Abstract
溶酶体贮积症(lysosomal storage disorders,LSDs)是一组由溶酶体酶或功能相关蛋白缺陷所致的单基因遗传代谢性疾病。临床治疗以酶替代疗法为主,但该疗法对有神经系统症状的LSDs患者疗效较差。随着多组学、测序技术和生物工程学的快速发展,基因治疗已在LSDs患者中开展。腺相关病毒(adeno-associated virus,AAV)作为基因治疗的载体之一,在治疗遗传代谢性等疾病中具有较好的前景。越来越多的研究表明,AAV介导的基因治疗在LSDs中有效。该文就其在LSDs中的应用作一综述。
Keywords: 溶酶体贮积症, 腺相关病毒, 基因治疗
Abstract
Lysosomal storage disorders (LSDs) are a group of single-gene inherited metabolic diseases caused by defects in lysosomal enzymes or function-related proteins. Enzyme replacement therapy is the main treatment method in clinical practice, but it has a poor effect in patients with neurological symptoms. With the rapid development of multi-omics, sequencing technology, and bioengineering, gene therapy has been applied in patients with LSDs. As one of the vectors of gene therapy, adeno-associated virus (AAV) has good prospects in the treatment of genetic and metabolic diseases. More and more studies have shown that AAV-mediated gene therapy is effective in LSDs. This article reviews the application of AAV-mediated gene therapy in LSDs.
Keywords: Lysosomal storage disease, Adeno-associated virus, Gene therapy
溶酶体贮积症(lysosomal storage disorders,LSDs)是一组由溶酶体酶或功能相关蛋白缺陷所致的高度异质性疾病,累及多个组织器官,表现形式多样。每年活产婴儿发病率为1/5 000~1/7 000[1]。临床治疗以酶替代疗法(enzyme replacement therapy,ERT)为主,但该疗法对具有神经系统症状的LSDs患者疗效甚微。腺相关病毒(adeno-associated virus,AAV)是靶向中枢神经系统的“明星载体”,其介导的基因治疗在部分LSDs动物实验和临床试验中都取得了较好疗效,有望成为治愈LSDs的方式。本文总结了目前AAV在常见LSDs的动物实验及临床试验情况,为AAV介导的基因疗法在LSDs中的应用奠定基础。
1. LSDs概述
LSDs主要是由编码溶酶体功能相关的水解酶或蛋白基因突变所致。由于这些酶或蛋白的缺陷,溶酶体不能正常降解大分子底物,未被降解的大分子底物在细胞内逐渐累积,当贮积到一定程度时会导致细胞功能障碍和细胞死亡[2]。截至2021年12月1日,世界研讨会溶酶体病官方名单(worldsymposia.org/official-list-of-lysosomal-diseases)已公布68种LSDs。该病的临床表现形式多样,可有多个器官系统受累,超过2/3的患者有神经系统受累,疾病的严重程度与酶残留活性呈负相关[3]。该病主要治疗方法有ERT、造血干细胞移植、基因治疗和对症支持治疗[4]。随着治疗时间的延长,使用ERT的患者可能会因为对外源性酶产生免疫反应导致疗效下降,此外,血脑屏障的存在限制了有神经系统症状患者的给药途径[5]。造血干细胞移植技术本身比较成熟,在LSDs中的应用逐渐增多,对疾病早期和非中枢神经系统受累的患者部分有效,但需要找到合适的供者,这使得造血干细胞移植只对部分LSDs患者有效。迄今,基因治疗在LSDs中的应用仍处于前临床及临床试验阶段,但已完成的试验结果提示其具有较好疗效,特别是在具有神经系统症状的LSDs患者中。LSDs基因治疗的载体主要有AAV、逆转录病毒、慢病毒(表1),其中AAV应用最为广泛[4]。
表1.
3种病毒载体的特点
| 项目 | 腺相关病毒 | 逆转录病毒 | 慢病毒 |
|---|---|---|---|
| 病毒基因组 | 单链DNA | 单链RNA | 单链RNA |
| 感染范围 | 分裂和非分裂细胞 | 分裂细胞 | 分裂和非分裂细胞 |
| 整合至宿主基因组 | 非整合 | 整合 | 整合 |
| 外源基因的表达 | 潜在的持久 | 长 | 长 |
| 包装容量 (bp) | 4 500 | 6 000 | 6 000 |
| 免疫原性 | 低 | 低 | 极低 |
| 转染效率 (%) | 70 | 100 | 70 |
2. AAV载体概述
AAV是一个小型的、无包膜的二十四面体病毒,由Rep、Cap 2个开放阅读框(open reading frame,ORF)和包含145个核苷酸的2个末端重复序列(inverted terminal repeat,ITR)组成,其基因组为单链线性DNA(4.7 kb)(图1)。ITR是由2个回文序列互补形成的T型发卡结构,在AAV的复制、包装和整合中起着非常重要的作用。Rep ORF编码4种非结构蛋白,分别是Rep78、Rep68、Rep52和Rep40;Cap ORF编码4种结构蛋白,分别为VP1、VP2、VP3和APP蛋白[6]。用于基因治疗的AAV载体通常为重组AAV(recombinant adeno-associated virus,rAAV),即野生型AAV中的rep和cap基因被基因表达盒(1个启动子、1个目的基因、1个转录终止信号)所取代,只保留两端的ITR[6](图1)。AAV有十多种血清型,不同血清型具有不同的组织和细胞趋向性。在基因治疗中常根据靶器官选择rAAV的血清型和启动子。构建治疗LSDs的rAAV常用启动子有巨细胞病毒(cytomegalovirus,CMV)启动子、结合蛋白(desmin,DES)启动子、巨细胞病毒增强/β肌动蛋白(CMV enhancer/β-actin,CB)启动子、肝脏特异性启动子(liver specific promoter,LSP)等[7]。迄今,AAV1、AAV2、AAV4、AAV5、AAV8、AAV9、AAVrh.10已被用于中枢神经系统疾病的实验(表2)。科学家们一直致力于开发转导效率更高和组织趋向性更强的AAV,比如AAV2/1、AAV-DJ、AAV-PHP.B、AAV2-7m8等[6]。至今已有5种与AAV相关的基因治疗药物被批准上市,分别是Glybera(治疗脂蛋白脂肪酶缺乏症)、Luxturna(治疗遗传性视神经炎)、Zolgensma(治疗脊髓性肌萎缩症)、Upstaza(治疗芳香族L-氨基酸脱羧酶缺乏症)和Roctavian(治疗血友病A)。
图1. 野生型和重组型AAV的结构.

表2.
靶向中枢神经系统的AAV常见血清型
| 血清型 | 研究动物 | 参考文献 (PMID) |
|---|---|---|
| AAV1 | 鼠、狗、灵长类动物 | 15812233、16413228、16824801、21610699、22402323、29244806、33802760 |
| AAV2 | 鼠、狗、灵长类动物、非人灵长类动物 (猴子) | 16052206、16452657、18473686、21610699 |
| AAV4 | 鼠 | 15944733、16221840、20859261、21610699 |
| AAV5 | 鼠、狗、灵长类动物 | 15294177、16413228、16824801、21610699、22402323、24086725、32801344、35210396 |
| AAV8 | 鼠、灵长类动物 | 17955025、27613724、28553166、28622392、32313099、33244179、35997776 |
| AAV9 | 鼠、狗、灵长类动物、非人灵长类动物 | 19098898、22402323、24524415、24720466、26953486 |
| AAVrh.10 | 鼠、猴子 | 16413228、16824801、21610699、22273577、22402323、24781136 |
3. AAV介导的基因治疗在LSDs中的应用
在PubMed数据库中以“adeno-associated virus”“AAV”“lysosomal storage disorder”“lysosomal storage disease”“LSDs”为关键词进行检索,发现近十年有200多篇文章,涉及法布里病、戈谢病、黏脂贮积症等,其中黏多糖贮积症(mucopolysaccharidosis disease,MPS)80余篇,Pompe病(Pompe disease)50余篇,神经元蜡样质脂褐质沉积症(neuronal ceroid lipofuscinoses,NCL)20余篇。此外通过检索临床研究网站(clinicaltrials.gov和clinicaltrialsregister.eu),发现截至2022年7月16日AAV在LSDs上的临床研究多集中在Pompe病、MPS、NCL(表3)。因此,我们重点阐述AAV载体在这3种疾病中的进展。
表3.
AAV介导的基因疗法在LSDs中的临床研究
| 疾病 | 基因载体 (药名) | 基因名称 | 用药方式 | 状态 | NCT编号 |
|---|---|---|---|---|---|
| Pompe病 | AAV2/8-LSPhGAA (ACTUS-101) | GAA | 静脉输注 | 招募中 | NCT03533673 |
| Pompe病 | rAAV9-DES-hGAA | GAA | 肌内注射 | 完成 | NCT02240407 |
| Pompe病 | rAAV1-CMV-GAA | GAA | 肌内注射 | 完成 | NCT00976352 |
| Pompe病 (晚发型) | SPK-3006 | GAA | 静脉注射 | 招募中 | NCT04093349 |
| Pompe病 (晚发型) | AAV8 (AT845) | GAA | 静脉注射 | 招募中 | NCT04174105 |
| 黏多糖贮积症Ⅰ型 | rAAV2/6 (SB-318) | IDUA | 静脉注射 | 终止 | NCT02702115 |
| 黏多糖贮积症Ⅱ型 | rAAV2/6 (SB-913) | IDS | 静脉注射 | 终止 | NCT03041324 |
| 黏多糖贮积症Ⅲ型 | rAAV2/5-hNAGLU | NAGLU | 脑内注射 | 完成 | NCT03300453 |
| 黏多糖贮积症ⅢA型 | AAVrh10-h.SGSH (LYS-SAF302) | SGSH | 脑内注射 | 招募结束 | NCT03612869 |
| 黏多糖贮积症ⅢA型 | scAAV9.U1a.hSGSH (ABO-102) | SGSH | 静脉注射 | 招募中 | NCT04360265 |
| 黏多糖贮积症ⅢA型 | SAF-301 | SGSH | 脑内注射 | 完成 | NCT02053064 |
| 黏多糖贮积症ⅢA型 | scAAV9.U1a.hSGSH (ABO-102) | SGSH | 静脉注射 | 终止 | NCT04088734 |
| 黏多糖贮积症ⅢB型 | rAAV9.CMV.hNAGLU (ABO-101) | NAGLU | 静脉注射 | 招募中 | NCT04655911 |
| 黏多糖贮积症Ⅵ型 | AAV2/8.TBG.hARSB | ARSB | 静脉输注 | 招募结束 | NCT03173521 |
| 神经元蜡样质脂褐质沉积症6型 | scAAV9.CB.CLN6 (AT-GTX-501) | CLN6 | 鞘内注射 | 完成 | NCT02725580 |
| 神经元蜡样质脂褐质沉积症2型 | AAV2CUhCLN2 | CLN2 | 颅内注射 | 完成 | NCT00151216 |
| 神经元蜡样质脂褐质沉积症2型 | AAVrh.10CUhCLN2 | CLN2 | - | 完成 | NCT01161576 |
| 神经元蜡样质脂褐质沉积症2型 | AAVrh.10CUCLN2 | CLN2 | - | 完成 | NCT01414985 |
| 儿童神经元蜡样质脂褐质沉积症 | ScAAV9-CLN3 (AT-GTX-502) | CLN3 | 鞘内注射 | 招募结束 | NCT03770572 |
| 神经元蜡样质脂褐质沉积症 | AAV9/CLN7 | CLN7 | 鞘内注射 | 招募中 | NCT04737460 |
| 异染性脑白质营养不良 | AAVrh.10cuARSA | ARSA | 颅内注射 | 招募结束 | NCT01801709 |
| GM1神经节苷脂贮积症 | AAVrh.10-β gal (LYS-GM101) | GLB1 | 肠内注射 | 招募中 | NCT04273269 |
| GM1神经节苷脂贮积症 | AAV9-GLB1 | GLB1 | 静脉注射 | 招募中 | NCT03952637 |
| GM2神经节苷脂贮积症 | AAVrh.8 (AXO-AAV-GM2) | HEXA/HEXB | 双侧丘脑和脑室内/鞘内输注 | 招募 | NCT04669535 |
| 戈谢病, 1型 | FLT201 | GBA1 | 静脉注射 | 招募结束 | NCT05324943 |
| 戈谢病, 2型 | PR001 | GBA1 | 椎管内给药 | 招募 | NCT04411654 |
| 法布里病 | AAVS3 (FLT190) | αGLA | - | 招募 | NCT04455230 |
| 法布里病 | AAVS3 (FLT190) | αGLA | 静脉滴注 | 招募 | NCT04040049 |
| 法布里病 | AAV2/6 (ST-920) | αGLA | 静脉注射 | 招募 | NCT04046224 |
| 法布里病 | 4D-310 | αGLA | 静脉注射 | 招募 | NCT04519749 |
| 法布里病 | AAV2/6 (ST-920) | αGLA | 静脉注射 | 招募 | NCT05039866 |
3.1. Pompe病
Pompe病又称糖原贮积症Ⅱ型(glycogen storage disease type Ⅱ,GSD Ⅱ),是一种由17号染色体酸性α-葡萄糖苷酶(acid α-glucosidase,GAA)缺乏所引起糖原在心脏、骨骼肌和运动神经元中积累的遗传代谢性疾病[8]。根据发病年龄分为婴儿型和晚发型。婴儿型Pompe病以心脏受累为主,晚发型Pompe病多累及运动神经元,两者预后均不佳[9-10]。自2006年ERT面世以来,给许多患者带来希望。然而ERT的局限性逐渐显现:(1)抗体反应:不少患者使用后出现持续高抗重组人类α-葡萄糖苷酶滴度状态;(2)治疗周期长,需要频繁注射,具有输液相关风险;(3)重组的蛋白不能通过血脑屏障,无法治疗有神经系统症状的患者,对晚发型Pompe病患者治疗效果不佳[11-12]。从2002年开始,以AAV作为载体治疗Pompe病的研究已经在动物中得以开展,并不断优化以促进其临床应用:(1)从单一血清型的AAV到杂交血清型的AAV[13];(2)不断优化rAAV的策略,如根据靶向器官选择CMV、DES、CB、LSP等启动子[14];(3)改进给药方式:婴儿型Pompe病多选择静脉注射、肌内注射;晚发型多选择中枢神经系统靶向治疗,肝定向治疗在成人患者中也是一种方法[15-16]。Falk等[17]发现与ERT治疗的小鼠相比,AAV2/9-DES-hGAA治疗后的GAA -/-小鼠在心肌和呼吸肌中显示GAA活性增加,糖原积累减少。此外,AAV2/9-DES-hGAA治疗后的GAA -/-小鼠呼吸功能有显著变化,表明部分纠正了下运动神经元功能。Lee等[15]发现脑室内注射AAV9/3-Syn-I-hGAA后,通过降低大脑和脊髓的糖原积累,减少星形胶质细胞增生和增加髓鞘形成,使Pompe病小鼠的运动协调功能得以改善。2009年,用于治疗Pompe病的AAV临床试验(NCT00976352)首次在佛罗里达大学展开,该试验证明rAAV1-hGAA对治疗慢性呼吸机依赖的Pompe病患儿是有效和安全的,但该试验只纳入10名患儿[18]。近年来,越来越多相关的临床试验已开展(clinicaltrials.gov),2016年开展“在晚发型Pompe病患者中肌内注射重组AAV酸性α-葡萄糖苷酶(rAAV9-DES-hGAA)”的Ⅰ期对照研究(NCT02240407),评估该载体的毒理学、生物分布和潜在活性;2018年至今开展的临床研究多集中在“不同的重组腺相关病毒[AAV2/8-LSPhGAA(ACTUS-101)、AT845、SPK-3006]在晚发型Pompe病中的应用”,旨在探索用于晚发型Pompe病的rAAV血清型和启动子最佳组合策略。“可用于治疗Pompe病的组合物”的专利(CN114127275A)在2022年2月通过,该专利提供了一种可用于治疗Pompe病的rAAV-AAVhu68.CB6.hGAA [19]。尽管目前很多临床试验仍处于进展阶段,但根据动物实验及已完成的临床试验结果不难发现,对晚发型Pompe病患者而言,AAV介导的基因治疗似乎是一种更可行的治疗方法。
3.2. MPS
MPS是由降解黏多糖的酶缺乏所引起的多组织器官受损的一组疾病,发病率为1/25 000~1/30 000[20]。根据特定酶的缺乏将MPS分为7种类型,其临床表现多样,常累及多个器官系统[21]。其中MPS Ⅱ型为最常见的类型,而MPS Ⅲ型神经系统受累最严重,可导致神经退行性变、进行性智力障碍和发育倒退[22]。2020年国内首个ERT特异性治疗药物——艾度硫酸酯酶β注射液上市,填补了MPS Ⅱ的临床治疗的空白[23]。ERT已经广泛用于MPS Ⅳ、Ⅱ、Ⅳ-A、Ⅵ、Ⅶ型,但在有神经系统症状的MPS中疗效甚微[24]。造血干细胞移植疗法虽然能够治疗有神经系统症状的MPS,但对MPSⅢ型无效。因此,近年来美国及一些欧洲国家开展了该病的基因治疗,主要涉及MPS Ⅰ、Ⅱ、Ⅲ、Ⅳ型。Hinderer等[25]研究表明,鞘内注射AAV9-hIDUA能够减少MPS Ⅰ型小狗的脑生化异常和底物的积累,具有剂量依赖性;此外,在MPS Ⅰ、ⅡB型小狗实验中证实单次注射AAV5.5-hIDUA、rAAV5-hNAGLU可以治疗和预防其神经系统的病理改变,且该实验结果可以重复,为临床试验的开展奠定了基础[26]。Hinderer等[27]发现将AAV9.CB.hIDS递送到脑脊液可以作为MPS Ⅱ型小鼠中枢神经系统高效、长期递送酶的平台;Winner等[28]发现在MPS Ⅲ A大鼠脑实质内给予AAVrh10-SGSH-IRES-SUMF1可以实现广泛的酶分布和更好地矫正病理改变;Gutiérrez等[29]构建出含有人GALNS基因并由CMV免疫早期启动子驱动的AAV衍生载体,实现了MPS Ⅳ型基因治疗的第一步。目前大多临床试验都集中在MPS Ⅲ型(NCT02053064;NCT04088734;NCT03612869;NCT04655911;NCT04360265),尽管这些临床试验结果目前仍未报道,但就动物实验的结果而言,AAV介导的基因治疗在MPS中有较好的前景,其rAAV构建中,仍以AAV9血清型最为常见,启动子以CB为主,常用注射方式为鞘内注射。此外,专利“一种腺相关病毒双重载体基因治疗系统及其在治疗黏多糖贮积症Ⅱ型中的应用”(CN 111110865 A)在2020年5月通过,该发明为MPS Ⅱ型的临床治疗提供了有效的治疗手段[30]。AAV介导的基因疗法有望成为伴神经系统损害的MPS患者的优先疗法。
3.3. NCL
NCL又称为Batten病,是一组由脂褐素沉积所致的进行性加重的神经退行性疾病,以智力和运动功能障碍、癫痫、痴呆、视力减退为主要表现[31]。至今已有14个基因(CLN1~CLN14)被报道与该病相关(www.ucl.ac.uk/ncl)。研究表明,不需要通过血脑屏障的ERT,如鞘内注射,可以显著缓解神经系统症状,减缓病程[32]。目前只有CLN2缺陷患者的脑室内ERT——Brineura被美国食品药物管理局批准,但仍需终生注射。其余NCL主要予抗癫痫药物对症治疗[33]。Cabrera-Salazar等[34]和Sondhi等[35]研究表明颅内注射AAVrh10.hTPP1和AA2/1.hTPP1的CLN2 -/-大鼠有更好的运动功能、更长的寿命、反应性胶质细胞的增生及轴突变性情况的减少。Sondhi等[36]在CLN3 -/-的新生小鼠中进行颅内注射AAVrh.10.CAG.hCLN3后发现,沉积的物质和星形胶质细胞活化减少,但在18个月时未治疗的小鼠未出现明显的运动缺陷,故未评估其行为和运动功能。另一个研究也表明,静脉注射AAV2/9.hHCLN3可以纠正CLN3 -/-小鼠的运动缺陷[37]。Kleine Holthaus等[38]发现在CLN6 -/-新生小鼠的双侧脑室内注射AAV9.hCLN6后,小鼠寿命延长90%以上且在给药后23个月内保持运动功能。Mitchell等[39]对CLN5 -/-的羊进行颅内注射AAV2/9后,其生存时间也显著延长。NCL动物实验中rAAV的构建主要以较为成熟的AAV2/9血清型为主,这些实验都为NCL临床试验的开展奠定了基础。2004年,第一个AAV介导的基因治疗试验在CLN2缺陷患儿中进行(NCT00151216),该试验纳入了11名儿童,分为中度(6名)和重度(5名)2组,通过手术直接颅内注射AAV2CUhCLN2,随访4年后Worgall等[40]发现该治疗减慢了疾病进程,但有一名受试者在第14天出现癫痫持续状态并在术后49 d死亡,未发现中枢神经系统炎症的证据;40%患者对AAV2衣壳蛋白出现轻微、短暂的体液免疫反应。故为进一步评估AAV介导CLN2基因治疗的安全性和有效性,又开展了临床试验NCT01414985、NCT01161576,并针对之前出现的体液反应,将rAAV载体血清型调整为AAVrh.10,目前结果未见相关报道。CLN6、CLN3和CLN7的临床试验NCT02725580、NCT03770572、NCT04737460目前也在开展中。与此同时,越来越多NCL AAV介导的基因疗法的专利被发明。2021年以来,已通过ScAAV9.CB.CLN6、ScAAV9.P546.CLN3、AAV2-CAG-人TPP1等rAAV专利[41-43],这些专利进一步推动了AAV介导的基因疗法在NCL的临床应用。
4. 展望
AAV作为基因治疗中的“明星载体”,截至2022年9月15日在ClinialTrials.gov注册的AAV临床研究高达292项。然而,AAV介导的基因治疗也存在一些局限性:(1)许多人的血清中存在一些AAV血清型的抗体,比如AAV2、AAV1、AAV9,此外这些抗体可能与其他血清型会发生抗体反应;(2)小容量性,AAV的容量仅4.7 kb;(3)多数基因治疗存在的共同问题,比如潜在的致瘤性和不可预测的风险。随着基因工程的发展,这些问题被不断优化,如在治疗前,先筛查患者体内的AAV抗体;通过双载体或三载体提高其基因容量性。从上述内容中,我们发现AAV介导的基因疗法已在小鼠、猫、狗、羊等动物中开展;目前已完成的临床试验结果表明AAV介导的基因治疗有望成为治愈LSDs患者的有效手段,特别是在Pompe病、MPS、NCL等病中。尽管如此,AAV介导的基因疗法在LSDs的临床应用中仍有很长的路要走。就给药方式而言,尽管中枢神经系统在免疫上拥有“特权”,较少发生免疫反应,但多次颅内给药仍可能会导致癫痫发作,甚至使神经系统症状的LSDs转变成内脏症状的LSDs。此外,目前所开展的临床试验存在一个共性——纳入的受试者较少。再者,其费用也是医患关注的问题,2021年治疗脊髓肌萎缩症的诺西那生钠注射液纳入医保后,每支从70万元降至3.3万元,给很多罕见病家庭带去了希望。随着基因治疗产业链的不断完善及国家医保的大力支持,相信会有越来越多家庭受益于基因治疗。
基金资助
湖南省重点研发计划项目(2022SK2036)。
参 考 文 献
- 1. Giugliani R, Federhen A, Michelin-Tirelli K, et al. Relative frequency and estimated minimal frequency of lysosomal storage diseases in Brazil: report from a reference laboratory[J]. Genet Mol Biol, 2017, 40(1): 31-39. DOI: 10.1590/1678-4685-GMB-2016-0268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Platt FM, d'Azzo A, Davidson BL, et al. Lysosomal storage diseases[J]. Nat Rev Dis Primers, 2018, 4(1): 27. DOI: 10.1038/s41572-018-0025-4. [DOI] [PubMed] [Google Scholar]
- 3. Giugliani R, Vairo F, Kubaski F, et al. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS[J]. Lancet Child Adolesc Health, 2018, 2(1): 56-68. DOI: 10.1016/S2352-4642(17)30087-1. [DOI] [PubMed] [Google Scholar]
- 4. Nagree MS, Scalia S, McKillop WM, et al. An update on gene therapy for lysosomal storage disorders[J]. Expert Opin Biol Ther, 2019, 19(7): 655-670. DOI: 10.1080/14712598.2019.1607837. [DOI] [PubMed] [Google Scholar]
- 5. Broomfield A, Jones SA, Hughes SM, et al. The impact of the immune system on the safety and efficiency of enzyme replacement therapy in lysosomal storage disorders[J]. J Inherit Metab Dis, 2016, 39(4): 499-512. DOI: 10.1007/s10545-016-9917-1. [DOI] [PubMed] [Google Scholar]
- 6. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery[J]. Nat Rev Drug Discov, 2019, 18(5): 358-378. DOI: 10.1038/s41573-019-0012-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Salabarria SM, Nair J, Clement N, et al. Advancements in AAV-mediated gene therapy for Pompe disease[J]. J Neuromuscul Dis, 2020, 7(1): 15-31. DOI: 10.3233/JND-190426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Kohler L, Puertollano R, Raben N. Pompe disease: from basic science to therapy[J]. Neurotherapeutics, 2018, 15(4): 928-942. DOI: 10.1007/s13311-018-0655-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Musumeci O, Marino S, Granata F, et al. Central nervous system involvement in late-onset Pompe disease: clues from neuroimaging and neuropsychological analysis[J]. Eur J Neurol, 2019, 26(3): 442-e35. DOI: 10.1111/ene.13835. [DOI] [PubMed] [Google Scholar]
- 10. Bay LB, Denzler I, Durand C, et al. Infantile-onset Pompe disease: diagnosis and management[J]. Arch Argent Pediatr, 2019, 117(4): 271-278. DOI: 10.5546/aap.2019.eng.271. [DOI] [PubMed] [Google Scholar]
- 11. Moriggi M, Capitanio D, Torretta E, et al. Muscle proteomic profile before and after enzyme replacement therapy in late-onset Pompe disease[J]. Int J Mol Sci, 2021, 22(6): 2850. DOI: 10.3390/ijms22062850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Dornelles AD, Junges APP, Pereira TV, et al. A systematic review and meta-analysis of enzyme replacement therapy in late-onset Pompe disease[J]. J Clin Med, 2021, 10(21): 4828. DOI: 10.3390/jcm10214828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Sun BD, Chen YT, Bird A, et al. Long-term correction of glycogen storage disease type II with a hybrid Ad-AAV vector[J]. Mol Ther, 2003, 7(2): 193-201. DOI: 10.1016/S1525-0016(02)00055-2. [DOI] [PubMed] [Google Scholar]
- 14. Ronzitti G, Collaud F, Laforet P, et al. Progress and challenges of gene therapy for Pompe disease[J]. Ann Transl Med, 2019, 7(13): 287. DOI: 10.21037/atm.2019.04.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Lee NC, Hwu WL, Muramatsu SI, et al. A neuron-specific gene therapy relieves motor deficits in Pompe disease mice[J]. Mol Neurobiol, 2018, 55(6): 5299-5309. DOI: 10.1007/s12035-017-0763-4. [DOI] [PubMed] [Google Scholar]
- 16. Puzzo F, Colella P, Biferi MG, et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase[J]. Sci Transl Med, 2017, 9(418): eaam6375. DOI: 10.1126/scitranslmed.aam6375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Falk DJ, Soustek MS, Todd AG, et al. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice[J]. Mol Ther Methods Clin Dev, 2015, 2: 15007. DOI: 10.1038/mtm.2015.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Smith BK, Collins SW, Conlon TJ, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes[J]. Hum Gene Ther, 2013, 24(6): 630-640. DOI: 10.1089/hum.2012.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. 宾夕法尼亚州大学信托人, 阿米库斯治疗学公司 . 可用于治疗Pompe病的组合物: CN202080049015.0[P]. 2022-02-18.
- 20. Michaud M, Belmatoug N, Catros F, et al. Mucopolysaccharidosis: a review[J]. Rev Med Interne, 2020, 41(3): 180-188. DOI: 10.1016/j.revmed.2019.11.010. [DOI] [PubMed] [Google Scholar]
- 21. Bigger BW, Begley DJ, Virgintino D, et al. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders[J]. Mol Genet Metab, 2018, 125(4): 322-331. DOI: 10.1016/j.ymgme.2018.08.003. [DOI] [PubMed] [Google Scholar]
- 22. Giussani C, Guida L, Canonico F, et al. Cerebral and occipito-atlanto-axial involvement in mucopolysaccharidosis patients: clinical, radiological, and neurosurgical features[J]. Ital J Pediatr, 2018, 44(Suppl 2): 119. DOI: 10.1186/s13052-018-0558-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. D'Avanzo F, Rigon L, Zanetti A, et al. Mucopolysaccharidosis type Ⅱ: one hundred years of research, diagnosis, and treatment[J]. Int J Mol Sci, 2020, 21(4): 1258. DOI: 10.3390/ijms21041258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Desmaris N, Verot L, Puech JP, et al. Prevention of neuropathology in the mouse model of Hurler syndrome[J]. Ann Neurol, 2004, 56(1): 68-76. DOI: 10.1002/ana.20150. [DOI] [PubMed] [Google Scholar]
- 25. Hinderer C, Bell P, Louboutin JP, et al. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model[J]. Mol Genet Metab, 2016, 119(1-2): 124-130. DOI: 10.1016/j.ymgme.2016.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Ellinwood NM, Ausseil J, Desmaris N, et al. Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes[J]. Mol Ther, 2011, 19(2): 251-259. DOI: 10.1038/mt.2010.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Hinderer C, Katz N, Louboutin JP, et al. Delivery of an adeno-associated virus vector into cerebrospinal fluid attenuates central nervous system disease in mucopolysaccharidosis type II mice[J]. Hum Gene Ther, 2016, 27(11): 906-915. DOI: 10.1089/hum.2016.101. [DOI] [PubMed] [Google Scholar]
- 28. Winner LK, Beard H, Hassiotis S, et al. A preclinical study evaluating AAVrh10-based gene therapy for Sanfilippo syndrome[J]. Hum Gene Ther, 2016, 27(5): 363-375. DOI: 10.1089/hum.2015.170. [DOI] [PubMed] [Google Scholar]
- 29. Gutiérrez MA, García-Vallejo F, Tomatsu S, et al. Construction of an adenoassociated, viral derived, expression vector to correct the genetic defect in Morquio A disease[J]. Biomedica, 2008, 28(3): 448-459. [PubMed] [Google Scholar]
- 30. 哈尔滨医科大学 . 一种腺相关病毒双重载体基因治疗系统及其在治疗黏多糖贮积症Ⅱ型中的应用: CN201911183591.X[P]. 2020-05-08.
- 31. Spitzer MS, Bartsch U. Neuronal ceroid lipofuscinoses[J]. Ophthalmologe, 2021, 118(2): 96-97. DOI: 10.1007/s00347-020-01304-1. [DOI] [PubMed] [Google Scholar]
- 32. Schulz A, Ajayi T, Specchio N, et al. Study of intraventricular cerliponase alfa for CLN2 disease[J]. N Engl J Med, 2018, 378(20): 1898-1907. DOI: 10.1056/NEJMoa1712649. [DOI] [PubMed] [Google Scholar]
- 33. Markham A. Cerliponase alfa: first global approval[J]. Drugs, 2017, 77(11): 1247-1249. DOI: 10.1007/s40265-017-0771-8. [DOI] [PubMed] [Google Scholar]
- 34. Cabrera-Salazar MA, Roskelley EM, Bu J, et al. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease[J]. Mol Ther, 2007, 15(10): 1782-1788. DOI: 10.1038/sj.mt.6300249. [DOI] [PubMed] [Google Scholar]
- 35. Sondhi D, Hackett NR, Peterson DA, et al. Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh.10 rhesus macaque-derived adeno-associated virus vector[J]. Mol Ther, 2007, 15(3): 481-491. DOI: 10.1038/sj.mt.6300049. [DOI] [PubMed] [Google Scholar]
- 36. Sondhi D, Scott EC, Chen A, et al. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene[J]. Hum Gene Ther, 2014, 25(3): 223-239. DOI: 10.1089/hum.2012.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Bosch ME, Aldrich A, Fallet R, et al. Self-complementary AAV9 gene delivery partially corrects pathology associated with juvenile neuronal ceroid lipofuscinosis (CLN3)[J]. J Neurosci, 2016, 36(37): 9669-9682. DOI: 10.1523/JNEUROSCI.1635-16.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Kleine Holthaus SM, Herranz-Martin S, Massaro G, et al. Neonatal brain-directed gene therapy rescues a mouse model of neurodegenerative CLN6 Batten disease[J]. Hum Mol Genet, 2019, 28(23): 3867-3879. DOI: 10.1093/hmg/ddz210. [DOI] [PubMed] [Google Scholar]
- 39. Mitchell NL, Russell KN, Wellby MP, et al. Longitudinal in vivo monitoring of the CNS demonstrates the efficacy of gene therapy in a sheep model of CLN5 Batten disease[J]. Mol Ther, 2018, 26(10): 2366-2378. DOI: 10.1016/j.ymthe.2018.07.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Worgall S, Sondhi D, Hackett NR, et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA[J]. Hum Gene Ther, 2008, 19(5): 463-474. DOI: 10.1089/hum.2008.022. [DOI] [PubMed] [Google Scholar]
- 41. 全国儿童医院研究所 . 腺相关病毒对CLN6多核苷酸的递送: CN202080012159.9[P]. 2021-10-29.
- 42. 全国儿童医院研究所, 俄亥俄州创新基金会. 腺相关病毒对CLN3多核苷酸的递送: CN202080014802.1[P]. 2021-11-12.
- 43. 星火治疗有限公司 . 用于晚期婴儿神经元蜡样脂褐质沉积症2型的AAV载体治疗方法: CN202080024872.5[P]. 2022-01-04.
