [Google Scholar]
  • 340.Bhatwa A., Wang W., Hassan Y.I., Abraham N., Li X.Z., Zhou T. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol. 2021;9 doi: 10.3389/fbioe.2021.630551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 341.Assefa G.A., Kelkay M.Z. Goat pasteurellosis: serological analysis of circulating Pasteurella serotypes in Tanqua Aberegelle and Kola Tembien Districts, Northern Ethiopia. BMC Research Notes. 2018;11(1):485. doi: 10.1186/s13104-018-3606-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 342.Sahoo M., Baloni S., Thakor J.C., Bhutediya J., Qureshi S., Dhama K., Dubal Z.B., Singh K., Singh R. Localization of Pasteurella multocida antigens in the brains of pigs naturally infected with Pasteurellosis revealing a newer aspect of pathogenesis. Microb Pathog. 2020;140 doi: 10.1016/j.micpath.2020.103968. [DOI] [PubMed] [Google Scholar]
  • 343.Verma S., Sharma M., Katoch S., Verma L., Kumar S., Dogra V., et al. Profiling of virulence associated genes of Pasteurella multocida isolated from cattle. Vet Res Commun. 2013;37(1):83–89. doi: 10.1007/s11259-012-9539-5. [DOI] [PubMed] [Google Scholar]
  • 344.Magyar T., Ujvari B., Szeredi L., Virsinger N., Albert E., Nemet Z., et al. Re-emergence of bovine haemorrhagic septicaemia in Hungary. Acta Vet Hung. 2017;65(1):41–49. doi: 10.1556/004.2017.004. [DOI] [PubMed] [Google Scholar]
  • 345.Boyce J.D., Chung J.Y., Adler B. Pasteurella multocida capsule: composition, function and genetics. J Biotechnol. 2000;83(1–2):153–160. doi: 10.1016/s0168-1656(00)00309-6. [DOI] [PubMed] [Google Scholar]
  • 346.Pandit K.K., Smith J.E. Capsular hyaluronic acid in Pasteurella multocida type A and its counterpart in type D. Res Vet Sci. 1993;54(1):20–24. doi: 10.1016/0034-5288(93)90005-z. [DOI] [PubMed] [Google Scholar]
  • 347.DeAngelis P.L., Gunay N.S., Toida T., Mao W.-J., Linhardt R.J. Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr Res. 2002;337(17):1547–1552. doi: 10.1016/s0008-6215(02)00219-7. [DOI] [PubMed] [Google Scholar]
  • 348.Maheswaran S.K., Thies E.S. Influence of encapsulation on phagocytosis of Pasteurella multocida by bovine neutrophils. Infect Immun. 1979;26(1):76–81. doi: 10.1128/iai.26.1.76-81.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 349.Gallego C., Romero S., Esquinas P., Patino P., Martinez N., Iregui C. Assessment of Pasteurella multocida a lipopolysaccharide, as an adhesin in an in vitro model of rabbit respiratory epithelium. Veterinary Med Int. 2017;2017:8967618. doi: 10.1155/2017/8967618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 350.DeAngelis P.L. Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochemistry. 1996;35(30):9768–9771. doi: 10.1021/bi960154k. [DOI] [PubMed] [Google Scholar]
  • 351.Boyce J.D., Chung J.Y., Adler B. Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2) Vet Microbiol. 2000;72(1–2):121–134. doi: 10.1016/s0378-1135(99)00193-5. [DOI] [PubMed] [Google Scholar]
  • 352.Townsend K.M., Boyce J.D., Chung J.Y., Frost A.J., Adler B. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J Clin Microbiol. 2001;39(3):924–929. doi: 10.1128/JCM.39.3.924-929.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Davies R.L., MacCorquodale R., Reilly S. Characterisation of bovine strains of Pasteurella multocida and comparison with isolates of avian, ovine and porcine origin. Vet Microbiol. 2004;99(2):145–158. doi: 10.1016/j.vetmic.2003.11.013. [DOI] [PubMed] [Google Scholar]
  • 354.Chung J.Y., Zhang Y., Adler B. The capsule biosynthetic locus of Pasteurella multocida A:1. FEMS Microbiol Lett. 1998;166(2):289–296. doi: 10.1111/j.1574-6968.1998.tb13903.x. [DOI] [PubMed] [Google Scholar]
  • 355.Chu X., Han J., Guo D., Fu Z., Liu W., Tao Y. Characterization of UDP-glucose dehydrogenase from Pasteurella multocida CVCC 408 and its application in hyaluronic acid biosynthesis. Enzyme Microb Technol. 2016;85:64–70. doi: 10.1016/j.enzmictec.2015.12.009. [DOI] [PubMed] [Google Scholar]
  • 356.DeAngelis P.L., Padgett-McCue A.J. Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem. 2000;275(31):24124–24129. doi: 10.1074/jbc.M003385200. [DOI] [PubMed] [Google Scholar]
  • 357.Mehmood M.D., Zia S., Javed F., Gul M., Ashraf M., Anwar H. Physiochemical factors affecting in vitro growth of Pasteurella multocida. African Journal of Microbiology Research. 2018;12(11):269–274. doi: 10.5897/ajmr2017.8625. [DOI] [Google Scholar]
  • 358.Mandawe J., Infanzon B., Eisele A., Zaun H., Kuballa J., Davari M.D., et al. Directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high-molecular-weight hyaluronic acid. ChemBioChem. 2018;19(13):1414–1423. doi: 10.1002/cbic.201800093. [DOI] [PubMed] [Google Scholar]
  • 359.Jing W., DeAngelis P.L. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology. 2003;13(10):661–671. doi: 10.1093/glycob/cwg085. [DOI] [PubMed] [Google Scholar]
  • 360.Egorova K.S., Knirel Y.A., Toukach P.V. Expanding CSDB_GT glycosyltransferase database with Escherichia coli. Glycobiology. 2019;29(4):285–287. doi: 10.1093/glycob/cwz006. [DOI] [PubMed] [Google Scholar]
  • 361.Liu L., Liu X., Ma Q., Li Q., Gu P. Construction of recombinant Escherichia coli for production of L-phenylalanine-derived compounds. World J Microbiol Biotechnol. 2021;37(5):84. doi: 10.1007/s11274-021-03050-1. [DOI] [PubMed] [Google Scholar]
  • 362.Liang L., Liu R., Freed E.F., Eckert C.A. Synthetic biology and metabolic engineering employing Escherichia coli for C2–C6 bioalcohol production. Front Bioeng Biotechnol. 2020;8:710. doi: 10.3389/fbioe.2020.00710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 363.Neter E. Enteropathogenic Escherichia coli enteritis. Pediatr Clin North Am. 1960;7(4):1015–1024. doi: 10.1016/s0031-3955(16)31021-5. [DOI] [PubMed] [Google Scholar]
  • 364.Gross R.J., Rowe B. Escherichia coli diarrhoea. J Hygiene. 1985;95(3):531–550. doi: 10.1017/s0022172400060666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 365.Contrepois M., Dubourguier H.C., Parodi A.L., Girardeau J.P., Ollier J.L. Septicaemic Escherichia coli and experimental infection of calves. Vet Microbiol. 1986;12(2):109–118. doi: 10.1016/0378-1135(86)90073-8. [DOI] [PubMed] [Google Scholar]
  • 366.Hoshi H., Nakagawa H., Nishiguchi S., Iwata K., Niikura K., Monde K., et al. An engineered hyaluronan synthase: characterization for recombinant human hyaluronan synthase 2 Escherichia coli. J Biol Chem. 2004;279(4):2341–2349. doi: 10.1074/jbc.M305723200. [DOI] [PubMed] [Google Scholar]
  • 367.Roberts I.S., Mountford R., Hodge R., Jann K.B., Boulnois G.J. Common organization of gene clusters for production of different capsular polysaccharides (K antigens) in Escherichia coli. J Bacteriol. 1988;170(3):1305–1310. doi: 10.1128/jb.170.3.1305-1310.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 368.Roberts I., Mountford R., High N., Bitter-Suermann D., Jann K., Timmis K., et al. Molecular cloning and analysis of genes for production of K5, K7, K12, and K92 capsular polysaccharides in Escherichia coli. J Bacteriol. 1986;168(3):1228–1233. doi: 10.1128/jb.168.3.1228-1233.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 369.Liu B., Furevi A., Perepelov A.V., Guo X., Cao H., Wang Q., et al. Structure and genetics of Escherichia coli O-antigens. FEMS Microbiol Rev. 2020;44(6):655–683. doi: 10.1093/femsre/fuz028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 370.Ninomiya T., Sugiura N., Tawada A., Sugimoto K., Watanabe H., Kimata K. Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem. 2002;277(24):21567–21575. doi: 10.1074/jbc.M201719200. [DOI] [PubMed] [Google Scholar]
  • 371.Teo C.H., Lai Z.W. Cloning and expression of hyaluronan synthase (hasA) in recombinant Escherichia coli BL21 and its hyaluronic acid production in shake flask culture. Malaysian Journal of Microbiology. 2019;15(7):575–582. doi: 10.21161/mjm.190444. [DOI] [Google Scholar]
  • 372.Caplan A., Herrera-Estrella L., Inze D., Van Haute E., Van Montagu M., Schell J., et al. Introduction of genetic material into plant cells. Science. 1983;222(4625):815–821. doi: 10.1126/science.222.4625.815. [DOI] [PubMed] [Google Scholar]
  • 373.Sardesai N., Subramanyam S. Correction to: Agrobacterium: a genome-editing tool-delivery system. Curr Top Microbiol Immunol. 2018;418:509. doi: 10.1007/82_2018_136. [DOI] [PubMed] [Google Scholar]
  • 374.Lee J.-H., Lee I.Y. Optimization of uracil addition for curdlan (beta-1->3-glucan) production by Agrobacterium sp. Biotechnol Lett. 2001;23(14):1131–1134. doi: 10.1023/a:1010516001444. [DOI] [Google Scholar]
  • 375.Mao Z., Chen R.R. Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnol Prog. 2007;23(5):1038–1042. doi: 10.1021/bp070113n. [DOI] [PubMed] [Google Scholar]
  • 376.Kim M.-K., Lee I.-Y., Ko J.-H., Rhee Y.-H., Park Y.-H. Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis inAgrobacterium Species. Biotechnol Bioeng. 1999;62(3):317–323. doi: 10.1002/(sici)1097-0290(19990205)62:3&#x0003c;317::aid-bit8&#x0003e;3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  • 377.Egorova K.S., Toukach P.V. Expansion of coverage of Carbohydrate Structure Database (CSDB) Carbohydr Res. 2014;389:112–114. doi: 10.1016/j.carres.2013.10.009. [DOI] [PubMed] [Google Scholar]
  • 378.Conde R., Cueva R., Pablo G., Polaina J., Larriba G. A search for hyperglycosylation signals in yeast glycoproteins. J Biol Chem. 2004;279(42):43789–43798. doi: 10.1074/jbc.M406678200. [DOI] [PubMed] [Google Scholar]
  • 379.Rocha S.N., Abrahao-Neto J., Cerdan M.E., Gonzalez-Siso M.I., Gombert A.K. Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus. Microb Cell Fact. 2010;9:4. doi: 10.1186/1475-2859-9-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 380.Capone S., Corajevic L., Bonifert G., Murth P., Maresch D., Altmann F., et al. Combining protein and strain engineering for the production of glyco-engineered horseradish peroxidase C1A in Pichia pastoris. Int J Mol Sci. 2015;16(10):23127–23142. doi: 10.3390/ijms161023127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 381.Alves-Rodrigues I., Galao R.P., Meyerhans A., Diez J. Saccharomyces cerevisiae: a useful model host to study fundamental biology of viral replication. Virus Res. 2006;120(1–2):49–56. doi: 10.1016/j.virusres.2005.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 382.Chen Y., Xiao W., Wang Y., Liu H., Li X., Yuan Y. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact. 2016;15(1):113. doi: 10.1186/s12934-016-0509-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 383.Besada-Lombana P.B., Da Silva N.A. Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae. Metab Eng. 2019;55:142–151. doi: 10.1016/j.ymben.2019.06.010. [DOI] [PubMed] [Google Scholar]
  • 384.Gao M., Shi Z. Process control and optimization for heterologous protein production by methylotrophic Pichia pastoris. Chin J Chem Eng. 2013;21(2):216–226. doi: 10.1016/s1004-9541(13)60461-9. [DOI] [Google Scholar]
  • 385.Zahrl R.J., Pena D.A., Mattanovich D., Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res. 2017;17(7):fox068. doi: 10.1093/femsyr/fox068. [DOI] [PubMed] [Google Scholar]
  • 386.Karbalaei M., Rezaee S.A., Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol. 2020;235(9):5867–5881. doi: 10.1002/jcp.29583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 387.Vigetti D., Viola M., Karousou E., De Luca G., Passi A. Metabolic control of hyaluronan synthases. Matrix Biol. 2014;35:8–13. doi: 10.1016/j.matbio.2013.10.002. [DOI] [PubMed] [Google Scholar]
  • 388.Thanh L.T., Toffaletti D.L., Tenor J.L., Giamberardino C., Sempowski G.D., Asfaw Y., et al. Assessing the virulence of Cryptococcus neoformans causing meningitis in HIV infected and uninfected patients in Vietnam. Med Mycol. 2020;58(8):1149–1161. doi: 10.1093/mmy/myaa013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 389.Lee K.T., Hong J., Lee D.G., Lee M., Cha S., Lim Y.G., et al. Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat Commun. 2020;11(1):1521. doi: 10.1038/s41467-020-15329-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 390.Chang Y.C., Jong A., Huang S., Zerfas P., Kwon-Chung K.J. CPS1, a homolog of the Streptococcus pneumoniae type 3 polysaccharide synthase gene, is important for the pathobiology of Cryptococcus neoformans. Infect Immun. 2006;74(7):3930–3938. doi: 10.1128/IAI.00089-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 391.Casadevall A., Coelho C., Cordero R.J.B., Dragotakes Q., Jung E., Vij R., et al. The capsule of Cryptococcus neoformans. Virulence. 2019;10(1):822–831. doi: 10.1080/21505594.2018.1431087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 392.Jong A., Wu C.H., Chen H.M., Luo F., Kwon-Chung K.J., Chang Y.C., et al. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot Cell. 2007;6(8):1486–1496. doi: 10.1128/EC.00120-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 393.Lang O.W., Nash R.S., Hellerstedt S.T., Engel S.R., Project S.G.D. An introduction to the Saccharomyces Genome Database (SGD) Methods Mol Biol. 2018;1757:21–30. doi: 10.1007/978-1-4939-7737-6_2. [DOI] [PubMed] [Google Scholar]
  • 394.Ng P.C., Wong E.D., MacPherson K.A., Aleksander S., Argasinska J., Dunn B., et al. Transcriptome visualization and data availability at the Saccharomyces Genome Database. Nucleic Acids Res. 2020;48(D1):D743–D748. doi: 10.1093/nar/gkz892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 395.Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528–532. doi: 10.1038/nature12051. [DOI] [PubMed] [Google Scholar]
  • 396.Sun L., Liu G., Li Y., Jiang D., Guo W., Xu H., et al. Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin. Metab Eng. 2019;54:212–221. doi: 10.1016/j.ymben.2019.04.008. [DOI] [PubMed] [Google Scholar]
  • 397.Rahmat E., Kang Y. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Appl Biochem Biotechnol. 2020;104(11):4659–4674. doi: 10.1007/s00253-020-10587-y. [DOI] [PubMed] [Google Scholar]
  • 398.Oka T., Jigami Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. The FEBS Journal. 2006;273(12):2645–2657. doi: 10.1111/j.1742-4658.2006.05281.x. [DOI] [PubMed] [Google Scholar]
  • 399.DeAngelis P.L., Achyuthan A.M. Yeast-derived recombinant DG42 protein of Xenopus can synthesize hyaluronan in vitro. J Biol Chem. 1996;271(39):23657–23660. doi: 10.1074/jbc.271.39.23657. [DOI] [PubMed] [Google Scholar]
  • 400.Tovar-Castro L., Garcia-Garibay M., Saucedo-Castaneda G. Lactase production by solid-state cultivation of Kluyveromyces marxianus CDBBL 278 on an inert support: effect of inoculum, buffer, and nitrogen source. Appl Biochem Biotechnol. 2008;151(2–3):610–617. doi: 10.1007/s12010-008-8268-2. [DOI] [PubMed] [Google Scholar]
  • 401.van den Berg J.A., van der Laken K.J., van Ooyen A.J., Renniers T.C., Rietveld K., Schaap A., et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology. 1990;8(2):135–139. doi: 10.1038/nbt0290-135. [DOI] [PubMed] [Google Scholar]
  • 402.Hoshida H., Kidera K., Takishita R., Fujioka N., Fukagawa T., Akada R. Enhanced production of extracellular inulinase by the yeast Kluyveromyces marxianus in xylose catabolic state. J Biosci Bioeng. 2018;125(6):676–681. doi: 10.1016/j.jbiosc.2017.12.024. [DOI] [PubMed] [Google Scholar]
  • 403.Karim A., Gerliani N., Aider M. Kluyveromyces marxianus: an emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol. 2020;333 doi: 10.1016/j.ijfoodmicro.2020.108818. [DOI] [PubMed] [Google Scholar]
  • 404.Raschmanova H., Weninger A., Knejzlik Z., Melzoch K., Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Biochem Biotechnol. 2021;105(11):4397–4414. doi: 10.1007/s00253-021-11336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 405.Zhao H., Tang J., Cao L., Jia G., Long D., Liu G., et al. Characterization of bioactive recombinant antimicrobial peptide parasin I fused with human lysozyme expressed in the yeast Pichia pastoris system. Enzyme Microb Technol. 2015;77:61–67. doi: 10.1016/j.enzmictec.2015.06.001. [DOI] [PubMed] [Google Scholar]
  • 406.Muller J.M., Bruhn S., Flaschel E., Friehs K., Risse J.M. GAP promoter-based fed-batch production of highly bioactive core streptavidin by Pichia pastoris. Biotechnol Prog. 2016;32(4):855–864. doi: 10.1002/btpr.2283. [DOI] [PubMed] [Google Scholar]
  • 407.Farinha I., Araujo D., Freitas F. Optimization of medium composition for production of chitin-glucan complex and mannose-containing polysaccharides by the yeast Komagataella pastoris. J Biotechnol. 2019;303:30–36. doi: 10.1016/j.jbiotec.2019.07.007. [DOI] [PubMed] [Google Scholar]
  • 408.Jeong E., Shim W.Y., Kim J.H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol. 2014;185:28–36. doi: 10.1016/j.jbiotec.2014.05.018. [DOI] [PubMed] [Google Scholar]

Articles from Computational and Structural Biotechnology Journal are provided here courtesy of Research Network of Computational and Structural Biotechnology

RESOURCES