Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:27–44. doi: 10.1007/978-1-0716-0978-1_2

Animal Models of Renal Pathophysiology and Disease.

Adam Hosszu, Tamas Kaucsar, Erdmann Seeliger, Andrea Fekete
PMCID: PMC9703192  PMID: 33475992

Abstract

Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Full text of this article can be found in Bookshelf.

References

  1. US Renal Data System Annual Report 2016. (2016). https://www.usrds.org/adr.aspx
  2. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69(2):213–217. https://doi.org/10.1038/sj.ki.5000054 doi: 10.1038/sj.ki.5000054. [DOI] [PubMed]
  3. Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, Fox CS, Gansevoort RT, Heerspink HJL, Jardine M, Kasiske B, Kottgen A, Kretzler M, Levey AS, Luyckx VA, Mehta R, Moe O, Obrador G, Pannu N, Parikh CR, Perkovic V, Pollock C, Stenvinkel P, Tuttle KR, Wheeler DC, Eckardt KU (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390(10105):1888–1917. https://doi.org/10.1016/S0140-6736(17)30788-2 doi: 10.1016/S0140-6736(17)30788-2. [DOI] [PubMed]
  4. Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Kramer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rorvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallee JP, Wolf M, Caroli A, Sourbron S (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14. https://doi.org/10.1093/ndt/gfy152 doi: 10.1093/ndt/gfy152. [DOI] [PMC free article] [PubMed]
  5. Prasad PV (2006) Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol 290(5):F958–F974. https://doi.org/10.1152/ajprenal.00114.2005 doi: 10.1152/ajprenal.00114.2005. [DOI] [PMC free article] [PubMed]
  6. Haque M, Franklin T, Prasad P (2011) Renal oxygenation changes during water loading as evaluated by BOLD MRI: effect of NOS inhibition. J Magn Reson Imaging 33(4):898–901. https://doi.org/10.1002/jmri.22509 doi: 10.1002/jmri.22509. [DOI] [PMC free article] [PubMed]
  7. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012 doi: 10.1016/j.jhealeco.2016.01.012. [DOI] [PubMed]
  8. Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9(2):101–103. https://doi.org/10.1242/dmm.024547 doi: 10.1242/dmm.024547. [DOI] [PMC free article] [PubMed]
  9. Tannenbaum J (2017) Ethics in biomedical animal research: the key role of the investigator. In: Conn PM (ed) Animal models for the study of human disease, 2edn edn. Academic Press, Cambridge, Massachusetts, pp 1–44. https://doi.org/10.1016/B978-0-12-809468-6.00001-2 doi: 10.1016/B978-0-12-809468-6.00001-2. [DOI]
  10. Festing MF (2010) Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol 38(5):681–690. https://doi.org/10.1177/0192623310373776 doi: 10.1177/0192623310373776. [DOI] [PubMed]
  11. Nishino T, Sasaki N, Nagasaki K, Ahmad Z, Agui T (2010) Genetic background strongly influences the severity of glomerulosclerosis in mice. J Vet Med Sci 72(10):1313–1318. https://doi.org/10.1292/jvms.10-0144 doi: 10.1292/jvms.10-0144. [DOI] [PubMed]
  12. Feng M, DiPetrillo K (2009) Non-invasive blood pressure measurement in mice. Methods Mol Biol 573:45–55. https://doi.org/10.1007/978-1-60761-247-6_3 doi: 10.1007/978-1-60761-247-6_3. [DOI] [PubMed]
  13. Brune S, Pricl S, Wunsch B (2013) Structure of the sigma1 receptor and its ligand binding site. J Med Chem 56(24):9809–9819. https://doi.org/10.1021/jm400660u doi: 10.1021/jm400660u. [DOI] [PubMed]
  14. Lu X, Li N, Shushakova N, Schmitt R, Menne J, Susnik N, Meier M, Leitges M, Haller H, Gueler F, Rong S (2012) C57BL/6 and 129/Sv mice: genetic difference to renal ischemia-reperfusion. J Nephrol 25(5):738–743. https://doi.org/10.5301/jn.5000053 doi: 10.5301/jn.5000053. [DOI] [PubMed]
  15. Basile DP, Donohoe D, Cao XIA, Van Why SK (2004) Resistance to ischemic acute renal failure in the Brown Norway rat: a new model to study cytoprotection. Kidney Int 65(6):2201–2211. https://doi.org/10.1111/j.1523-1755.2004.00637.x doi: 10.1111/j.1523-1755.2004.00637.x. [DOI] [PubMed]
  16. Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, Breyer MD (2005) Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54(9):2628–2637. https://doi.org/10.2337/diabetes.54.9.2628 doi: 10.2337/diabetes.54.9.2628. [DOI] [PubMed]
  17. Mahmoud Abu Abeeleh ZBI, Alzaben KR, Abu-Halaweh SA, Al-Essa MK, Abuabeeleh J, Alsmady MM (2009) Induction of diabetes mellitus in rats using intraperitoneal streptozotocin: a comparison between 2 strains of rats. European J Sci Res 32(3):398–402
  18. Hartner A, Cordasic N, Klanke B, Veelken R, Hilgers KF (2003) Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant 18(10):1999–2004. https://doi.org/10.1093/ndt/gfg299 doi: 10.1093/ndt/gfg299. [DOI] [PubMed]
  19. Erdely A, Freshour G, Tain YL, Engels K, Baylis C (2007) DOCA/NaCl-induced chronic kidney disease: a comparison of renal nitric oxide production in resistant and susceptible rat strains. Am J Physiol Renal Physiol 292(1):F192–F196. https://doi.org/10.1152/ajprenal.00146.2006 doi: 10.1152/ajprenal.00146.2006. [DOI] [PubMed]
  20. Ma LJ, Fogo AB (2003) Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 64(1):350–355. https://doi.org/10.1046/j.1523-1755.2003.00058.x doi: 10.1046/j.1523-1755.2003.00058.x. [DOI] [PubMed]
  21. Hutchens MP, Dunlap J, Hurn PD, Jarnberg PO (2008) Renal ischemia: does sex matter? Anesth Analg 107(1):239–249. https://doi.org/10.1213/ane.0b013e318178ca42 doi: 10.1213/ane.0b013e318178ca42. [DOI] [PubMed]
  22. Muller V, Losonczy G, Heemann U, Vannay A, Fekete A, Reusz G, Tulassay T, Szabo AJ (2002) Sexual dimorphism in renal ischemia-reperfusion injury in rats: possible role of endothelin. Kidney Int 62(4):1364–1371. https://doi.org/10.1111/j.1523-1755.2002.kid590.x doi: 10.1111/j.1523-1755.2002.kid590.x. [DOI] [PubMed]
  23. Mehta RL, Pascual MT, Soroko S, Chertow GM (2002) Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288(20):2547–2553 doi: 10.1001/jama.288.20.2547. [DOI] [PubMed]
  24. Berg UB (2006) Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol Dial Transplant 21(9):2577–2582. https://doi.org/10.1093/ndt/gfl227 doi: 10.1093/ndt/gfl227. [DOI] [PubMed]
  25. Kummer S, von Gersdorff G, Kemper MJ, Oh J (2012) The influence of gender and sexual hormones on incidence and outcome of chronic kidney disease. Pediatr Nephrol 27(8):1213–1219. https://doi.org/10.1007/s00467-011-1963-1 doi: 10.1007/s00467-011-1963-1. [DOI] [PubMed]
  26. Hosszu A, Antal Z, Veres-Szekely A, Lenart L, Balogh DB, Szkibinszkij E, Illesy L, Hodrea J, Banki NF, Wagner L, Vannay A, Szabo AJ, Fekete A (2018) The role of Sigma-1 receptor in sex-specific heat shock response in an experimental rat model of renal ischaemia/reperfusion injury. Transpl Int 31(11):1268–1278. https://doi.org/10.1111/tri.13293 doi: 10.1111/tri.13293. [DOI] [PubMed]
  27. Aufhauser DD Jr, Wang Z, Murken DR, Bhatti TR, Wang Y, Ge G, Redfield RR 3rd, Abt PL, Wang L, Svoronos N, Thomasson A, Reese PP, Hancock WW, Levine MH (2016) Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J Clin Invest 126(5):1968–1977. https://doi.org/10.1172/jci84712 doi: 10.1172/jci84712. [DOI] [PMC free article] [PubMed]
  28. Satake A, Takaoka M, Nishikawa M, Yuba M, Shibata Y, Okumura K, Kitano K, Tsutsui H, Fujii K, Kobuchi S, Ohkita M, Matsumura Y (2008) Protective effect of 17beta-estradiol on ischemic acute renal failure through the PI3K/Akt/eNOS pathway. Kidney Int 73(3):308–317. https://doi.org/10.1038/sj.ki.5002690 doi: 10.1038/sj.ki.5002690. [DOI] [PubMed]
  29. Park KM, Kim JI, Ahn Y, Bonventre AJ, Bonventre JV (2004) Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem 279(50):52282–52292. https://doi.org/10.1074/jbc.M407629200 doi: 10.1074/jbc.M407629200. [DOI] [PubMed]
  30. Caligioni CS (2009) Assessing reproductive status/stages in mice. Curr Protoc Neurosci. https://doi.org/10.1002/0471142301.nsa04is48 doi: 10.1002/0471142301.nsa04is48. [DOI] [PMC free article] [PubMed]
  31. Coors ME, Glover JJ, Juengst ET, Sikela JM (2010) The ethics of using transgenic non-human primates to study what makes us human. Nat Rev Genet 11(9):658–662. https://doi.org/10.1038/nrg2864 doi: 10.1038/nrg2864. [DOI] [PMC free article] [PubMed]
  32. Yarger WE, Griffith LD (1974) Intrarenal hemodynamics following chronic unilateral ureteral obstruction in the dog. Am J Phys 227(4):816–826. https://doi.org/10.1152/ajplegacy.1974.227.4.816 doi: 10.1152/ajplegacy.1974.227.4.816. [DOI] [PubMed]
  33. Giraud S, Favreau F, Chatauret N, Thuillier R, Maiga S, Hauet T (2011) Contribution of large pig for renal ischemia-reperfusion and transplantation studies: the preclinical model. J Biomed Biotechnol 2011:532127. https://doi.org/10.1155/2011/532127 doi: 10.1155/2011/532127. [DOI] [PMC free article] [PubMed]
  34. Wei Q, Dong Z (2012) Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 303(11):F1487–F1494. https://doi.org/10.1152/ajprenal.00352.2012 doi: 10.1152/ajprenal.00352.2012. [DOI] [PMC free article] [PubMed]
  35. Stone HH, Fulenwider JT (1977) Renal decapsulation in the prevention of post-ischemic oliguria. Ann Surg 186(3):343–355. https://doi.org/10.1097/00000658-197709000-00012 doi: 10.1097/00000658-197709000-00012. [DOI] [PMC free article] [PubMed]
  36. Kierulf-Lassen C, Nielsen PM, Qi H, Damgaard M, Laustsen C, Pedersen M, Krag S, Birn H, Norregaard R, Jespersen B (2017) Unilateral nephrectomy diminishes ischemic acute kidney injury through enhanced perfusion and reduced pro-inflammatory and pro-fibrotic responses. PLoS One 12(12):e0190009. https://doi.org/10.1371/journal.pone.0190009 doi: 10.1371/journal.pone.0190009. [DOI] [PMC free article] [PubMed]
  37. Kaucsar T, Godo M, Revesz C, Kovacs M, Mocsai A, Kiss N, Albert M, Krenacs T, Szenasi G, Hamar P (2016) Urine/plasma neutrophil gelatinase associated Lipocalin ratio is a sensitive and specific marker of subclinical acute kidney injury in mice. PLoS One 11(1):e0148043. https://doi.org/10.1371/journal.pone.0148043 doi: 10.1371/journal.pone.0148043. [DOI] [PMC free article] [PubMed]
  38. Kaucsar T, Revesz C, Godo M, Krenacs T, Albert M, Szalay CI, Rosivall L, Benyo Z, Batkai S, Thum T, Szenasi G, Hamar P (2013) Activation of the miR-17 family and miR-21 during murine kidney ischemia-reperfusion injury. Nucleic Acid Ther 23(5):344–354. https://doi.org/10.1089/nat.2013.0438 doi: 10.1089/nat.2013.0438. [DOI] [PMC free article] [PubMed]
  39. Shrestha B, Haylor J (2014) Experimental rat models of chronic allograft nephropathy: a review. Int J Nephrol Renovasc Dis 7:315–322. https://doi.org/10.2147/ijnrd.S65604 doi: 10.2147/ijnrd.S65604. [DOI] [PMC free article] [PubMed]
  40. White E, Hildemann WH, Mullen Y (1969) Chronic kidney allograft reactions in rats. Transplantation 8(5):602–617 doi: 10.1097/00007890-196911000-00007. [DOI] [PubMed]
  41. Frodin L, Engberg A (1975) Renal transplantation in the rat. I. Studies concerning the ureteral anastomosis with special reference to the end-to-end technique. Urol Res 3(2):87–90 doi: 10.1007/BF00256187. [DOI] [PubMed]
  42. Bramis JP, Schanzer H, Taub RN (1977) Prolongation of rat renal allograft survival by cyclophosphamide and intravenous donor-specific antigens. Eur Surg Res 9(2):140–154. https://doi.org/10.1159/000127934 doi: 10.1159/000127934. [DOI] [PubMed]
  43. Harvig B, Norlen BJ (1980) A technique for in vivo and in vitro studies on the preserved and transplanted rat kidney. Urol Res 8(2):107–112 doi: 10.1007/BF00271437. [DOI] [PubMed]
  44. Schumacher M, Van Vliet BN, Ferrari P (2003) Kidney transplantation in rats: an appraisal of surgical techniques and outcome. Microsurgery 23(4):387–394. https://doi.org/10.1002/micr.10139 doi: 10.1002/micr.10139. [DOI] [PubMed]
  45. Lankadeva YR, Kosaka J, Evans RG, May CN (2018) An ovine model for studying the pathophysiology of septic acute kidney injury. Methods Mol Biol 1717:207–218. https://doi.org/10.1007/978-1-4939-7526-6_16 doi: 10.1007/978-1-4939-7526-6_16. [DOI] [PubMed]
  46. Cunningham PN, Wang Y, Guo R, He G, Quigg RJ (2004) Role of toll-like receptor 4 in endotoxin-induced acute renal failure. J Immunol 172(4):2629–2635. https://doi.org/10.4049/jimmunol.172.4.2629 doi: 10.4049/jimmunol.172.4.2629. [DOI] [PubMed]
  47. Wang W, Falk SA, Jittikanont S, Gengaro PE, Edelstein CL, Schrier RW (2002) Protective effect of renal denervation on normotensive endotoxemia-induced acute renal failure in mice. Am J Physiol Renal Physiol 283(3):F583–F587. https://doi.org/10.1152/ajprenal.00270.2001 doi: 10.1152/ajprenal.00270.2001. [DOI] [PubMed]
  48. Ko JW, Lee IC, Park SH, Moon C, Kang SS, Kim SH, Kim JC (2014) Protective effects of pine bark extract against cisplatin-induced hepatotoxicity and oxidative stress in rats. Lab Anim Res 30(4):174–180. https://doi.org/10.5625/lar.2014.30.4.174 doi: 10.5625/lar.2014.30.4.174. [DOI] [PMC free article] [PubMed]
  49. Mitazaki S, Kato N, Suto M, Hiraiwa K, Abe S (2009) Interleukin-6 deficiency accelerates cisplatin-induced acute renal failure but not systemic injury. Toxicology 265(3):115–121. https://doi.org/10.1016/j.tox.2009.10.005 doi: 10.1016/j.tox.2009.10.005. [DOI] [PubMed]
  50. Zhang J, Rudemiller NP, Patel MB, Wei Q, Karlovich NS, Jeffs AD, Wu M, Sparks MA, Privratsky JR, Herrera M, Gurley SB, Nedospasov SA, Crowley SD (2016) Competing actions of type 1 angiotensin II receptors expressed on T lymphocytes and kidney epithelium during cisplatin-induced AKI. J Am Soc Nephrol 27(8):2257–2264. https://doi.org/10.1681/asn.2015060683 doi: 10.1681/asn.2015060683. [DOI] [PMC free article] [PubMed]
  51. Fahling M, Seeliger E, Patzak A, Persson PB (2017) Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol 13(3):169–180. https://doi.org/10.1038/nrneph.2016.196 doi: 10.1038/nrneph.2016.196. [DOI] [PubMed]
  52. Arakelyan K, Cantow K, Hentschel J, Flemming B, Pohlmann A, Ladwig M, Niendorf T, Seeliger E (2013) Early effects of an x-ray contrast medium on renal T(2) */T(2) MRI as compared to short-term hyperoxia, hypoxia and aortic occlusion in rats. Acta Physiol (Oxf) 208(2):202–213. https://doi.org/10.1111/apha.12094 doi: 10.1111/apha.12094. [DOI] [PubMed]
  53. Seeliger E, Becker K, Ladwig M, Wronski T, Persson PB, Flemming B (2010) Up to 50-fold increase in urine viscosity with iso-osmolar contrast media in the rat. Radiology 256(2):406–414. https://doi.org/10.1148/radiol.10091485 doi: 10.1148/radiol.10091485. [DOI] [PubMed]
  54. Seeliger E, Cantow K, Arakelyan K, Ladwig M, Persson PB, Flemming B (2014) Low-dose nitrite alleviates early effects of an X-ray contrast medium on renal hemodynamics and oxygenation in rats. Investig Radiol 49(2):70–77. https://doi.org/10.1097/RLI.0b013e3182a6fea6 doi: 10.1097/RLI.0b013e3182a6fea6. [DOI] [PubMed]
  55. Lenhard DC, Frisk AL, Lengsfeld P, Pietsch H, Jost G (2013) The effect of iodinated contrast agent properties on renal kinetics and oxygenation. Investig Radiol 48(4):175–182. https://doi.org/10.1097/RLI.0b013e31827b70f9 doi: 10.1097/RLI.0b013e31827b70f9. [DOI] [PubMed]
  56. Lauver DA, Carey EG, Bergin IL, Lucchesi BR, Gurm HS (2014) Sildenafil citrate for prophylaxis of nephropathy in an animal model of contrast-induced acute kidney injury. PLoS One 9(11):e113598. https://doi.org/10.1371/journal.pone.0113598 doi: 10.1371/journal.pone.0113598. [DOI] [PMC free article] [PubMed]
  57. Kiss N, Hamar P (2016) Histopathological evaluation of contrast-induced acute kidney injury rodent models. Biomed Res Int 2016:3763250. https://doi.org/10.1155/2016/3763250 doi: 10.1155/2016/3763250. [DOI] [PMC free article] [PubMed]
  58. Linkermann A, Heller JO, Prokai A, Weinberg JM, De Zen F, Himmerkus N, Szabo AJ, Brasen JH, Kunzendorf U, Krautwald S (2013) The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol 24(10):1545–1557. https://doi.org/10.1681/asn.2012121169 doi: 10.1681/asn.2012121169. [DOI] [PMC free article] [PubMed]
  59. Nortier J, Pozdzik A, Roumeguere T, Vanherweghem JL (2015) Aristolochic acid nephropathy ("Chinese herb nephropathy"). Nephrol Ther 11(7):574–588. https://doi.org/10.1016/j.nephro.2015.10.001 doi: 10.1016/j.nephro.2015.10.001. [DOI] [PubMed]
  60. De Broe ME (2012) Chinese herbs nephropathy and Balkan endemic nephropathy: toward a single entity, aristolochic acid nephropathy. Kidney Int 81(6):513–515. https://doi.org/10.1038/ki.2011.428 doi: 10.1038/ki.2011.428. [DOI] [PubMed]
  61. Geng Y, Zhang L, Fu B, Zhang J, Hong Q, Hu J, Li D, Luo C, Cui S, Zhu F, Chen X (2014) Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages. Stem Cell Res Ther 5(3):80. https://doi.org/10.1186/scrt469 doi: 10.1186/scrt469. [DOI] [PMC free article] [PubMed]
  62. Chevalier RL, Forbes MS, Thornhill BA (2009) Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int 75(11):1145–1152. https://doi.org/10.1038/ki.2009.86 doi: 10.1038/ki.2009.86. [DOI] [PubMed]
  63. He J, Wang Y, Sun S, Yu M, Wang C, Pei X, Zhu B, Wu J, Zhao W (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17(5):493–500. https://doi.org/10.1111/j.1440-1797.2012.01589.x doi: 10.1111/j.1440-1797.2012.01589.x. [DOI] [PubMed]
  64. Hewitson TD, Ono T, Becker GJ (2009) Small animal models of kidney disease: a review. Methods Mol Biol 466:41–57. https://doi.org/10.1007/978-1-59745-352-3_4 doi: 10.1007/978-1-59745-352-3_4. [DOI] [PubMed]
  65. Graham ML, Schuurman HJ (2015) Validity of animal models of type 1 diabetes, and strategies to enhance their utility in translational research. Eur J Pharmacol 759:221–230. https://doi.org/10.1016/j.ejphar.2015.02.054 doi: 10.1016/j.ejphar.2015.02.054. [DOI] [PubMed]
  66. Lassila M, Seah KK, Allen TJ, Thallas V, Thomas MC, Candido R, Burns WC, Forbes JM, Calkin AC, Cooper ME, Jandeleit-Dahm KA (2004) Accelerated nephropathy in diabetic apolipoprotein e-knockout mouse: role of advanced glycation end products. J Am Soc Nephrol 15(8):2125–2138. https://doi.org/10.1097/01.Asn.0000133025.23732.46 doi: 10.1097/01.Asn.0000133025.23732.46. [DOI] [PubMed]
  67. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271(5251):994–996 doi: 10.1126/science.271.5251.994. [DOI] [PubMed]
  68. Zucker LM, Antoniades HN (1972) Insulin and obesity in the Zucker genetically obese rat "fatty". Endocrinology 90(5):1320–1330. https://doi.org/10.1210/endo-90-5-1320 doi: 10.1210/endo-90-5-1320. [DOI] [PubMed]
  69. Mallipattu SK, Gallagher EJ, LeRoith D, Liu R, Mehrotra A, Horne SJ, Chuang PY, Yang VW, He JC (2014) Diabetic nephropathy in a nonobese mouse model of type 2 diabetes mellitus. Am J Physiol Renal Physiol 306(9):F1008–F1017. https://doi.org/10.1152/ajprenal.00597.2013 doi: 10.1152/ajprenal.00597.2013. [DOI] [PMC free article] [PubMed]
  70. Kaspareit-Rittinghausen J, Rapp K, Deerberg F, Wcislo A, Messow C (1989) Hereditary polycystic kidney disease associated with osteorenal syndrome in rats. Vet Pathol 26(3):195–201. https://doi.org/10.1177/030098588902600302 doi: 10.1177/030098588902600302. [DOI] [PubMed]
  71. Katsuyama M, Masuyama T, Komura I, Hibino T, Takahashi H (2000) Characterization of a novel polycystic kidney rat model with accompanying polycystic liver. Exp Anim 49(1):51–55. https://doi.org/10.1538/expanim.49.51 doi: 10.1538/expanim.49.51. [DOI] [PubMed]
  72. Takahashi H, Calvet JP, Dittemore-Hoover D, Yoshida K, Grantham JJ, Gattone VH 2nd (1991) A hereditary model of slowly progressive polycystic kidney disease in the mouse. J Am Soc Nephrol 1(7):980–989 doi: 10.1681/ASN.V17980. [DOI] [PubMed]
  73. Atala A, Freeman MR, Mandell J, Beier DR (1993) Juvenile cystic kidneys (jck): a new mouse mutation which causes polycystic kidneys. Kidney Int 43(5):1081–1085 doi: 10.1038/ki.1993.151. [DOI] [PubMed]
  74. Thivierge C, Kurbegovic A, Couillard M, Guillaume R, Cote O, Trudel M (2006) Overexpression of PKD1 causes polycystic kidney disease. Mol Cell Biol 26(4):1538–1548. https://doi.org/10.1128/mcb.26.4.1538-1548.2006 doi: 10.1128/mcb.26.4.1538-1548.2006. [DOI] [PMC free article] [PubMed]
  75. Muto S, Aiba A, Saito Y, Nakao K, Nakamura K, Tomita K, Kitamura T, Kurabayashi M, Nagai R, Higashihara E, Harris PC, Katsuki M, Horie S (2002) Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant. Hum Mol Genet 11(15):1731–1742. https://doi.org/10.1093/hmg/11.15.1731 doi: 10.1093/hmg/11.15.1731. [DOI] [PubMed]
  76. Wu G, Somlo S (2000) Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol Genet Metab 69(1):1–15. https://doi.org/10.1006/mgme.1999.2943 doi: 10.1006/mgme.1999.2943. [DOI] [PubMed]
  77. Williams SS, Cobo-Stark P, James LR, Somlo S, Igarashi P (2008) Kidney cysts, pancreatic cysts, and biliary disease in a mouse model of autosomal recessive polycystic kidney disease. Pediatr Nephrol 23(5):733–741. https://doi.org/10.1007/s00467-007-0735-4 doi: 10.1007/s00467-007-0735-4. [DOI] [PubMed]
  78. Nagao S, Kugita M, Yoshihara D, Yamaguchi T (2012) Animal models for human polycystic kidney disease. Exp Anim 61(5):477–488. https://doi.org/10.1538/expanim.61.477 doi: 10.1538/expanim.61.477. [DOI] [PubMed]
  79. Hultstrom M (2012) Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens 30(6):1087–1091. https://doi.org/10.1097/HJH.0b013e328352b89a doi: 10.1097/HJH.0b013e328352b89a. [DOI] [PubMed]
  80. Zhong F, Mallipattu SK, Estrada C, Menon M, Salem F, Jain MK, Chen H, Wang Y, Lee K, He JC (2016) Reduced Kruppel-like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy. Am J Pathol 186(8):2021–2031. https://doi.org/10.1016/j.ajpath.2016.03.018 doi: 10.1016/j.ajpath.2016.03.018. [DOI] [PMC free article] [PubMed]
  81. Rabe M, Schaefer F (2016) Non-transgenic mouse models of kidney disease. Nephron 133(1):53–61. https://doi.org/10.1159/000445171 doi: 10.1159/000445171. [DOI] [PubMed]
  82. Grond J, Muller EW, van Goor H, Weening JJ, Elema JD (1988) Differences in puromycin aminonucleoside nephrosis in two rat strains. Kidney Int 33(2):524–529. https://doi.org/10.1038/ki.1988.29 doi: 10.1038/ki.1988.29. [DOI] [PubMed]
  83. LEE VW, HARRIS DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrology 16(1):30–38. https://doi.org/10.1111/j.1440-1797.2010.01383.x doi: 10.1111/j.1440-1797.2010.01383.x. [DOI] [PubMed]
  84. Akiyama K, Morita H, Suetsugu S, Kuraba S, Numata Y, Yamamoto Y, Inui K, Ideura T, Wakisaka N, Nakano K, Oniki H, Takenawa T, Matsuyama M, Yoshimura A (2008) Actin-related protein 3 (Arp3) is mutated in proteinuric BUF/Mna rats. Mamm Genome 19(1):41–50. https://doi.org/10.1007/s00335-007-9078-5 doi: 10.1007/s00335-007-9078-5. [DOI] [PubMed]
  85. Fassi A, Sangalli F, Maffi R, Colombi F, Mohamed E, Brenner BM, Remuzzi G, Remuzzi A (1998) Progressive Glomerular Injury in the MWF Rat is predicted by Inborn Nephron Deficit. J Am Soc Nephrol 9(8):1399–1406 doi: 10.1681/ASN.V981399. [DOI] [PubMed]
  86. Matsusaka T, Xin J, Niwa S, Kobayashi K, Akatsuka A, Hashizume H, Wang Q-c, Pastan I, Fogo AB, Ichikawa I (2005) Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J Am Soc Nephrol 16(4):1013–1023. https://doi.org/10.1681/asn.2004080720 doi: 10.1681/asn.2004080720. [DOI] [PubMed]
  87. Assmann KJM, Van Son JPHF, Dïjkman HBPM, Mentzel S, Wetzels JFM (2002) Antibody-induced albuminuria and accelerated focal glomerulosclerosis in the Thy-1.1 transgenic mouse. Kidney Int 62(1):116–126. https://doi.org/10.1046/j.1523-1755.2002.00428.x doi: 10.1046/j.1523-1755.2002.00428.x. [DOI] [PubMed]
  88. Yang JW, Dettmar A, Kronbichler A, Yung Gee H, Saleem M, Heon Kim S, Shin JI (2018) Recent advances of animal model of focal segmental glomerulosclerosis. Clin Exp Nephro 22(4):752–763. https://doi.org/10.1007/s10157-018-1552-8 doi: 10.1007/s10157-018-1552-8. [DOI] [PubMed]
  89. Ito R, Takahashi T, Ito M (2018) Humanized mouse models: application to human diseases. J Cell Physiol 233(5):3723–3728. https://doi.org/10.1002/jcp.26045 doi: 10.1002/jcp.26045. [DOI] [PubMed]
  90. Kenney LL, Shultz LD, Greiner DL, Brehm MA (2016) Humanized mouse models for transplant immunology. Am J Transplant 16(2):389–397. https://doi.org/10.1111/ajt.13520 doi: 10.1111/ajt.13520. [DOI] [PMC free article] [PubMed]
  91. Tan S, Li Y, Xia J, Jin CH, Hu Z, Duinkerken G, Li Y, Khosravi Maharlooei M, Chavez E, Nauman G, Danzl N, Nakayama M, Roep BO, Sykes M, Yang YG (2017) Type 1 diabetes induction in humanized mice. Proc Natl Acad Sci U S A 114(41):10954–10959. https://doi.org/10.1073/pnas.1710415114 doi: 10.1073/pnas.1710415114. [DOI] [PMC free article] [PubMed]

RESOURCES