Abstract
Here we present an analysis protocol for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data of the kidneys. It covers comprehensive steps to facilitate signal to contrast agent concentration mapping via T1 mapping and the calculation of renal perfusion and filtration parametric maps using model-free approaches, model free analysis using deconvolution, the Toft's model and a Bayesian approach.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Full text of this article can be found in Bookshelf.
References
- Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26(8):1004–1027. https://doi.org/10.1002/nbm.2940 doi: 10.1002/nbm.2940. [DOI] [PubMed]
- Sourbron S, Dujardin M, Makkat S, Luypaert R (2007) Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52(2):429–447. https://doi.org/10.1088/0031-9155/52/2/009 doi: 10.1088/0031-9155/52/2/009. [DOI] [PubMed]
- Duan C, Kallehauge JF, Bretthorst GL, Tanderup K, Ackerman JJ, Garbow JR (2017) Are complex DCE-MRI models supported by clinical data? Magn Reson Med 77(3):1329–1339. https://doi.org/10.1002/mrm.26189 doi: 10.1002/mrm.26189. [DOI] [PMC free article] [PubMed]
- Beeman SC, Osei-Owusu P, Duan C, Engelbach J, Bretthorst GL, Ackerman JJH, Blumer KJ, Garbow JR (2015) Renal DCE-MRI model selection using Bayesian Probability Theory. Tomography 1(1):61–68. https://doi.org/10.18383/j.tom.2015.00133 doi: 10.18383/j.tom.2015.00133. [DOI] [PMC free article] [PubMed]
- Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Investig Radiol 43(1):40–48. https://doi.org/10.1097/RLI.0b013e31815597c5 doi: 10.1097/RLI.0b013e31815597c5. [DOI] [PubMed]
- Baumann D, Rudin M (2000) Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 18(5):587–595 doi: 10.1016/s0730-725x(00)00134-x. [DOI] [PubMed]
- Eikefjord E, Andersen E, Hodneland E, Hanson EA, Sourbron S, Svarstad E, Lundervold A, Rørvik JT (2017) Dynamic contrast-enhanced MRI measurement of renal function in healthy participants. Acta Radiol 58(6):748–757. https://doi.org/10.1177/0284185116666417 doi: 10.1177/0284185116666417. [DOI] [PubMed]
- Ebrahimi B, Textor SC, Lerman LO (2014) Renal relevant radiology: renal functional magnetic resonance imaging. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.02900313 doi: 10.2215/CJN.02900313. [DOI] [PMC free article] [PubMed]
- Sourbron SPMH, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43(1):40–48 doi: 10.1097/RLI.0b013e31815597c5. [DOI] [PubMed]
- Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24(5):1117–1123. https://doi.org/10.1002/jmri.20699 doi: 10.1002/jmri.20699. [DOI] [PubMed]
- Zollner FG, Daab M, Sourbron SP, Schad LR, Schoenberg SO, Weisser G (2016) An open source software for analysis of dynamic contrast enhanced magnetic resonance images: UMMPerfusion revisited. BMC Med Imaging 16:7. https://doi.org/10.1186/s12880-016-0109-0 doi: 10.1186/s12880-016-0109-0. [DOI] [PMC free article] [PubMed]
- Zollner FG, Weisser G, Reich M, Kaiser S, Schoenberg SO, Sourbron SP, Schad LR (2013) UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine. J Digit Imaging 26(2):344–352. https://doi.org/10.1007/s10278-012-9510-6 doi: 10.1007/s10278-012-9510-6. [DOI] [PMC free article] [PubMed]
- Barnes SR, Ng TS, Santa-Maria N, Montagne A, Zlokovic BV, Jacobs RE (2015) ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med Imaging 15:19. https://doi.org/10.1186/s12880-015-0062-3 doi: 10.1186/s12880-015-0062-3. [DOI] [PMC free article] [PubMed]
- Ortuno JE, Ledesma-Carbayo MJ, Simoes RV, Candiota AP, Arus C, Santos A (2013) DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics 14:316. https://doi.org/10.1186/1471-2105-14-316 doi: 10.1186/1471-2105-14-316. [DOI] [PMC free article] [PubMed]
- Debus C, Floca R, Ingrisch M, Kompan I, Maier-Hein K, Abdollahi A, Nolden M (2019) MITK-ModelFit: a generic open-source framework for model fits and their exploration in medical imaging - design, implementation and application on the example of DCE-MRI. BMC Bioinformatics 20(1):31. https://doi.org/10.1186/s12859-018-2588-1 doi: 10.1186/s12859-018-2588-1. [DOI] [PMC free article] [PubMed]
- Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK, Schad LR (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8(1). https://doi.org/10.1371/journal.pone.0053849 doi: 10.1371/journal.pone.0053849. [DOI] [PMC free article] [PubMed]
- Sadick M, Schock D, Kraenzlin B, Gretz N, Schoenberg SO, Michaely HJ (2009) Morphologic and dynamic renal imaging with assessment of glomerular filtration rate in a pcy-mouse model using a clinical 3.0 Tesla scanner. Investig Radiol 44(8):469–475. https://doi.org/10.1097/RLI.0b013e3181a8afa1 doi: 10.1097/RLI.0b013e3181a8afa1. [DOI] [PubMed]
- Oostendorp M, de Vries EE, Slenter JM, Peutz-Kootstra CJ, Snoeijs MG, Post MJ, van Heurn LW, Backes WH (2011) MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury. NMR Biomed 24(2):194–200. https://doi.org/10.1002/nbm.1572 doi: 10.1002/nbm.1572. [DOI] [PubMed]
