Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:45–55. doi: 10.1007/978-1-0716-0978-1_3

Preparation and Monitoring of Small Animals in Renal MRI.

Tamas Kaucsar, Adam Hosszu, Erdmann Seeliger, Henning M Reimann, Andrea Fekete
PMCID: PMC9703213  PMID: 33475993

Abstract

Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanism of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide an overview of the preparation and monitoring of small animals before, during, and after surgical interventions or MR imaging. Standardization of experimental settings such as body temperature or hydration of animals and minimizing pain and distress are essential for diminishing nonexperimental variables as well as for conducting ethical research.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.


Full text of this article can be found in Bookshelf.

References

  1. US Renal Data System Annual Report 2016. (2016). https://www.usrds.org/adr.aspx
  2. Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Kramer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rorvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallee JP, Wolf M, Caroli A, Sourbron S (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14. https://doi.org/10.1093/ndt/gfy152 doi: 10.1093/ndt/gfy152. [DOI] [PMC free article] [PubMed]
  3. Prasad PV (2006) Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease. Am J Physiol Renal Physiol 290(5):F958–F974. https://doi.org/10.1152/ajprenal.00114.2005 doi: 10.1152/ajprenal.00114.2005. [DOI] [PMC free article] [PubMed]
  4. Haque M, Franklin T, Prasad P (2011) Renal oxygenation changes during water loading as evaluated by BOLD MRI: effect of NOS inhibition. J Magn Reson Imaging 33(4):898–901. https://doi.org/10.1002/jmri.22509 doi: 10.1002/jmri.22509. [DOI] [PMC free article] [PubMed]
  5. Tremoleda JL, Macholl S, Sosabowski JK (2018) Anesthesia and monitoring of animals during MRI studies. Methods Mol Biol 1718:423–439. https://doi.org/10.1007/978-1-4939-7531-0_25 doi: 10.1007/978-1-4939-7531-0_25. [DOI] [PubMed]
  6. Herrmann K, Flecknell P (2019) Retrospective review of anesthetic and analgesic regimens used in animal research proposals. ALTEX 36(1):65–80. https://doi.org/10.14573/altex.1804011 doi: 10.14573/altex.1804011. [DOI] [PubMed]
  7. Reimann HM, Niendorf T (2020) The (un)conscious mouse as a model for human brain functions: key principles of anesthesia and their impact on translational neuroimaging. Front Syst Neurosci 14:8. https://doi.org/10.3389/fnsys.2020.00008 doi: 10.3389/fnsys.2020.00008. [DOI] [PMC free article] [PubMed]
  8. Wei Q, Dong Z (2012) Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 303(11):F1487–F1494. https://doi.org/10.1152/ajprenal.00352.2012 doi: 10.1152/ajprenal.00352.2012. [DOI] [PMC free article] [PubMed]
  9. Le Clef N, Verhulst A, D'Haese PC, Vervaet BA (2016) Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice. PLoS One 11(3):e0152153. https://doi.org/10.1371/journal.pone.0152153 doi: 10.1371/journal.pone.0152153. [DOI] [PMC free article] [PubMed]
  10. Tremoleda JL, Kerton A, Gsell W (2012) Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res 2(1):44. https://doi.org/10.1186/2191-219x-2-44 doi: 10.1186/2191-219x-2-44. [DOI] [PMC free article] [PubMed]
  11. Niles DJ, Gordon JW, Fain SB (2015) Effect of anesthesia on renal R2 * measured by blood oxygen level-dependent MRI. NMR Biomed 28(7):811–817. https://doi.org/10.1002/nbm.3314 doi: 10.1002/nbm.3314. [DOI] [PMC free article] [PubMed]
  12. Furtado KS, Andrade FO (2013) Comparison of the beneficial and adverse effects of inhaled and injectable anaesthetics: a mini-review. OA Anaesthetics 1(2):20. https://doi.org/10.13172/2052-7853-1-2-1006 doi: 10.13172/2052-7853-1-2-1006. [DOI]
  13. Hedenqvist P, Hellebrekers L (2003) Laboratory animal analgesia, anesthesia, and euthanasia
  14. Demirkiran H, Senoglu N, Oksuz H, Dogan Z, Yüzbaşıoğu F, Bulbuloglu E, Inanc Tolun F, Aral M, Ciralik H, Goksu M, Yardimci C (2019) The effects of different doses ketamine on the renal ischemia/reperfusion injury in rats. Eastern J Med 24(2):194–199. https://doi.org/10.5505/ejm.2019.48658 doi: 10.5505/ejm.2019.48658. [DOI]
  15. Yuzer H, Yuzbasioglu MF, Ciralik H, Kurutas EB, Ozkan OV, Bulbuloglu E, Atlı Y, Erdogan O, Kale IT (2009) Effects of intravenous anesthetics on renal ischemia/reperfusion injury. Ren Fail 31(4):290–296. https://doi.org/10.1080/08860220902779962 doi: 10.1080/08860220902779962. [DOI] [PubMed]
  16. Hau J, Schapiro SJ (2010) Handbook of laboratory animal science, volume I: essential principles and practices. CRC Press, Boca Raton
  17. Tsukamoto A, Serizawa K, Sato R, Yamazaki J, Inomata T (2015) Vital signs monitoring during injectable and inhalant anesthesia in mice. Exp Anim 64(1):57–64. https://doi.org/10.1538/expanim.14-0050 doi: 10.1538/expanim.14-0050. [DOI] [PMC free article] [PubMed]
  18. Buitrago S, Martin TE, Tetens-Woodring J, Belicha-Villanueva A, Wilding GE (2008) Safety and efficacy of various combinations of injectable anesthetics in BALB/c mice. J Am Assoc Lab Anim Sci 47(1):11–17 [PMC free article] [PubMed]
  19. Lei H, Grinberg O, Nwaigwe CI, Hou HG, Williams H, Swartz HM, Dunn JF (2001) The effects of ketamine-xylazine anesthesia on cerebral blood flow and oxygenation observed using nuclear magnetic resonance perfusion imaging and electron paramagnetic resonance oximetry. Brain Res 913(2):174–179. https://doi.org/10.1016/s0006-8993(01)02786-x doi: 10.1016/s0006-8993(01)02786-x. [DOI] [PubMed]
  20. Ochiai Y, Iwano H, Sakamoto T, Hirabayashi M, Kaneko E, Watanabe T, Yamashita K, Yokota H (2016) Blood biochemical changes in mice after administration of a mixture of three anesthetic agents. J Vet Med Sci 78(6):951–956. https://doi.org/10.1292/jvms.15-0474 doi: 10.1292/jvms.15-0474. [DOI] [PMC free article] [PubMed]
  21. Ilkiw JE (1992) Advantages and guidelines for using ultrashort barbiturates for induction of anesthesia. Vet Clin North Am Small Anim Pract 22(2):261–264 doi: 10.1016/s0195-5616(92)50602-7. [DOI] [PubMed]
  22. Lopez-Munoz F, Ucha-Udabe R, Alamo C (2005) The history of barbiturates a century after their clinical introduction. Neuropsychiatr Dis Treat 1(4):329–343 [PMC free article] [PubMed]
  23. Dogan Z, Yuzbasioglu MF, Kurutas EB, Yildiz H, Coskuner I, Senoglu N, Oksuz H, Bulbuloglu E (2010) Thiopental improves renal ischemia-reperfusion injury. Ren Fail 32(3):391–395. https://doi.org/10.3109/08860221003611752 doi: 10.3109/08860221003611752. [DOI] [PubMed]
  24. Almaas R, Saugstad OD, Pleasure D, Rootwelt T (2000) Effect of barbiturates on hydroxyl radicals, lipid peroxidation, and hypoxic cell death in human NT2-N neurons. Anesthesiology 92(3):764–774. https://doi.org/10.1097/00000542-200003000-00020 doi: 10.1097/00000542-200003000-00020. [DOI] [PubMed]
  25. Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H, Niwa Y (1998) The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg 86(1):159–165. https://doi.org/10.1097/00000539-199801000-00032 doi: 10.1097/00000539-199801000-00032. [DOI] [PubMed]
  26. Lei H, Duarte JM, Mlynarik V, Python A, Gruetter R (2010) Deep thiopental anesthesia alters steady-state glucose homeostasis but not the neurochemical profile of rat cortex. J Neurosci Res 88(2):413–419. https://doi.org/10.1002/jnr.22212 doi: 10.1002/jnr.22212. [DOI] [PubMed]
  27. Bruns A, Kunnecke B, Risterucci C, Moreau JL, von Kienlin M (2009) Validation of cerebral blood perfusion imaging as a modality for quantitative pharmacological MRI in rats. Magn Reson Med 61(6):1451–1458. https://doi.org/10.1002/mrm.21779 doi: 10.1002/mrm.21779. [DOI] [PubMed]
  28. Yuzbasioglu MF, Aykas A, Kurutas EB, Sahinkanat T (2010) Protective effects of propofol against ischemia/reperfusion injury in rat kidneys. Ren Fail 32(5):578–583. https://doi.org/10.3109/08860220903548940 doi: 10.3109/08860220903548940. [DOI] [PubMed]
  29. Sanchez-Conde P, Rodriguez-Lopez JM, Nicolas JL, Lozano FS, Garcia-Criado FJ, Cascajo C, Gonzalez-Sarmiento R, Muriel C (2008) The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesth Analg 106(2):371–378, table of contents. https://doi.org/10.1213/ane.0b013e318160580b doi: 10.1213/ane.0b013e318160580b. [DOI] [PubMed]
  30. Liu X, Li R, Yang Z, Hudetz AG, Li SJ (2012) Differential effect of isoflurane, medetomidine, and urethane on BOLD responses to acute levo-tetrahydropalmatine in the rat. Magn Reson Med 68(2):552–559. https://doi.org/10.1002/mrm.23243 doi: 10.1002/mrm.23243. [DOI] [PMC free article] [PubMed]
  31. Aizawa N, Ogawa S, Sugiyama R, Homma Y, Igawa Y (2015) Influence of urethane-anesthesia on the effect of resiniferatoxin treatment on bladder function in rats with spinal cord injury. Neurourol Urodyn 34(3):274–279. https://doi.org/10.1002/nau.22549 doi: 10.1002/nau.22549. [DOI] [PubMed]
  32. Maggi CA, Meli A (1986) Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: general considerations. Experientia 42(2):109–114. https://doi.org/10.1007/bf01952426 doi: 10.1007/bf01952426. [DOI] [PubMed]
  33. Ganjoo P, Farber NE, Schwabe D, Kampine JP, Schmeling WT (1996) Desflurane attenuates the somatosympathetic reflex in rats. Anesth Analg 83(1):55–61. https://doi.org/10.1097/00000539-199607000-00010 doi: 10.1097/00000539-199607000-00010. [DOI] [PubMed]
  34. Kober F, Iltis I, Cozzone PJ, Bernard M (2004) Cine-MRI assessment of cardiac function in mice anesthetized with ketamine/xylazine and isoflurane. MAGMA 17(3–6):157–161. https://doi.org/10.1007/s10334-004-0086-0 doi: 10.1007/s10334-004-0086-0. [DOI] [PubMed]
  35. Kersten JR, Lowe D, Hettrick DA, Pagel PS, Gross GJ, Warltier DC (1996) Glyburide, a KATP channel antagonist, attenuates the cardioprotective effects of isoflurane in stunned myocardium. Anesth Analg 83(1):27–33. https://doi.org/10.1097/00000539-199607000-00006 doi: 10.1097/00000539-199607000-00006. [DOI] [PubMed]
  36. van Alst TM, Wachsmuth L, Datunashvili M, Albers F, Just N, Budde T, Faber C (2019) Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. NeuroImage 195:89–103. https://doi.org/10.1016/j.neuroimage.2019.03.057 doi: 10.1016/j.neuroimage.2019.03.057. [DOI] [PubMed]
  37. Grosenick D, Cantow K, Arakelyan K, Wabnitz H, Flemming B, Skalweit A, Ladwig M, Macdonald R, Niendorf T, Seeliger E (2015) Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach. Biomed Opt Express 6(2):309–323. https://doi.org/10.1364/BOE.6.000309 doi: 10.1364/BOE.6.000309. [DOI] [PMC free article] [PubMed]
  38. Lee HT, Ota-Setlik A, Fu Y, Nasr SH, Emala CW (2004) Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 101(6):1313–1324. https://doi.org/10.1097/00000542-200412000-00011 doi: 10.1097/00000542-200412000-00011. [DOI] [PubMed]
  39. Hashiguchi H, Morooka H, Miyoshi H, Matsumoto M, Koji T, Sumikawa K (2005) Isoflurane protects renal function against ischemia and reperfusion through inhibition of protein kinases, JNK and ERK. Anesth Analg 101(6):1584–1589. https://doi.org/10.1213/01.Ane.0000184044.51749.B8 doi: 10.1213/01.Ane.0000184044.51749.B8. [DOI] [PubMed]
  40. Carraretto AR, Vianna Filho PT, Castiglia YM, Golim Mde A, Souza AV, Carvalho LR, Deffune E, Vianna PT (2013) Do propofol and isoflurane protect the kidney against ischemia/reperfusion injury during transient hyperglycemia? Acta Cir Bras 28(3):161–166 doi: 10.1590/s0102-86502013000300001. [DOI] [PubMed]
  41. Reimann HM, Hentschel J, Marek J, Huelnhagen T, Todiras M, Kox S, Waiczies S, Hodge R, Bader M, Pohlmann A, Niendorf T (2016) Normothermic mouse functional MRI of acute focal Thermostimulation for probing nociception. Sci Rep 6:17230. https://doi.org/10.1038/srep17230 doi: 10.1038/srep17230. [DOI] [PMC free article] [PubMed]
  42. Delbridge MS, Shrestha BM, Raftery AT, El Nahas AM, Haylor JL (2007) The effect of body temperature in a rat model of renal ischemia-reperfusion injury. Transplant Proc 39(10):2983–2985. https://doi.org/10.1016/j.transproceed.2007.04.028 doi: 10.1016/j.transproceed.2007.04.028. [DOI] [PubMed]
  43. Blaszczyk J, Kedziora J, Luciak M, Sibinska E, Trznadel K, Pawlicki L (1994) Effect of morphine and naloxone on oxidative metabolism during experimental renal ischemia and reperfusion. Exp Nephrol 2(6):364–370 [PubMed]
  44. Elkadi HK, Nghiem DD, Southard JH, Kelly KM, Olson CL (1987) Naloxone in renal ischemia: a functional and microanatomical study. J Surg Res 42(6):675–692 doi: 10.1016/0022-4804(87)90012-6. [DOI] [PubMed]
  45. Deng J, St Clair M, Everett C, Reitman M, Star RA (2000) Buprenorphine given after surgery does not alter renal ischemia/reperfusion injury. Comp Med 50(6):628–632 [PubMed]
  46. Gonullu E, Ozkardesler S, Kume T, Duru LS, Akan M, Guneli ME, Ergur BU, Meseri R, Dora O (2014) Comparison of the effects of dexmedetomidine administered at two different times on renal ischemia/reperfusion injury in rats. Braz J Anesthesiol 64(3):152–158. https://doi.org/10.1016/j.bjane.2013.06.002 doi: 10.1016/j.bjane.2013.06.002. [DOI] [PubMed]
  47. Ma J, Chen Q, Li J, Zhao H, Mi E, Chen Y, Yi B, Ning J, Ma D, Lu K, Gu J (2018) Dexmedetomidine-mediated prevention of renal ischemia-reperfusion injury depends in part on cholinergic anti-inflammatory mechanisms. Anesth Analg 130(4):1054–1062. https://doi.org/10.1213/ANE.0000000000003820 doi: 10.1213/ANE.0000000000003820. [DOI] [PubMed]
  48. Zhu SH, Zhou LJ, Jiang H, Chen RJ, Lin C, Feng S, Jin J, Chen JH, Wu JY (2014) Protective effect of indomethacin in renal ischemia-reperfusion injury in mice. J Zhejiang Univ Sci B 15(8):735–742. https://doi.org/10.1631/jzus.B1300196 doi: 10.1631/jzus.B1300196. [DOI] [PMC free article] [PubMed]
  49. Calistro Neto JP, Torres Rda C, Goncalves GM, Silva LM, Domingues MA, Modolo NS, Barros GA (2015) Parecoxib reduces renal injury in an ischemia/reperfusion model in rats. Acta Cir Bras 30(4):270–276. https://doi.org/10.1590/S0102-865020150040000006 doi: 10.1590/S0102-865020150040000006. [DOI] [PubMed]
  50. Narver HL (2017) Antimicrobial stewardship in laboratory animal facilities. J Am Assoc Lab Anim Sci 56(1):6–10 [PMC free article] [PubMed]
  51. Gargiulo S, Greco A, Gramanzini M, Esposito S, Affuso A, Brunetti A, Vesce G (2012) Mice anesthesia, analgesia, and care, part II: anesthetic considerations in preclinical imaging studies. ILAR J 53(1):E70–E81. https://doi.org/10.1093/ilar.53.1.70 doi: 10.1093/ilar.53.1.70. [DOI] [PubMed]
  52. Zager RA (1992) Gentamicin effects on renal ischemia/reperfusion injury. Circ Res 70(1):20–28. https://doi.org/10.1161/01.res.70.1.20 doi: 10.1161/01.res.70.1.20. [DOI] [PubMed]

RESOURCES