Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:697–710. doi: 10.1007/978-1-0716-0978-1_42

Analysis Methods for Hyperpolarized Carbon (13C) MRI of the Kidney.

Galen D Reed, Natalie J Korn, Christoffer Laustsen, Cornelius von Morze
PMCID: PMC9703216  PMID: 33476032

Abstract

Hyperpolarized 13C MR is a novel medical imaging modality with substantially different signal dynamics as compared to conventional 1H MR, thus requiring new methods for processing the data in order to access and quantify the embedded metabolic and functional information. Here we describe step-by-step analysis protocols for functional renal hyperpolarized 13C imaging. These methods are useful for investigating renal blood flow and function as well as metabolic status of rodents in vivo under various experimental physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.


Full text of this article can be found in Bookshelf.

References

  1. GE MR Collaboration Community. https://collaborate.mr.gehealthcare.com
  2. Reed GD accompanying source code examples for book chapter on renal MRI analysis. https://github.com/galenreed/renalC13MRIBook
  3. Golman K, Ardenkjaer-Larsen JH, Petersson JS et al (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci 100:10435–10439 doi: 10.1073/pnas.1733836100. [DOI] [PMC free article] [PubMed]
  4. Reed GD, von Morze C, Bok R et al (2014) High resolution 13C MRI with hyperpolarized urea: in vivo T2 mapping and 15N labeling effects. IEEE Trans Med Imaging 33:362–371 doi: 10.1109/TMI.2013.2285120. [DOI] [PMC free article] [PubMed]
  5. Svensson J, Månsson S, Johansson E et al (2003) Hyperpolarized 13C MR angiography using trueFISP. Magn Reson Med 50:256–262 doi: 10.1002/mrm.10530. [DOI] [PubMed]
  6. Grant AK, Vinogradov E, Wang X et al (2011) Perfusion imaging with a freely diffusible hyperpolarized contrast agent. Magn Reson Med 66:746–755 doi: 10.1002/mrm.22860. [DOI] [PMC free article] [PubMed]
  7. von Morze C, Bok RA, Reed GD et al (2014) Simultaneous multiagent hyperpolarized 13C perfusion imaging. Magn Reson Med 72:1599–1609 doi: 10.1002/mrm.25071. [DOI] [PMC free article] [PubMed]
  8. Østergaard L, Weisskoff RM, Chesler DA et al (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725 doi: 10.1002/mrm.1910360510. [DOI] [PubMed]
  9. Johansson E, Månsson S, Wirestam R et al (2004) Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med 51:464–472 doi: 10.1002/mrm.20013. [DOI] [PubMed]
  10. von Morze C, Larson PEZ, Hu S et al (2011) Imaging of blood flow using hyperpolarized [13C]Urea in preclinical cancer models. J Magn Reson Imaging 33:692–697 doi: 10.1002/jmri.22484. [DOI] [PMC free article] [PubMed]
  11. Yen Y-F, Le Roux P, Mayer D et al (2010) T2 relaxation times of 13C metabolites in a rat hepatocellular carcinoma model measured in vivo using 13C-MRS of hyperpolarized [1- 13C]pyruvate. NMR Biomed 85:414–423 doi: 10.1002/nbm.1481. [DOI] [PMC free article] [PubMed]
  12. Reed GD, von Morze C, Verkman AS et al (2016) Imaging renal urea handling in rats at millimeter resolution using hyperpolarized magnetic resonance relaxometry. Tomography 2:125–137 doi: 10.18383/j.tom.2016.00127. [DOI] [PMC free article] [PubMed]
  13. Laustsen C, Stokholm Nørlinger T, Christoffer Hansen D et al (2016) Hyperpolarized 13C urea relaxation mechanism reveals renal changes in diabetic nephropathy. Magn Reson Med 75:515–518 doi: 10.1002/mrm.26036. [DOI] [PMC free article] [PubMed]
  14. Mariager CØ, Nielsen PM, Qi H et al (2017) Hyperpolarized 13C, 15N2-urea T2 relaxation changes in acute kidney injury. Magn Reson Med 80:696–702 doi: 10.1002/mrm.27050. [DOI] [PubMed]
  15. Whittall KP, MacKay AL (1989) Quantitative interpretation of NMR relaxation data. J Magn Reson 84:134–152
  16. Whittall KP, MacKay AL, Graeb DA et al (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37:34–43 doi: 10.1002/mrm.1910370107. [DOI] [PubMed]
  17. Østergaard Mariager C, Nielsen PM, Qi H et al (2017) Can hyperpolarized 13C-urea be used to assess glomerular filtration rate? A retrospective study. Tomography 3:146–152 doi: 10.18383/j.tom.2017.00010. [DOI] [PMC free article] [PubMed]
  18. Baumann D, Rudin M (2000) Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 18:587–595 doi: 10.1016/s0730-725x(00)00134-x. [DOI] [PubMed]
  19. Krepkin K, Won E, Ramaswamy K et al (2014) Dynamic contrast-enhanced MR renography for renal function evaluation in ureteropelvic junction obstruction: feasibility study. Am J Roentgenol 202:778–783 doi: 10.2214/AJR.13.11321. [DOI] [PubMed]
  20. Witney TH, Kettunen MI, Brindle KM (2011) Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J Biol Chem 286:24572–24580 doi: 10.1074/jbc.M111.237727. [DOI] [PMC free article] [PubMed]
  21. Brender JR, Kishimoto S, Merkle H et al (2019) Dynamic imaging of glucose and lactate metabolism by 13C-MRS without hyperpolarization. Sci Rep 9:3410 doi: 10.1038/s41598-019-38981-1. [DOI] [PMC free article] [PubMed]
  22. Larson PEZ, Chen H, Gordon JW et al (2018) Investigation of analysis methods for hyperpolarized 13C-pyruvate metabolic MRI in prostate cancer patients. NMR Biomed 31:e3997 doi: 10.1002/nbm.3997. [DOI] [PMC free article] [PubMed]
  23. Hill DK, Orton MR, Mariotti E et al (2013) Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data. PLoS One 8:e71996 doi: 10.1371/journal.pone.0071996. [DOI] [PMC free article] [PubMed]

RESOURCES