Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:241–256. doi: 10.1007/978-1-0716-0978-1_14

Renal pH Imaging Using Chemical Exchange Saturation Transfer (CEST) MRI: Basic Concept.

Dario Livio Longo, Pietro Irrera, Lorena Consolino, Phillip Zhe Sun, Michael T McMahon
PMCID: PMC9703214  PMID: 33476004

Abstract

Magnetic Resonance Imaging (MRI) has been actively explored in the last several decades for assessing renal function by providing several physiological information, including glomerular filtration rate, renal plasma flow, tissue oxygenation and water diffusion. Within MRI, the developing field of chemical exchange saturation transfer (CEST) has potential to provide further functional information for diagnosing kidney diseases. Both endogenous produced molecules as well as exogenously administered CEST agents have been exploited for providing functional information related to kidney diseases in preclinical studies. In particular, CEST MRI has been exploited for assessing the acid-base homeostasis in the kidney and for monitoring pH changes in several disease models. This review summarizes several CEST MRI procedures for assessing kidney functionality and pH, for monitoring renal pH changes in different kidney injury models and for evaluating renal allograft rejection.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Full text of this article can be found in Bookshelf.

References

  1. Al Malla M, Varghese NV, AlAbdullatif M, Narchi H, Khassawneh M (2017) Prevalence and outcome of acute kidney injury, as defined by the new kidney disease improving global outcomes guideline, in very low birth weight infants. World J Nephrol 6(5):229–235. https://doi.org/10.5527/wjn.v6.i5.229 doi: 10.5527/wjn.v6.i5.229. [DOI] [PMC free article] [PubMed]
  2. Kassebaum NJ, Lopez AD, Murray CJ, Lozano R (2014) A comparison of maternal mortality estimates from GBD 2013 and WHO. Lancet 384(9961):2209–2210. https://doi.org/10.1016/S0140-6736(14)62421-1 doi: 10.1016/S0140-6736(14)62421-1. [DOI] [PubMed]
  3. Zollner FG, Kalayciyan R, Chacon-Caldera J, Zimmer F, Schad LR (2014) Pre-clinical functional magnetic resonance imaging part I: the kidney. Z Med Phys 24(4):286–306. https://doi.org/10.1016/j.zemedi.2014.05.002 doi: 10.1016/j.zemedi.2014.05.002. [DOI] [PubMed]
  4. Neugarten J, Golestaneh L (2014) Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renovasc Dis 7:421–435. https://doi.org/10.2147/IJNRD.S42924 doi: 10.2147/IJNRD.S42924. [DOI] [PMC free article] [PubMed]
  5. Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK, Schad LR (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8(1):e53849. https://doi.org/10.1371/journal.pone.0053849 doi: 10.1371/journal.pone.0053849. [DOI] [PMC free article] [PubMed]
  6. Ichikawa S, Motosugi U, Ichikawa T, Sano K, Morisaka H, Araki T (2013) Intravoxel incoherent motion imaging of the kidney: alterations in diffusion and perfusion in patients with renal dysfunction. Magn Reson Imaging 31(3):414–417. https://doi.org/10.1016/j.mri.2012.08.004 doi: 10.1016/j.mri.2012.08.004. [DOI] [PubMed]
  7. Clatworthy MR, Kettunen MI, Hu DE, Mathews RJ, Witney TH, Kennedy BW, Bohndiek SE, Gallagher FA, Jarvis LB, Smith KG, Brindle KM (2012) Magnetic resonance imaging with hyperpolarized [1,4-(13)C2]fumarate allows detection of early renal acute tubular necrosis. Proc Natl Acad Sci U S A 109(33):13374–13379. https://doi.org/10.1073/pnas.1205539109 doi: 10.1073/pnas.1205539109. [DOI] [PMC free article] [PubMed]
  8. Warner L, Yin M, Glaser KJ, Woollard JA, Carrascal CA, Korsmo MJ, Crane JA, Ehman RL, Lerman LO (2011) Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46(8):509–514. https://doi.org/10.1097/RLI.0b013e3182183a95 doi: 10.1097/RLI.0b013e3182183a95. [DOI] [PMC free article] [PubMed]
  9. Oostendorp M, de Vries EE, Slenter JM, Peutz-Kootstra CJ, Snoeijs MG, Post MJ, van Heurn LW, Backes WH (2011) MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury. NMR Biomed 24(2):194–200. https://doi.org/10.1002/nbm.1572 doi: 10.1002/nbm.1572. [DOI] [PubMed]
  10. Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76(3):337–347. https://doi.org/10.1016/j.ejrad.2010.05.033 doi: 10.1016/j.ejrad.2010.05.033. [DOI] [PubMed]
  11. Prasad PV (2006) Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract 103(2):c58–c65. https://doi.org/10.1159/000090610 doi: 10.1159/000090610. [DOI] [PubMed]
  12. Kline TL, Edwards ME, Garg I, Irazabal MV, Korfiatis P, Harris PC, King BF, Torres VE, Venkatesh SK, Erickson BJ (2018) Quantitative MRI of kidneys in renal disease. Abdom Radiol (NY) 43(3):629–638. https://doi.org/10.1007/s00261-017-1236-y doi: 10.1007/s00261-017-1236-y. [DOI] [PMC free article] [PubMed]
  13. Zhang JL, Morrell G, Rusinek H, Sigmund EE, Chandarana H, Lerman LO, Prasad PV, Niles D, Artz N, Fain S, Vivier PH, Cheung AK, Lee VS (2014) New magnetic resonance imaging methods in nephrology. Kidney Int 85(4):768–778. https://doi.org/10.1038/ki.2013.361 doi: 10.1038/ki.2013.361. [DOI] [PMC free article] [PubMed]
  14. Zhang JL, Rusinek H, Chandarana H, Lee VS (2013) Functional MRI of the kidneys. J Magn Reson Imaging 37(2):282–293. https://doi.org/10.1002/jmri.23717 doi: 10.1002/jmri.23717. [DOI] [PMC free article] [PubMed]
  15. Grenier N, Pedersen M, Hauger O (2006) Contrast agents for functional and cellular MRI of the kidney. Eur J Radiol 60(3):341–352. https://doi.org/10.1016/j.ejrad.2006.06.024 doi: 10.1016/j.ejrad.2006.06.024. [DOI] [PubMed]
  16. Liu G, Song X, Chan KW, McMahon MT (2013) Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 26(7):810–828. https://doi.org/10.1002/nbm.2899 doi: 10.1002/nbm.2899. [DOI] [PMC free article] [PubMed]
  17. Kogan F, Hariharan H, Reddy R (2013) Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep 1(2):102–114. https://doi.org/10.1007/s40134-013-0010-3 doi: 10.1007/s40134-013-0010-3. [DOI] [PMC free article] [PubMed]
  18. Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47(1):11–27. https://doi.org/10.1002/jmri.25838 doi: 10.1002/jmri.25838. [DOI] [PMC free article] [PubMed]
  19. Anemone A, Consolino L, Arena F, Capozza M, Longo DL (2019) Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev 38(1-2):25–49. https://doi.org/10.1007/s10555-019-09782-9 doi: 10.1007/s10555-019-09782-9. [DOI] [PMC free article] [PubMed]
  20. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143(1):79–87. https://doi.org/10.1006/jmre.1999.1956 doi: 10.1006/jmre.1999.1956. [DOI] [PubMed]
  21. Sun PZ, Benner T, Copen WA, Sorensen AG (2010) Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke 41(10 Suppl):S147–S151. https://doi.org/10.1161/STROKEAHA.110.595777 doi: 10.1161/STROKEAHA.110.595777. [DOI] [PMC free article] [PubMed]
  22. Aime S, Castelli DD, Crich SG, Gianolio E, Terreno E (2009) Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc Chem Res 42(7):822–831. https://doi.org/10.1021/ar800192p doi: 10.1021/ar800192p. [DOI] [PubMed]
  23. McMahon MT, Gilad AA, DeLiso MA, Berman SM, Bulte JW, van Zijl PC (2008) New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 60(4):803–812. https://doi.org/10.1002/mrm.21683 doi: 10.1002/mrm.21683. [DOI] [PMC free article] [PubMed]
  24. Sun PZ, Zhou J, Huang J, van Zijl P (2007) Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 57(2):405–410. https://doi.org/10.1002/mrm.21151 doi: 10.1002/mrm.21151. [DOI] [PubMed]
  25. McMahon MT, Gilad AA, Zhou J, Sun PZ, Bulte JW, van Zijl PC (2006) Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn Reson Med 55(4):836–847. https://doi.org/10.1002/mrm.20818 doi: 10.1002/mrm.20818. [DOI] [PMC free article] [PubMed]
  26. Jones CK, Schlosser MJ, van Zijl PC, Pomper MG, Golay X, Zhou J (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56(3):585–592. https://doi.org/10.1002/mrm.20989 doi: 10.1002/mrm.20989. [DOI] [PubMed]
  27. Sun PZ, Wang E, Cheung JS (2012) Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI--correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. NeuroImage 60(1):1–6. https://doi.org/10.1016/j.neuroimage.2011.11.091 doi: 10.1016/j.neuroimage.2011.11.091. [DOI] [PMC free article] [PubMed]
  28. Haris M, Nath K, Cai K, Singh A, Crescenzi R, Kogan F, Verma G, Reddy S, Hariharan H, Melhem ER, Reddy R (2013) Imaging of glutamate neurotransmitter alterations in Alzheimer's disease. NMR Biomed 26(4):386–391. https://doi.org/10.1002/nbm.2875 doi: 10.1002/nbm.2875. [DOI] [PMC free article] [PubMed]
  29. Longo DL, Di Gregorio E, Abategiovanni R, Ceccon A, Assfalg M, Molinari H, Aime S (2014) Chemical exchange saturation transfer (CEST): an efficient tool for detecting molecular information on proteins' behaviour. Analyst 139(11):2687–2690. https://doi.org/10.1039/c4an00346b doi: 10.1039/c4an00346b. [DOI] [PubMed]
  30. Ceccon A, D'Onofrio M, Zanzoni S, Longo DL, Aime S, Molinari H, Assfalg M (2013) NMR investigation of the equilibrium partitioning of a water-soluble bile salt protein carrier to phospholipid vesicles. Proteins 81(10):1776–1791. https://doi.org/10.1002/prot.24329 doi: 10.1002/prot.24329. [DOI] [PubMed]
  31. Castelli DD, Terreno E, Longo D, Aime S (2013) Nanoparticle-based chemical exchange saturation transfer (CEST) agents. NMR Biomed 26(7):839–849. https://doi.org/10.1002/nbm.2974 doi: 10.1002/nbm.2974. [DOI] [PubMed]
  32. Dastru W, Longo D, Aime S (2011) Contrast agents and mechanisms. Drug Discov Today 8(2–4):e109–e115. https://doi.org/10.1016/j.ddtec.2011.11.013 doi: 10.1016/j.ddtec.2011.11.013. [DOI] [PubMed]
  33. Sherry AD, Woods M (2008) Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng 10:391–411. https://doi.org/10.1146/annurev.bioeng.9.060906.151929 doi: 10.1146/annurev.bioeng.9.060906.151929. [DOI] [PMC free article] [PubMed]
  34. Zaiss M, Windschuh J, Goerke S, Paech D, Meissner JE, Burth S, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Ladd ME, Bachert P, Radbruch A (2016) Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med 77(1):196–208. https://doi.org/10.1002/mrm.26100 doi: 10.1002/mrm.26100. [DOI] [PubMed]
  35. Rivlin M, Navon G (2016) Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci Rep 6:32648. https://doi.org/10.1038/srep32648 doi: 10.1038/srep32648. [DOI] [PMC free article] [PubMed]
  36. Li Y, Chen H, Xu J, Yadav NN, Chan KW, Luo L, McMahon MT, Vogelstein B, van Zijl PC, Zhou S, Liu G (2016) CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget 7(6):6369–6378. https://doi.org/10.18632/oncotarget.7141 doi: 10.18632/oncotarget.7141. [DOI] [PMC free article] [PubMed]
  37. Desmond KL, Mehrabian H, Chavez S, Sahgal A, Soliman H, Rola R, Stanisz GJ (2017) Chemical exchange saturation transfer for predicting response to stereotactic radiosurgery in human brain metastasis. Magn Reson Med 78(3):1110–1120. https://doi.org/10.1002/mrm.26470 doi: 10.1002/mrm.26470. [DOI] [PubMed]
  38. Goerke S, Breitling J, Zaiss M, Windschuh J, Kunz P, Schuenke P, Paech D, Longo DL, Klika KD, Ladd ME, Bachert P (2018) Dual-frequency irradiation CEST-MRI of endogenous bulk mobile proteins. NMR Biomed 31(6):e3920. https://doi.org/10.1002/nbm.3920 doi: 10.1002/nbm.3920. [DOI] [PubMed]
  39. Longo DL, Moustaghfir FZ, Zerbo A, Consolino L, Anemone A, Bracesco M, Aime S (2017) EXCI-CEST: exploiting pharmaceutical excipients as MRI-CEST contrast agents for tumor imaging. Int J Pharm 525(1):275–281. https://doi.org/10.1016/j.ijpharm.2017.04.040 doi: 10.1016/j.ijpharm.2017.04.040. [DOI] [PubMed]
  40. Ward KM, Balaban RS (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44(5):799–802. https://doi.org/10.1002/1522-2594 doi: 10.1002/1522-2594. [DOI] [PubMed]
  41. Longo D, Aime S (2017) Iodinated contrast media as pH-responsive CEST agents. In: McMahon MT, Gilad AA, Bulte JBM, Van Zijl PCM (eds) Chemical exchange saturation transfer imaging, Advances and applications. Pan Stanford Publishing, Singapore, pp 447–466. https://doi.org/10.1201/9781315364421-20 doi: 10.1201/9781315364421-20. [DOI]
  42. McDonald RJ, McDonald JS, Bida JP, Carter RE, Fleming CJ, Misra S, Williamson EE, Kallmes DF (2013) Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology 267(1):106–118. https://doi.org/10.1148/radiol.12121823 doi: 10.1148/radiol.12121823. [DOI] [PMC free article] [PubMed]
  43. McDonald JS, McDonald RJ, Comin J, Williamson EE, Katzberg RW, Murad MH, Kallmes DF (2013) Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology 267(1):119–128. https://doi.org/10.1148/radiol.12121460 doi: 10.1148/radiol.12121460. [DOI] [PubMed]
  44. Aime S, Calabi L, Biondi L, De Miranda M, Ghelli S, Paleari L, Rebaudengo C, Terreno E (2005) Iopamidol: exploring the potential use of a well-established x-ray contrast agent for MRI. Magn Reson Med 53(4):830–834. https://doi.org/10.1002/mrm.20441 doi: 10.1002/mrm.20441. [DOI] [PubMed]
  45. Longo DL, Dastru W, Digilio G, Keupp J, Langereis S, Lanzardo S, Prestigio S, Steinbach O, Terreno E, Uggeri F, Aime S (2011) Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T. Magn Reson Med 65(1):202–211. https://doi.org/10.1002/mrm.22608 doi: 10.1002/mrm.22608. [DOI] [PubMed]
  46. Anemone A, Consolino L, Longo DL (2017) MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent. Eur Radiol 27(5):2170–2179. https://doi.org/10.1007/s00330-016-4552-7 doi: 10.1007/s00330-016-4552-7. [DOI] [PubMed]
  47. Longo DL, Michelotti F, Consolino L, Bardini P, Digilio G, Xiao G, Sun PZ, Aime S (2016) In vitro and in vivo assessment of nonionic iodinated radiographic molecules as chemical exchange saturation transfer magnetic resonance imaging tumor perfusion agents. Investig Radiol 51(3):155–162. https://doi.org/10.1097/RLI.0000000000000217 doi: 10.1097/RLI.0000000000000217. [DOI] [PubMed]
  48. Sun PZ, Longo DL, Hu W, Xiao G, Wu R (2014) Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH. Phys Med Biol 59(16):4493–4504. https://doi.org/10.1088/0031-9155/59/16/4493 doi: 10.1088/0031-9155/59/16/4493. [DOI] [PMC free article] [PubMed]
  49. Wu Y, Zhou IY, Igarashi T, Longo DL, Aime S, Sun PZ (2018) A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol. Magn Reson Med 79(3):1553–1558. https://doi.org/10.1002/mrm.26817 doi: 10.1002/mrm.26817. [DOI] [PMC free article] [PubMed]
  50. Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schwaiger M, Aime S (2016) In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–6470. https://doi.org/10.1158/0008-5472.CAN-16-0825 doi: 10.1158/0008-5472.CAN-16-0825. [DOI] [PubMed]
  51. Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA, Howison CM, Pagel MD (2015) A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging 10(6):446–455. https://doi.org/10.1002/cmmi.1647 doi: 10.1002/cmmi.1647. [DOI] [PMC free article] [PubMed]
  52. Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc 136(41):14333–14336. https://doi.org/10.1021/ja5059313 doi: 10.1021/ja5059313. [DOI] [PMC free article] [PubMed]
  53. Arena F, Irrera P, Consolino L, Colombo Serra S, Zaiss M, Longo DL (2018) Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging. J Magn Reson 287:1–9. https://doi.org/10.1016/j.jmr.2017.12.007 doi: 10.1016/j.jmr.2017.12.007. [DOI] [PubMed]
  54. Song X, Walczak P, He X, Yang X, Pearl M, Bulte JW, Pomper MG, McMahon MT, Janowski M (2016) Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion. J Cereb Blood Flow Metab 36(7):1186–1194. https://doi.org/10.1177/0271678X16637882 doi: 10.1177/0271678X16637882. [DOI] [PMC free article] [PubMed]
  55. Song X, Yang X, Ray Banerjee S, Pomper MG, McMahon MT (2015) Anthranilic acid analogs as diamagnetic CEST MRI contrast agents that feature an intramolecular-bond shifted hydrogen. Contrast Media Mol Imaging 10(1):74–80. https://doi.org/10.1002/cmmi.1597 doi: 10.1002/cmmi.1597. [DOI] [PMC free article] [PubMed]
  56. Yang X, Song X, Li Y, Liu G, Ray Banerjee S, Pomper MG, McMahon MT (2013) Salicylic acid and analogues as diaCEST MRI contrast agents with highly shifted exchangeable proton frequencies. Angew Chem Int Ed Engl 52(31):8116–8119. https://doi.org/10.1002/anie.201302764 doi: 10.1002/anie.201302764. [DOI] [PMC free article] [PubMed]
  57. Yang X, Song X, Ray Banerjee S, Li Y, Byun Y, Liu G, Bhujwalla ZM, Pomper MG, McMahon MT (2016) Developing imidazoles as CEST MRI pH sensors. Contrast Media Mol Imaging 11(4):304–312. https://doi.org/10.1002/cmmi.1693 doi: 10.1002/cmmi.1693. [DOI] [PMC free article] [PubMed]
  58. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36(10):783–790. https://doi.org/10.1021/ar020228m doi: 10.1021/ar020228m. [DOI] [PubMed]
  59. Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE (2010) CEST and PARACEST MR contrast agents. Acta Radiol 51(8):910–923. https://doi.org/10.3109/02841851.2010.502126 doi: 10.3109/02841851.2010.502126. [DOI] [PMC free article] [PubMed]
  60. Liu G, Ali MM, Yoo B, Griswold MA, Tkach JA, Pagel MD (2009) PARACEST MRI with improved temporal resolution. Magn Reson Med 61(2):399–408. https://doi.org/10.1002/mrm.21863 doi: 10.1002/mrm.21863. [DOI] [PMC free article] [PubMed]
  61. Aime S, Delli Castelli D, Terreno E (2005) Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44(34):5513–5515. https://doi.org/10.1002/anie.200501473 doi: 10.1002/anie.200501473. [DOI] [PubMed]
  62. Srivastava K, Ferrauto G, Harris SM, Longo DL, Botta M, Aime S, Pierre VC (2018) Complete on/off responsive ParaCEST MRI contrast agents for copper and zinc. Dalton Trans 47(33):11346–11357. https://doi.org/10.1039/c8dt01172a doi: 10.1039/c8dt01172a. [DOI] [PubMed]
  63. Woods M, Woessner DE, Sherry AD (2006) Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev 35(6):500–511. https://doi.org/10.1039/b509907m doi: 10.1039/b509907m. [DOI] [PMC free article] [PubMed]
  64. Vinogradov E, He H, Lubag A, Balschi JA, Sherry AD, Lenkinski RE (2007) MRI detection of paramagnetic chemical exchange effects in mice kidneys in vivo. Magn Reson Med 58(4):650–655. https://doi.org/10.1002/mrm.21393 doi: 10.1002/mrm.21393. [DOI] [PubMed]
  65. Wu Y, Soesbe TC, Kiefer GE, Zhao P, Sherry AD (2010) A responsive europium(III) chelate that provides a direct readout of pH by MRI. J Am Chem Soc 132(40):14002–14003. https://doi.org/10.1021/ja106018n doi: 10.1021/ja106018n. [DOI] [PMC free article] [PubMed]
  66. Wu Y, Zhang S, Soesbe TC, Yu J, Vinogradov E, Lenkinski RE, Sherry AD (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75(6):2432–2441. https://doi.org/10.1002/mrm.25844 doi: 10.1002/mrm.25844. [DOI] [PMC free article] [PubMed]
  67. Sun PZ, Cheung JS, Wang E, Benner T, Sorensen AG (2011) Fast multislice pH-weighted chemical exchange saturation transfer (CEST) MRI with unevenly segmented RF irradiation. Magn Reson Med 65(2):588–594. https://doi.org/10.1002/mrm.22628 doi: 10.1002/mrm.22628. [DOI] [PMC free article] [PubMed]
  68. Sheth VR, Li Y, Chen LQ, Howison CM, Flask CA, Pagel MD (2012) Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson Med 67(3):760–768. https://doi.org/10.1002/mrm.23038 doi: 10.1002/mrm.23038. [DOI] [PMC free article] [PubMed]
  69. Zaiss M, Ehses P, Scheffler K (2018) Snapshot-CEST: optimizing spiral-centric-reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T. NMR Biomed 31(4):e3879. https://doi.org/10.1002/nbm.3879 doi: 10.1002/nbm.3879. [DOI] [PubMed]
  70. Zhu H, Jones CK, van Zijl PC, Barker PB, Zhou J (2010) Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magn Reson Med 64(3):638–644. https://doi.org/10.1002/mrm.22546 doi: 10.1002/mrm.22546. [DOI] [PMC free article] [PubMed]
  71. Sun PZ, Murata Y, Lu J, Wang X, Lo EH, Sorensen AG (2008) Relaxation-compensated fast multislice amide proton transfer (APT) imaging of acute ischemic stroke. Magn Reson Med 59(5):1175–1182. https://doi.org/10.1002/mrm.21591 doi: 10.1002/mrm.21591. [DOI] [PubMed]
  72. Randtke EA, Granados JC, Howison CM, Pagel MD, Cardenas-Rodriguez J (2017) Multislice CEST MRI improves the spatial assessment of tumor pH. Magn Reson Med 78(1):97–106. https://doi.org/10.1002/mrm.26348 doi: 10.1002/mrm.26348. [DOI] [PMC free article] [PubMed]
  73. Wang F, Kopylov D, Zu Z, Takahashi K, Wang S, Quarles CC, Gore JC, Harris RC, Takahashi T (2016) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541. https://doi.org/10.1002/mrm.26045 doi: 10.1002/mrm.26045. [DOI] [PMC free article] [PubMed]
  74. Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70(3):859–864. https://doi.org/10.1002/mrm.24513 doi: 10.1002/mrm.24513. [DOI] [PubMed]
  75. Longo DL, Cutrin JC, Michelotti F, Irrera P, Aime S (2017) Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI. NMR Biomed 30(7). https://doi.org/10.1002/nbm.3720 doi: 10.1002/nbm.3720. [DOI] [PubMed]
  76. Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP, Richardson S, Goncalves M, Parkes HG, Arstad E, Thomas DL, Pedley RB, Lythgoe MF, Golay X (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067–1072. https://doi.org/10.1038/nm.3252 doi: 10.1038/nm.3252. [DOI] [PMC free article] [PubMed]
  77. Xu X, Chan KW, Knutsson L, Artemov D, Xu J, Liu G, Kato Y, Lal B, Laterra J, McMahon MT, van Zijl PC (2015) Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer. Magn Reson Med 74(6):1556–1563. https://doi.org/10.1002/mrm.25995 doi: 10.1002/mrm.25995. [DOI] [PMC free article] [PubMed]
  78. Chan KW, McMahon MT, Kato Y, Liu G, Bulte JW, Bhujwalla ZM, Artemov D, van Zijl PC (2012) Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68(6):1764–1773. https://doi.org/10.1002/mrm.24520 doi: 10.1002/mrm.24520. [DOI] [PMC free article] [PubMed]
  79. Kentrup D, Bovenkamp P, Busch A, Schuette-Nuetgen K, Pawelski H, Pavenstadt H, Schlatter E, Herrmann KH, Reichenbach JR, Loffler B, Heitplatz B, Van Marck V, Yadav NN, Liu G, van Zijl PCM, Reuter S, Hoerr V (2017) GlucoCEST magnetic resonance imaging in vivo may be diagnostic of acute renal allograft rejection. Kidney Int 92(3):757–764. https://doi.org/10.1016/j.kint.2017.04.015 doi: 10.1016/j.kint.2017.04.015. [DOI] [PubMed]

RESOURCES