Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:667–688. doi: 10.1007/978-1-0716-0978-1_40

Analysis Protocol for the Quantification of Renal pH Using Chemical Exchange Saturation Transfer (CEST) MRI.

Hahnsung Kim, Yin Wu, Daisy Villano, Dario Livio Longo, Michael T McMahon, Phillip Zhe Sun
PMCID: PMC9703203  PMID: 33476030

Abstract

The kidney plays a major role in maintaining body pH homeostasis. Renal pH, in particular, changes immediately following injuries such as intoxication and ischemia, making pH an early biomarker for kidney injury before the symptom onset and complementary to well-established laboratory tests. Because of this, it is imperative to develop minimally invasive renal pH imaging exams and test pH as a new diagnostic biomarker in animal models of kidney injury before clinical translation. Briefly, iodinated contrast agents approved by the US Food and Drug Administration (FDA) for computed tomography (CT) have demonstrated promise as novel chemical exchange saturation transfer (CEST) MRI agents for pH-sensitive imaging. The generalized ratiometric iopamidol CEST MRI analysis enables concentration-independent pH measurement, which simplifies in vivo renal pH mapping. This chapter describes quantitative CEST MRI analysis for preclinical renal pH mapping, and their application in rodents, including normal conditions and acute kidney injury.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.


Full text of this article can be found in Bookshelf.

References

  1. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39(11):2892. https://doi.org/10.1063/1.1734121 doi: 10.1063/1.1734121. [DOI]
  2. Wolff SD, Balaban RS (1990) Nmr imaging of labile proton-exchange. J Magn Reson 86(1):164–169. https://doi.org/10.1016/0022-2364(90)90220-4 doi: 10.1016/0022-2364(90)90220-4. [DOI]
  3. Dagher AP, Aletras A, Choyke P, Balaban RS (2000) Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 12:745–748 doi: 10.1002/1522-2586(200011)12:5<745::aid-jmri12>3.0.co;2-h. [DOI] [PubMed]
  4. Sun PZ, Zhou J, Huang J, van Zijl P (2007) Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 57(2):405–410. https://doi.org/10.1002/mrm.21151 doi: 10.1002/mrm.21151. [DOI] [PubMed]
  5. Aime S, Delli Castelli D, Fedeli F, Terreno E (2002) A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124(32):9364–9365 doi: 10.1021/ja0264044. [DOI] [PubMed]
  6. Jokivarsi KT, Grohn HI, Grohn OH, Kauppinen RA (2007) Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn Reson Med 57(4):647–653. https://doi.org/10.1002/mrm.21181 doi: 10.1002/mrm.21181. [DOI] [PubMed]
  7. Zhang L, Martins AF, Mai Y, Zhao P, Funk AM, Clavijo Jordan MV, Zhang S, Chen W, Wu Y, Sherry AD (2017) Imaging extracellular lactate in vitro and in vivo using CEST MRI and a paramagnetic shift reagent. Chemistry 23(8):1752–1756. https://doi.org/10.1002/chem.201604558 doi: 10.1002/chem.201604558. [DOI] [PMC free article] [PubMed]
  8. Liu G, Li Y, Pagel MD (2007) Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magn Reson Med 58(6):1249–1256. https://doi.org/10.1002/mrm.21428 doi: 10.1002/mrm.21428. [DOI] [PubMed]
  9. Li Y, Sheth VR, Liu G, Pagel MD (2011) A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity. Contrast Media Mol Imaging 6(4):219–228. https://doi.org/10.1002/cmmi.421 doi: 10.1002/cmmi.421. [DOI] [PMC free article] [PubMed]
  10. McVicar N, Li AX, Suchy M, Hudson RH, Menon RS, Bartha R (2013) Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent. Magn Reson Med 70(4):1016–1025. https://doi.org/10.1002/mrm.24539 doi: 10.1002/mrm.24539. [DOI] [PubMed]
  11. Zhang S, Malloy CR, Sherry AD (2005) MRI thermometry based on PARACEST agents. J Am Chem Soc 127(50):17572–17573. https://doi.org/10.1021/ja053799t doi: 10.1021/ja053799t. [DOI] [PMC free article] [PubMed]
  12. Liu G, Li Y, Sheth VR, Pagel MD (2012) Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Mol Imaging 11(1):47–57 [PMC free article] [PubMed]
  13. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9(8):1085–1090. https://doi.org/10.1038/nm907 doi: 10.1038/nm907. [DOI] [PubMed]
  14. Harston GW, Tee YK, Blockley N, Okell TW, Thandeswaran S, Shaya G, Sheerin F, Cellerini M, Payne S, Jezzard P, Chappell M, Kennedy J (2015) Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain 138(Pt 1):36–42. https://doi.org/10.1093/brain/awu374 doi: 10.1093/brain/awu374. [DOI] [PMC free article] [PubMed]
  15. Wang E, Wu Y, Cheung JS, Igarashi T, Wu L, Zhang X, Sun PZ (2019) Mapping tissue pH in an experimental model of acute stroke – determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. NeuroImage. https://doi.org/10.1016/j.neuroimage.2019.02.022 doi: 10.1016/j.neuroimage.2019.02.022. [DOI] [PMC free article] [PubMed]
  16. Sun PZ, Wang E, Cheung JS (2012) Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI—correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. NeuroImage 60(1):1–6. https://doi.org/10.1016/j.neuroimage.2011.11.091 doi: 10.1016/j.neuroimage.2011.11.091. [DOI] [PMC free article] [PubMed]
  17. Sun PZ, Cheung JS, Wang E, Lo EH (2011) Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab 31(8):1743–1750. https://doi.org/10.1038/jcbfm.2011.23 doi: 10.1038/jcbfm.2011.23. [DOI] [PMC free article] [PubMed]
  18. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27(6):1129–1136. https://doi.org/10.1038/sj.jcbfm.9600424 doi: 10.1038/sj.jcbfm.9600424. [DOI] [PubMed]
  19. McVicar N, Li AX, Goncalves DF, Bellyou M, Meakin SO, Prado MA, Bartha R (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34(4):690–698. https://doi.org/10.1038/jcbfm.2014.12 doi: 10.1038/jcbfm.2014.12. [DOI] [PMC free article] [PubMed]
  20. Heo HY, Zhang Y, Burton TM, Jiang S, Zhao Y, van Zijl PCM, Leigh R, Zhou J (2017) Improving the detection sensitivity of pH-weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magn Reson Med 78(3):871–880. https://doi.org/10.1002/mrm.26799 doi: 10.1002/mrm.26799. [DOI] [PMC free article] [PubMed]
  21. Jin T, Wang P, Hitchens TK, Kim SG (2017) Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST. NeuroImage 157:341–350. https://doi.org/10.1016/j.neuroimage.2017.06.007 doi: 10.1016/j.neuroimage.2017.06.007. [DOI] [PMC free article] [PubMed]
  22. Zhou J, van Zijl PC (2011) Defining an acidosis-based ischemic penumbra from pH-weighted MRI. Transl Stroke Res 3(1):76–83. https://doi.org/10.1007/s12975-011-0110-4 doi: 10.1007/s12975-011-0110-4. [DOI] [PMC free article] [PubMed]
  23. Heo HY, Zhang Y, Jiang S, Lee DH, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla. Magn Reson Med 75(4):1630–1639. https://doi.org/10.1002/mrm.25795 doi: 10.1002/mrm.25795. [DOI] [PMC free article] [PubMed]
  24. Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R (2015) CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR Biomed 28(1):1–8. https://doi.org/10.1002/nbm.3216 doi: 10.1002/nbm.3216. [DOI] [PMC free article] [PubMed]
  25. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PC (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134. https://doi.org/10.1038/nm.2268 doi: 10.1038/nm.2268. [DOI] [PMC free article] [PubMed]
  26. Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66(4):1033–1041. https://doi.org/10.1002/mrm.22891 doi: 10.1002/mrm.22891. [DOI] [PMC free article] [PubMed]
  27. Zhao X, Wen Z, Zhang G, Huang F, Lu S, Wang X, Hu S, Chen M, Zhou J (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15(1):114–122. https://doi.org/10.1007/s11307-012-0563-1 doi: 10.1007/s11307-012-0563-1. [DOI] [PMC free article] [PubMed]
  28. Davis KA, Nanga RP, Das S, Chen SH, Hadar PN, Pollard JR, Lucas TH, Shinohara RT, Litt B, Hariharan H, Elliott MA, Detre JA, Reddy R (2015) Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 7(309):309ra161. https://doi.org/10.1126/scitranslmed.aaa7095 doi: 10.1126/scitranslmed.aaa7095. [DOI] [PMC free article] [PubMed]
  29. Lee D-H, Lee D-W, Kwon J-I, Woo C-W, Kim S-T, Lee JS, Choi CG, Kim KW, Kim JK, Woo D-C (2018) In vivo mapping and quantification of creatine using chemical exchange saturation transfer imaging in rat models of epileptic seizure. Mol Imaging Biol. https://doi.org/10.1007/s11307-018-1243-6 doi: 10.1007/s11307-018-1243-6. [DOI] [PubMed]
  30. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36(10):783–790. https://doi.org/10.1021/ar020228m doi: 10.1021/ar020228m. [DOI] [PubMed]
  31. Aime S, Carrera C, Delli Castelli D, Geninatti Crich S, Terreno E (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44(12):1813–1815. https://doi.org/10.1002/anie.200462566 doi: 10.1002/anie.200462566. [DOI] [PubMed]
  32. Vinogradov E, Zhang S, Lubag A, Balschi JA, Sherry AD, Lenkinski RE (2005) On-resonance low B1 pulses for imaging of the effects of PARACEST agents. J Magn Reson 176(1):54–63. https://doi.org/10.1016/j.jmr.2005.05.016 doi: 10.1016/j.jmr.2005.05.016. [DOI] [PubMed]
  33. Winter PM, Cai K, Chen J, Adair CR, Kiefer GE, Athey PS, Gaffney PJ, Buff CE, Robertson JD, Caruthers SD, Wickline SA, Lanza GM (2006) Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magn Reson Med 56(6):1384–1388. https://doi.org/10.1002/mrm.21093 doi: 10.1002/mrm.21093. [DOI] [PMC free article] [PubMed]
  34. Yoo B, Raam MS, Rosenblum RM, Pagel MD (2007) Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2(4):189–198. https://doi.org/10.1002/cmmi.145 doi: 10.1002/cmmi.145. [DOI] [PubMed]
  35. Sun PZ, van Zijl PC, Zhou J (2005) Optimization of the irradiation power in chemical exchange dependent saturation transfer experiments. J Magn Reson 175(2):193–200. https://doi.org/10.1016/j.jmr.2005.04.005 doi: 10.1016/j.jmr.2005.04.005. [DOI] [PubMed]
  36. Woessner DE, Zhang S, Merritt ME, Sherry AD (2005) Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53(4):790–799. https://doi.org/10.1002/mrm.20408 doi: 10.1002/mrm.20408. [DOI] [PubMed]
  37. Zaiss M, Bachert P (2013) Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange – modeling off-resonant spin-lock and chemical exchange saturation transfer. NMR Biomed 26(5):507–518 doi: 10.1002/nbm.2887. [DOI] [PubMed]
  38. Zhou J, van Zijl PCM (2006) Chemical exchange saturation transfer imaging. Prog Nucl Magn Reson Spectrosc 48:109–136 doi: 10.1016/j.pnmrs.2020.06.001. [DOI] [PubMed]
  39. Aime S, Calabi L, Biondi L, De Miranda M, Ghelli S, Paleari L, Rebaudengo C, Terreno E (2005) Iopamidol: exploring the potential use of a well-established x-ray contrast agent for MRI. Magn Reson Med 53(4):830–834. https://doi.org/10.1002/mrm.20441 doi: 10.1002/mrm.20441. [DOI] [PubMed]
  40. Muller-Lutz A, Khalil N, Schmitt B, Jellus V, Pentang G, Oeltzschner G, Antoch G, Lanzman RS, Wittsack HJ (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. MAGMA 27(6):477–485. https://doi.org/10.1007/s10334-014-0433-8 doi: 10.1007/s10334-014-0433-8. [DOI] [PubMed]
  41. Sun PZ, Longo DL, Hu W, Xiao G, Wu R (2014) Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH. Phys Med Biol 59(16):4493 doi: 10.1088/0031-9155/59/16/4493. [DOI] [PMC free article] [PubMed]
  42. Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc 136(41):14333–14336. https://doi.org/10.1021/ja5059313 doi: 10.1021/ja5059313. [DOI] [PMC free article] [PubMed]
  43. Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD (2014) Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med 72(5):1408–1417. https://doi.org/10.1002/mrm.25053 doi: 10.1002/mrm.25053. [DOI] [PMC free article] [PubMed]
  44. Randtke EA, Chen LQ, Corrales LR, Pagel MD (2014) The Hanes-Woolf linear QUESP method improves the measurements of fast chemical exchange rates with CEST MRI. Magn Reson Med 71(4):1603–1612. https://doi.org/10.1002/mrm.24792 doi: 10.1002/mrm.24792. [DOI] [PMC free article] [PubMed]
  45. Anemone A, Consolino L, Longo DL (2017) MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent. Eur Radiol 27(5):2170–2179. https://doi.org/10.1007/s00330-016-4552-7 doi: 10.1007/s00330-016-4552-7. [DOI] [PubMed]
  46. Longo DL, Michelotti F, Consolino L, Bardini P, Digilio G, Xiao G, Sun PZ, Aime S (2016) In vitro and in vivo assessment of nonionic iodinated radiographic molecules as chemical exchange saturation transfer magnetic resonance imaging tumor perfusion agents. Investig Radiol 51(3):155–162. https://doi.org/10.1097/RLI.0000000000000217 doi: 10.1097/RLI.0000000000000217. [DOI] [PubMed]
  47. Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M, Aime S (2016) In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–6470. https://doi.org/10.1158/0008-5472.CAN-16-0825 doi: 10.1158/0008-5472.CAN-16-0825. [DOI] [PubMed]
  48. Longo D, Aime S (2017) Iodinated contrast media as pH-responsive CEST agents. In: McMahon MT, Gilad AA, JBM B, PCM VZ (eds) Chemical exchange saturation transfer imaging. vol advances and applications. Pan Stanford Publishing, Singapore, pp 447–466. https://doi.org/10.1201/9781315364421-20 doi: 10.1201/9781315364421-20. [DOI]
  49. Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70(3):859–864. https://doi.org/10.1002/mrm.24513 doi: 10.1002/mrm.24513. [DOI] [PubMed]
  50. Longo DL, Cutrin JC, Michelotti F, Irrera P, Aime S (2017) Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI. NMR Biomed 30(7). https://doi.org/10.1002/nbm.3720 doi: 10.1002/nbm.3720. [DOI] [PubMed]
  51. Jin T, Autio J, Obata T, Kim SG (2011) Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. Magn Reson Med 65(5):1448–1460. https://doi.org/10.1002/mrm.22721 doi: 10.1002/mrm.22721. [DOI] [PMC free article] [PubMed]
  52. Jiang W, Zhou IY, Wen L, Zhou X, Sun PZ (2016) A theoretical analysis of chemical exchange saturation transfer echo planar imaging (CEST-EPI) steady state solution and the CEST sensitivity efficiency-based optimization approach. Contrast Media Mol Imaging 11(5):415–423. https://doi.org/10.1002/cmmi.1699 doi: 10.1002/cmmi.1699. [DOI] [PMC free article] [PubMed]
  53. Ji Y, Zhou IY, Qiu BS, Sun PZ (2017) Progress toward quantitative in vivo chemical exchange saturation transfer (CEST) MRI. Israel J Chem 57(9):809–824. https://doi.org/10.1002/ijch.201700025 doi: 10.1002/ijch.201700025. [DOI]
  54. Kim J, Wu Y, Guo Y, Zheng H, Sun PZ (2015) A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol Imaging 10(3):163–178. https://doi.org/10.1002/cmmi.1628 doi: 10.1002/cmmi.1628. [DOI] [PMC free article] [PubMed]
  55. Liu G, Song X, Chan KW, McMahon MT (2013) Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 26(7):810–828. https://doi.org/10.1002/nbm.2899 doi: 10.1002/nbm.2899. [DOI] [PMC free article] [PubMed]
  56. Sun PZ, Xiao G, Zhou IY, Guo Y, Wu R (2016) A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI. Contrast Media Mol Imaging 11(3):195–202. https://doi.org/10.1002/cmmi.1680 doi: 10.1002/cmmi.1680. [DOI] [PMC free article] [PubMed]
  57. Sun PZ, Sorensen AG (2008) Imaging pH using the chemical exchange saturation transfer (CEST) MRI: Correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med 60(2):390–397. https://doi.org/10.1002/mrm.21653 doi: 10.1002/mrm.21653. [DOI] [PubMed]
  58. Dixon WT, Ren J, Lubag AJ, Ratnakar J, Vinogradov E, Hancu I, Lenkinski RE, Sherry AD (2010) A concentration-independent method to measure exchange rates in PARACEST agents. Magn Reson Med 63(3):625–632. https://doi.org/10.1002/mrm.22242 doi: 10.1002/mrm.22242. [DOI] [PMC free article] [PubMed]
  59. Yang X, Song X, Ray Banerjee S, Li Y, Byun Y, Liu G, Bhujwalla ZM, Pomper MG, McMahon MT (2016) Developing imidazoles as CEST MRI pH sensors. Contrast Media Mol Imaging 11(4):304–312. https://doi.org/10.1002/cmmi.1693 doi: 10.1002/cmmi.1693. [DOI] [PMC free article] [PubMed]
  60. Kujawa A, Kim M, Demetriou E, Anemone A, Livio Longo D, Zaiss M, Golay X (2019) Assessment of a clinically feasible Bayesian fitting algorithm using a simplified description of Chemical Exchange Saturation Transfer (CEST) imaging. J Magn Reson 300:120–134. https://doi.org/10.1016/j.jmr.2019.01.006 doi: 10.1016/j.jmr.2019.01.006. [DOI] [PubMed]
  61. Pavuluri K, Manoli I, Pass A, Li Y, Vernon HJ, Venditti CP, McMahon MT (2019) Noninvasive monitoring of chronic kidney disease using pH and perfusion imaging. Sci Adv. https://doi.org/10.1126/sciadv.aaw8357 doi: 10.1126/sciadv.aaw8357. [DOI] [PMC free article] [PubMed]
  62. Sun PZ (2012) Simplified quantification of labile proton concentration-weighted chemical exchange rate (kws) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI. Magn Reson Med 67(4):936–942 doi: 10.1002/mrm.23068. [DOI] [PMC free article] [PubMed]
  63. Ward KM, Balaban RS (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44(5):799–802 doi: 10.1002/1522-2594(200011)44:5<799::aid-mrm18>3.0.co;2-s. [DOI] [PubMed]
  64. Wu R, Longo DL, Aime S, Sun PZ (2015) Quantitative description of radiofrequency (RF) power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging. NMR Biomed 28(5):555–565. https://doi.org/10.1002/nbm.3284 doi: 10.1002/nbm.3284. [DOI] [PMC free article] [PubMed]
  65. Arena F, Irrera P, Consolino L, Colombo Serra S, Zaiss M, Longo DL (2018) Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging. J Magn Reson 287:1–9. https://doi.org/10.1016/j.jmr.2017.12.007 doi: 10.1016/j.jmr.2017.12.007. [DOI] [PubMed]
  66. Anemone A, Consolino L, Arena F, Capozza M, Longo DL (2019) Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. https://doi.org/10.1007/s10555-019-09782-9 doi: 10.1007/s10555-019-09782-9. [DOI] [PMC free article] [PubMed]
  67. Anemone A, Consolino L, Conti L, Reineri F, Cavallo F, Aime S, Longo DL (2017) In vivo evaluation of tumour acidosis for assessing the early metabolic response and onset of resistance to dichloroacetate by using magnetic resonance pH imaging. Int J Oncol 51(2):498–506. https://doi.org/10.3892/ijo.2017.4029 doi: 10.3892/ijo.2017.4029. [DOI] [PubMed]
  68. Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD (2012) Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med 67(3):760–768. https://doi.org/10.1002/mrm.23038 doi: 10.1002/mrm.23038. [DOI] [PMC free article] [PubMed]
  69. Longo DL, Dastru W, Digilio G, Keupp J, Langereis S, Lanzardo S, Prestigio S, Steinbach O, Terreno E, Uggeri F, Aime S (2011) Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T. Magn Reson Med 65(1):202–211. https://doi.org/10.1002/mrm.22608 doi: 10.1002/mrm.22608. [DOI] [PubMed]
  70. Zhou IY, Wang E, Cheung JS, Zhang X, Fulci G, Sun PZ (2017) Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting. Sci Rep 7(1):84. https://doi.org/10.1038/s41598-017-00167-y doi: 10.1038/s41598-017-00167-y. [DOI] [PMC free article] [PubMed]
  71. Li AX, Hudson RH, Barrett JW, Jones CK, Pasternak SH, Bartha R (2008) Four-pool modeling of proton exchange processes in biological systems in the presence of MRI-paramagnetic chemical exchange saturation transfer (PARACEST) agents. Magn Reson Med 60(5):1197–1206. https://doi.org/10.1002/mrm.21752 doi: 10.1002/mrm.21752. [DOI] [PubMed]
  72. Zhou IY, Fuss TL, Igarashi T, Jiang W, Zhou X, Cheng LL, Sun PZ (2016) Tissue characterization with quantitative high-resolution magic angle spinning chemical exchange saturation transfer Z-spectroscopy. Anal Chem 88(21):10379–10383. https://doi.org/10.1021/acs.analchem.6b03137 doi: 10.1021/acs.analchem.6b03137. [DOI] [PMC free article] [PubMed]
  73. Xu J, Zaiss M, Zu Z, Li H, Xie J, Gochberg DF, Bachert P, Gore JC (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T. NMR Biomed 27(4):406–416 doi: 10.1002/nbm.3075. [DOI] [PMC free article] [PubMed]
  74. Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, Gochberg DF, Bachert P (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI—application to pH-weighted MRI of acute stroke. NMR Biomed 27(3):240–252. https://doi.org/10.1002/nbm.3054 doi: 10.1002/nbm.3054. [DOI] [PMC free article] [PubMed]
  75. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PC (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61(6):1441–1450. https://doi.org/10.1002/mrm.21873 doi: 10.1002/mrm.21873. [DOI] [PMC free article] [PubMed]
  76. Wei W, Jia G, Flanigan D, Zhou J, Knopp MV (2014) Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: accuracy of B0 field inhomogeneity corrections with gradient echo method. Magn Reson Imaging 32(1):41–47. https://doi.org/10.1016/j.mri.2013.07.009 doi: 10.1016/j.mri.2013.07.009. [DOI] [PMC free article] [PubMed]
  77. Sun PZ, Farrar CT, Sorensen AG (2007) Correction for artifacts induced by B(0) and B(1) field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn Reson Med 58(6):1207–1215. https://doi.org/10.1002/mrm.21398 doi: 10.1002/mrm.21398. [DOI] [PubMed]
  78. Stancanello J, Terreno E, Castelli DD, Cabella C, Uggeri F, Aime S (2008) Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images. Contrast Media Mol Imaging 3(4):136–149. https://doi.org/10.1002/cmmi.240 doi: 10.1002/cmmi.240. [DOI] [PubMed]
  79. Terreno E, Stancanello J, Longo D, Castelli DD, Milone L, Sanders HM, Kok MB, Uggeri F, Aime S (2009) Methods for an improved detection of the MRI-CEST effect. Contrast Media Mol Imaging 4(5):237–247. https://doi.org/10.1002/cmmi.290 doi: 10.1002/cmmi.290. [DOI] [PubMed]
  80. Wu Y, Zhou IY, Igarashi T, Longo DL, Aime S, Sun PZ (2018) A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol. Magn Reson Med 79(3):1553–1558. https://doi.org/10.1002/mrm.26817 doi: 10.1002/mrm.26817. [DOI] [PMC free article] [PubMed]
  81. Raghunand N, Howison C, Sherry AD, Zhang S, Gillies RJ (2003) Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 49(2):249–257. https://doi.org/10.1002/mrm.10347 doi: 10.1002/mrm.10347. [DOI] [PubMed]

RESOURCES