Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:301–323. doi: 10.1007/978-1-0716-0978-1_18

MR Elastography of the Abdomen: Basic Concepts.

Suraj D Serai, Meng Yin
PMCID: PMC9703215  PMID: 33476008

Abstract

Magnetic resonance elastography (MRE) is an emerging imaging modality that maps the elastic properties of tissue such as the shear modulus. It allows for noninvasive assessment of stiffness, which is a surrogate for fibrosis. MRE has been shown to accurately distinguish absent or low stage fibrosis from high stage fibrosis, primarily in the liver. Like other elasticity imaging modalities, it follows the general steps of elastography: (1) apply a known cyclic mechanical vibration to the tissue; (2) measure the internal tissue displacements caused by the mechanical wave using magnetic resonance phase encoding method; and (3) infer the mechanical properties from the measured mechanical response (displacement), by generating a simplified displacement map. The generated map is called an elastogram.While the key interest of MRE has traditionally been in its application to liver, where in humans it is FDA approved and commercially available for clinical use to noninvasively assess degree of fibrosis, this is an area of active research and there are novel upcoming applications in brain, kidney, pancreas, spleen, heart, lungs, and so on. A detailed review of all the efforts is beyond the scope of this chapter, but a few specific examples are provided. Recent application of MRE for noninvasive evaluation of renal fibrosis has great potential for noninvasive assessment in patients with chronic kidney diseases. Development and applications of MRE in preclinical models is necessary primarily to validate the measurement against "gold-standard" invasive methods, to better understand physiology and pathophysiology, and to evaluate novel interventions. Application of MRE acquisitions in preclinical settings involves challenges in terms of available hardware, logistics, and data acquisition. This chapter will introduce the concepts of MRE and provide some illustrative applications.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by another separate chapter describing the experimental protocol and data analysis.


Full text of this article can be found in Bookshelf.

References

  1. Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207–1213.e1202. https://doi.org/10.1016/j.cgh.2007.06.012 doi: 10.1016/j.cgh.2007.06.012. [DOI] [PMC free article] [PubMed]
  2. Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL (2007) Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 58(2):346–353. https://doi.org/10.1002/mrm.21286 doi: 10.1002/mrm.21286. [DOI] [PubMed]
  3. Xanthakos SA, Podberesky DJ, Serai SD, Miles L, King EC, Balistreri WF, Kohli R (2014) Use of magnetic resonance elastography to assess hepatic fibrosis in children with chronic liver disease. J Pediatr 164(1):186–188. https://doi.org/10.1016/j.jpeds.2013.07.050 doi: 10.1016/j.jpeds.2013.07.050. [DOI] [PMC free article] [PubMed]
  4. Muthupillai R, Ehman RL (1996) Magnetic resonance elastography. Nat Med 2(5):601–603 doi: 10.1038/nm0596-601. [DOI] [PubMed]
  5. Serai SD, Towbin AJ, Podberesky DJ (2012) Pediatric liver MR elastography. Dig Dis Sci 57(10):2713–2719. https://doi.org/10.1007/s10620-012-2196-2 doi: 10.1007/s10620-012-2196-2. [DOI] [PubMed]
  6. Fung YC (1993) Biomechanics mechanical properties of living tissues. Springer, New York, NY
  7. Papazoglou S, Hirsch S, Braun J, Sack I (2012) Multifrequency inversion in magnetic resonance elastography. Phys Med Biol 57(8):2329–2346. https://doi.org/10.1088/0031-9155/57/8/2329 doi: 10.1088/0031-9155/57/8/2329. [DOI] [PubMed]
  8. Serai SD, Dillman JR, Trout AT (2017) Spin-echo echo-planar imaging MR elastography versus gradient-echo MR elastography for assessment of liver stiffness in children and young adults suspected of having liver disease. Radiology 282(3):761–770. https://doi.org/10.1148/radiol.2016160589 doi: 10.1148/radiol.2016160589. [DOI] [PubMed]
  9. Calle-Toro JS, Serai SD, Hartung EA, Goldberg DJ, Bolster BD Jr, Darge K, Anupindi SA (2019) Magnetic resonance elastography SE-EPI vs GRE sequences at 3T in a pediatric population with liver disease. Abdom Radiol. https://doi.org/10.1007/s00261-018-1884-6 doi: 10.1007/s00261-018-1884-6. [DOI] [PMC free article] [PubMed]
  10. Serai SD, Obuchowski NA, Venkatesh SK, Sirlin CB, Miller FH, Ashton E, Cole PE, Ehman RL (2017) Repeatability of MR elastography of liver: a meta-analysis. Radiology 285(1):92–100. https://doi.org/10.1148/radiol.2017161398 doi: 10.1148/radiol.2017161398. [DOI] [PMC free article] [PubMed]
  11. Loomba R, Cui J, Wolfson T, Haufe W, Hooker J, Szeverenyi N, Ang B, Bhatt A, Wang K, Aryafar H, Behling C, Valasek MA, Lin GY, Gamst A, Brenner DA, Yin M, Glaser KJ, Ehman RL, Sirlin CB (2016) Novel 3D magnetic resonance elastography for the noninvasive diagnosis of advanced fibrosis in NAFLD: a prospective study. Am J Gastroenterol 111(7):986–994. https://doi.org/10.1038/ajg.2016.65 doi: 10.1038/ajg.2016.65. [DOI] [PMC free article] [PubMed]
  12. Serai SD, Abu-El-Haija M, Trout AT (2019) 3D MR elastography of the pancreas in children. Abdom Radiol. https://doi.org/10.1007/s00261-019-01903-w doi: 10.1007/s00261-019-01903-w. [DOI] [PMC free article] [PubMed]
  13. Mohamed AA, Elbedewy TA, El-Serafy M, El-Toukhy N, Ahmed W, Ali El Din Z (2015) Hepatitis C virus: a global view. World J Hepatol 7(26):2676–2680. https://doi.org/10.4254/wjh.v7.i26.2676 doi: 10.4254/wjh.v7.i26.2676. [DOI] [PMC free article] [PubMed]
  14. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, Grimaldi A, Capron F, Poynard T (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128(7):1898–1906 doi: 10.1053/j.gastro.2005.03.084. [DOI] [PubMed]
  15. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, Feng ZZ, Reddy KR, Schiff ER (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97(10):2614–2618. https://doi.org/10.1111/j.1572-0241.2002.06038.x doi: 10.1111/j.1572-0241.2002.06038.x. [DOI] [PubMed]
  16. Venkatesh SK, Ehman RL (2014) Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am 22(3):433–446. https://doi.org/10.1016/j.mric.2014.05.001 doi: 10.1016/j.mric.2014.05.001. [DOI] [PMC free article] [PubMed]
  17. Trout AT, Serai S, Mahley AD, Wang H, Zhang Y, Zhang B, Dillman JR (2016) Liver stiffness measurements with MR elastography: agreement and repeatability across imaging systems, field strengths, and pulse sequences. Radiology 281(3):793–804. https://doi.org/10.1148/radiol.2016160209 doi: 10.1148/radiol.2016160209. [DOI] [PubMed]
  18. Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL (2016) Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations. Radiology 278(1):114–124. https://doi.org/10.1148/radiol.2015142141 doi: 10.1148/radiol.2015142141. [DOI] [PMC free article] [PubMed]
  19. Pepin KM, McGee KP (2018) Quantifying tumor stiffness with magnetic resonance elastography: the role of mechanical properties for detection, characterization, and treatment stratification in oncology. Top Magn Reson Imaging 27(5):353–362. https://doi.org/10.1097/rmr.0000000000000181 doi: 10.1097/rmr.0000000000000181. [DOI] [PubMed]
  20. Venkatesh SK, Yin M, Glockner JF, Takahashi N, Araoz PA, Talwalkar JA, Ehman RL (2008) MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol 190(6):1534–1540. https://doi.org/10.2214/ajr.07.3123 doi: 10.2214/ajr.07.3123. [DOI] [PMC free article] [PubMed]
  21. Garteiser P, Doblas S, Daire JL, Wagner M, Leitao H, Vilgrain V, Sinkus R, Van Beers BE (2012) MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol 22(10):2169–2177. https://doi.org/10.1007/s00330-012-2474-6 doi: 10.1007/s00330-012-2474-6. [DOI] [PubMed]
  22. Talwalkar JA, Yin M, Venkatesh S, Rossman PJ, Grimm RC, Manduca A, Romano A, Kamath PS, Ehman RL (2009) Feasibility of in vivo MR elastographic splenic stiffness measurements in the assessment of portal hypertension. AJR Am J Roentgenol 193(1):122–127. https://doi.org/10.2214/AJR.07.3504 doi: 10.2214/AJR.07.3504. [DOI] [PMC free article] [PubMed]
  23. Yin M, Chen J, Glaser KJ, Talwalkar JA, Ehman RL (2009) Abdominal magnetic resonance elastography. Top Magn Reson Imaging 20(2):79–87. https://doi.org/10.1097/RMR.0b013e3181c4737e doi: 10.1097/RMR.0b013e3181c4737e. [DOI] [PMC free article] [PubMed]
  24. Hartung EA, Wen J, Poznick L, Furth SL, Darge K (2019) Ultrasound elastography to quantify liver disease severity in autosomal recessive polycystic kidney disease. J Pediatrics 209:107–115.e105. https://doi.org/10.1016/j.jpeds.2019.01.055 doi: 10.1016/j.jpeds.2019.01.055. [DOI] [PMC free article] [PubMed]
  25. Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43(1):9–17. https://doi.org/10.2169/internalmedicine.43.9 doi: 10.2169/internalmedicine.43.9. [DOI] [PubMed]
  26. Hodgkins KS, Schnaper HW (2012) Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27(6):901–909. https://doi.org/10.1007/s00467-011-1992-9 doi: 10.1007/s00467-011-1992-9. [DOI] [PMC free article] [PubMed]
  27. Alukal JJ, Thuluvath PJ (2019) Reversal of NASH fibrosis with pharmacotherapy. Hepatol Int 13(5):534–545. https://doi.org/10.1007/s12072-019-09970-3 doi: 10.1007/s12072-019-09970-3. [DOI] [PubMed]
  28. Ismail MH, Pinzani M (2009) Reversal of liver fibrosis. Saudi J Gastroenterol 15(1):72–79. https://doi.org/10.4103/1319-3767.45072 doi: 10.4103/1319-3767.45072. [DOI] [PMC free article] [PubMed]
  29. Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68-69:435–451. https://doi.org/10.1016/j.matbio.2018.04.006 doi: 10.1016/j.matbio.2018.04.006. [DOI] [PubMed]
  30. Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10(4):226–237. https://doi.org/10.1038/nrneph.2014.14 doi: 10.1038/nrneph.2014.14. [DOI] [PubMed]
  31. Bledsoe G, Shen B, Yao Y, Zhang JJ, Chao L, Chao J (2006) Reversal of renal fibrosis, inflammation, and glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther 17(5):545–555. https://doi.org/10.1089/hum.2006.17.545 doi: 10.1089/hum.2006.17.545. [DOI] [PubMed]
  32. Klinkhammer BM, Goldschmeding R, Floege J, Boor P (2017) Treatment of renal fibrosis-turning challenges into opportunities. Adv Chronic Kidney Dis 24(2):117–129. https://doi.org/10.1053/j.ackd.2016.11.002 doi: 10.1053/j.ackd.2016.11.002. [DOI] [PubMed]
  33. Lee SY, Kim SI, Choi ME (2015) Therapeutic targets for treating fibrotic kidney diseases. Transl Res 165(4):512–530. https://doi.org/10.1016/j.trsl.2014.07.010 doi: 10.1016/j.trsl.2014.07.010. [DOI] [PMC free article] [PubMed]
  34. Menn-Josephy H, Lee CS, Nolin A, Christov M, Rybin DV, Weinberg JM, Henderson J, Bonegio R, Havasi A (2016) Renal interstitial fibrosis: an imperfect predictor of kidney disease progression in some patient cohorts. Am J Nephrol 44(4):289–299. https://doi.org/10.1159/000449511 doi: 10.1159/000449511. [DOI] [PMC free article] [PubMed]
  35. dos Santos EA, Li LP, Ji L, Prasad PV (2007) Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Investig Radiol 42(3):157–162. https://doi.org/10.1097/01.rli.0000252492.96709.36 doi: 10.1097/01.rli.0000252492.96709.36. [DOI] [PMC free article] [PubMed]
  36. Li LP, Halter S, Prasad PV (2008) Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 16(4):613–625. https://doi.org/10.1016/j.mric.2008.07.008 doi: 10.1016/j.mric.2008.07.008. [DOI] [PMC free article] [PubMed]
  37. Pruijm M, Mendichovszky IA, Liss P, Van der Niepen P, Textor SC, Lerman LO, Krediet CTP, Caroli A, Burnier M, Prasad PV (2018) Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant 33(Suppl_2):ii22–ii28. https://doi.org/10.1093/ndt/gfy243 doi: 10.1093/ndt/gfy243. [DOI] [PMC free article] [PubMed]
  38. Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallee JP (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(Suppl_2):ii29–ii40. https://doi.org/10.1093/ndt/gfy163 doi: 10.1093/ndt/gfy163. [DOI] [PMC free article] [PubMed]
  39. Ljimani A, Caroli A, Laustsen C, Francis S, Mendichovszky IA, Bane O, Nery F, Sharma K, Pohlmann A, Dekkers IA, Vallee JP, Derlin K, Notohamiprodjo M, Lim RP, Palmucci S, Serai SD, Periquito J, Wang ZJ, Froeling M, Thoeny HC, Prasad P, Schneider M, Niendorf T, Pullens P, Sourbron S, Sigmund EE (2019) Consensus-based technical recommendations for clinical translation of renal diffusion-weighted MRI. MAGMA. https://doi.org/10.1007/s10334-019-00790-y doi: 10.1007/s10334-019-00790-y. [DOI] [PMC free article] [PubMed]
  40. Mansour SG, Puthumana J, Coca SG, Gentry M, Parikh CR (2017) Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review. BMC Nephrol 18(1):72. https://doi.org/10.1186/s12882-017-0490-0 doi: 10.1186/s12882-017-0490-0. [DOI] [PMC free article] [PubMed]
  41. Serai SD, Trout AT, Miethke A, Diaz E, Xanthakos SA, Dillman JR (2018) Putting it all together: established and emerging MRI techniques for detecting and measuring liver fibrosis. Pediatr Radiol 48(9):1256–1272. https://doi.org/10.1007/s00247-018-4083-2 doi: 10.1007/s00247-018-4083-2. [DOI] [PubMed]
  42. Serai SD, Trout AT, Sirlin CB (2017) Elastography to assess the stage of liver fibrosis in children: concepts, opportunities, and challenges. Clin Liver Dis 9(1):5–10. https://doi.org/10.1002/cld.607 doi: 10.1002/cld.607. [DOI] [PMC free article] [PubMed]
  43. Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK (2017) Ultrasound elastography: review of techniques and clinical applications. Theranostics 7(5):1303–1329. https://doi.org/10.7150/thno.18650 doi: 10.7150/thno.18650. [DOI] [PMC free article] [PubMed]
  44. Menzilcioglu MS, Duymus M, Citil S, Avcu S, Gungor G, Sahin T, Boysan SN, Altunoren O, Sarica A (2015) Strain wave elastography for evaluation of renal parenchyma in chronic kidney disease. Br J Radiol 88(1050):20140714. https://doi.org/10.1259/bjr.20140714 doi: 10.1259/bjr.20140714. [DOI] [PMC free article] [PubMed]
  45. Wang L, Xia P, Lv K, Han J, Dai Q, Li XM, Chen LM, Jiang YX (2014) Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol 24(7):1694–1699. https://doi.org/10.1007/s00330-014-3162-5 doi: 10.1007/s00330-014-3162-5. [DOI] [PubMed]
  46. Bob F, Bota S, Sporea I, Sirli R, Popescu A, Schiller A (2015) Relationship between the estimated glomerular filtration rate and kidney shear wave speed values assessed by acoustic radiation force impulse elastography: a pilot study. J Ultrasound Med 34(4):649–654. https://doi.org/10.7863/ultra.34.4.649 doi: 10.7863/ultra.34.4.649. [DOI] [PubMed]
  47. Bota S, Herkner H, Sporea I, Salzl P, Sirli R, Neghina AM, Peck-Radosavljevic M (2013) Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int 33(8):1138–1147. https://doi.org/10.1111/liv.12240 doi: 10.1111/liv.12240. [DOI] [PubMed]
  48. Lee CU, Glockner JF, Glaser KJ, Yin M, Chen J, Kawashima A, Kim B, Kremers WK, Ehman RL, Gloor JM (2012) MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol 19(7):834–841. https://doi.org/10.1016/j.acra.2012.03.003 doi: 10.1016/j.acra.2012.03.003. [DOI] [PMC free article] [PubMed]
  49. Zhang X, Zhu X, Ferguson CM, Jiang K, Burningham T, Lerman A, Lerman LO (2018) Magnetic resonance elastography can monitor changes in medullary stiffness in response to treatment in the swine ischemic kidney. MAGMA 31(3):375–382. https://doi.org/10.1007/s10334-017-0671-7 doi: 10.1007/s10334-017-0671-7. [DOI] [PMC free article] [PubMed]
  50. Grenier N, Poulain S, Lepreux S, Gennisson JL, Dallaudiere B, Lebras Y, Bavu E, Servais A, Meas-Yedid V, Piccoli M, Bachelet T, Tanter M, Merville P, Couzi L (2012) Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol 22(10):2138–2146. https://doi.org/10.1007/s00330-012-2471-9 doi: 10.1007/s00330-012-2471-9. [DOI] [PubMed]
  51. Orlacchio A, Chegai F, Del Giudice C, Anselmo A, Iaria G, Palmieri G, Di Caprera E, Tosti D, Costanzo E, Tisone G, Simonetti G (2014) Kidney transplant: usefulness of real-time elastography (RTE) in the diagnosis of graft interstitial fibrosis. Ultrasound Med Biol 40(11):2564–2572. https://doi.org/10.1016/j.ultrasmedbio.2014.06.002 doi: 10.1016/j.ultrasmedbio.2014.06.002. [DOI] [PubMed]
  52. Itokawa F, Itoi T, Sofuni A, Kurihara T, Tsuchiya T, Ishii K, Tsuji S, Ikeuchi N, Umeda J, Tanaka R, Yokoyama N, Moriyasu F, Kasuya K, Nagao T, Kamisawa T, Tsuchida A (2011) EUS elastography combined with the strain ratio of tissue elasticity for diagnosis of solid pancreatic masses. J Gastroenterol 46(6):843–853. https://doi.org/10.1007/s00535-011-0399-5 doi: 10.1007/s00535-011-0399-5. [DOI] [PubMed]
  53. Erkan M, Hausmann S, Michalski CW, Schlitter AM, Fingerle AA, Dobritz M, Friess H, Kleeff J (2012) How fibrosis influences imaging and surgical decisions in pancreatic cancer. Front Physiol 3:389. https://doi.org/10.3389/fphys.2012.00389 doi: 10.3389/fphys.2012.00389. [DOI] [PMC free article] [PubMed]
  54. An H, Shi Y, Guo Q, Liu Y (2016) Test-retest reliability of 3D EPI MR elastography of the pancreas. Clin Radiol 71(10):1068.e1012–1068.e1012. https://doi.org/10.1016/j.crad.2016.03.014 doi: 10.1016/j.crad.2016.03.014. [DOI] [PubMed]
  55. Wang M, Gao F, Wang X, Liu Y, Ji R, Cang L, Shi Y (2018) Magnetic resonance elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26008 doi: 10.1002/jmri.26008. [DOI] [PMC free article] [PubMed]
  56. Barton MB, Harris R, Fletcher SW (1999) The rational clinical examination. Does this patient have breast cancer? The screening clinical breast examination: should it be done? How? JAMA 282(13):1270–1280. https://doi.org/10.1001/jama.282.13.1270 doi: 10.1001/jama.282.13.1270. [DOI] [PubMed]
  57. Lorenzen J, Sinkus R, Lorenzen M, Dargatz M, Leussler C, Roschmann P, Adam G (2002) MR elastography of the breast:preliminary clinical results. Rofo 174(7):830–834. https://doi.org/10.1055/s-2002-32690 doi: 10.1055/s-2002-32690. [DOI] [PubMed]
  58. McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL (2002) MR elastography of breast cancer: preliminary results. AJR Am J Roentgenol 178(6):1411–1417. https://doi.org/10.2214/ajr.178.6.1781411 doi: 10.2214/ajr.178.6.1781411. [DOI] [PubMed]
  59. Kim HK, Lindquist DM, Serai SD, Mariappan YK, Wang LL, Merrow AC, McGee KP, Ehman RL, Laor T (2013) Magnetic resonance imaging of pediatric muscular disorders: recent advances and clinical applications. Radiol Clin N Am 51(4):721–742. https://doi.org/10.1016/j.rcl.2013.03.002 doi: 10.1016/j.rcl.2013.03.002. [DOI] [PMC free article] [PubMed]
  60. Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR (2002) Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch Phys Med Rehabil 83(11):1530–1536. https://doi.org/10.1053/apmr.2002.35472 doi: 10.1053/apmr.2002.35472. [DOI] [PubMed]
  61. Pichiecchio A, Alessandrino F, Bortolotto C, Cerica A, Rosti C, Raciti MV, Rossi M, Berardinelli A, Baranello G, Bastianello S, Calliada F (2018) Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy. Neuromuscul Dis 28(6):476–483. https://doi.org/10.1016/j.nmd.2018.02.007 doi: 10.1016/j.nmd.2018.02.007. [DOI] [PubMed]
  62. Buechter M, Manka P, Theysohn JM, Reinboldt M, Canbay A, Kahraman A (2018) Spleen stiffness is positively correlated with HVPG and decreases significantly after TIPS implantation. Dig Liver Dis 50(1):54–60. https://doi.org/10.1016/j.dld.2017.09.138 doi: 10.1016/j.dld.2017.09.138. [DOI] [PubMed]
  63. Song J, Huang J, Huang H, Liu S, Luo Y (2018) Performance of spleen stiffness measurement in prediction of clinical significant portal hypertension: a meta-analysis. Clin Res Hepatol Gastroenterol 42(3):216–226. https://doi.org/10.1016/j.clinre.2017.11.002 doi: 10.1016/j.clinre.2017.11.002. [DOI] [PubMed]
  64. Yin M, Kolipaka A, Warner L, Talwalkar JA, Manduca A, Ehman RL (2010) Influence of perfusion on tissue stiffness assessed with MR elastography. Proc Int Soc Magn Reson Med 18:256
  65. Yin M, Talwalkar JA, Glaser KJ, Venkatesh SK, Chen J, Manduca A, Ehman RL (2011) Dynamic postprandial hepatic stiffness augmentation assessed with MR elastography in patients with chronic liver disease. AJR Am J Roentgenol 197(1):64–70. https://doi.org/10.2214/AJR.10.5989 doi: 10.2214/AJR.10.5989. [DOI] [PMC free article] [PubMed]
  66. Clark WF, Sontrop JM, Moist L, Huang SH (2015) Increasing water intake in chronic kidney disease: why? Safe? Possible? Ann Nutr Metab 66(Suppl 3):18–21. https://doi.org/10.1159/000381241 doi: 10.1159/000381241. [DOI] [PubMed]
  67. Gandhi D, Kalra P, Raterman B, Mo X, Dong H, Kolipaka A (2019) Magnetic resonance elastography-derived stiffness of the kidneys and its correlation with water perfusion. NMR Biomed 33:e4237. https://doi.org/10.1002/nbm.4237 doi: 10.1002/nbm.4237. [DOI] [PMC free article] [PubMed]
  68. Warner L, Yin M, Glaser KJ, Woollard JA, Carrascal CA, Korsmo MJ, Crane JA, Ehman RL, Lerman LO (2011) Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Investig Radiol 46(8):509–514. https://doi.org/10.1097/RLI.0b013e3182183a95 doi: 10.1097/RLI.0b013e3182183a95. [DOI] [PMC free article] [PubMed]
  69. Ramachandran P, Iredale JP (2009) Reversibility of liver fibrosis. Ann Hepatol 8(4):283–291 [PubMed]
  70. Campana L, Iredale JP (2017) Regression of liver fibrosis. Semin Liver Dis 37(1):1–10. https://doi.org/10.1055/s-0036-1597816 doi: 10.1055/s-0036-1597816. [DOI] [PubMed]
  71. Dong H, Mazumder R, Illapani VSP, Mo X, White RD, Kolipaka A (2017) In vivo quantification of aortic stiffness using MR elastography in hypertensive porcine model. Magn Reson Med 78(6):2315–2321. https://doi.org/10.1002/mrm.26601 doi: 10.1002/mrm.26601. [DOI] [PMC free article] [PubMed]
  72. Morin CE, Dillman JR, Serai SD, Trout AT, Tkach JA, Wang H (2018) Comparison of Standard Breath-Held, Free-Breathing, and Compressed Sensing 2D Gradient-Recalled Echo MR Elastography Techniques for Evaluating Liver Stiffness. AJR American journal of roentgenology:1–9. doi:https://doi.org/10.2214/ajr.18.19761 doi: 10.2214/ajr.18.19761. [DOI] [PubMed]
  73. Liu X, Li N, Xu T, Sun F, Li R, Gao Q, Chen L, Wen C (2017) Effect of renal perfusion and structural heterogeneity on shear wave elastography of the kidney: an in vivo and ex vivo study. BMC Nephrol 18(1):265. https://doi.org/10.1186/s12882-017-0679-2 doi: 10.1186/s12882-017-0679-2. [DOI] [PMC free article] [PubMed]

RESOURCES