Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;1311:89–101. doi: 10.1007/978-3-030-65768-0_6

The Heterogeneity of Breast Cancer Metabolism.

Jessica Tan, Anne Le
PMCID: PMC9703239  PMID: 34014536

Abstract

Despite advances in screening, therapy, and surveillance that have improved patient survival rates, breast cancer is still the most commonly diagnosed cancer and the second leading cause of cancer mortality among women [1]. Breast cancer is a highly heterogeneous disease rooted in a genetic basis, influenced by extrinsic stimuli, and reflected in clinical behavior. The diversity of breast cancer hormone receptor status and the expression of surface molecules have guided therapy decisions for decades; however, subtype-specific treatment often yields diverse responses due to varying tumor evolution and malignant potential. Although the mechanisms behind breast cancer heterogeneity is not well understood, available evidence suggests that studying breast cancer metabolism has the potential to provide valuable insights into the causes of these variations as well as viable targets for intervention.


Full text of this article can be found in Bookshelf.

References

  1. Gutierrez, T., et al. (2013). IL-21 promotes the production of anti-DNA IgG but is dispensable for kidney damage in lyn(-/-) mice. European Journal of Immunology, 43(2), 382–393. doi: 10.1002/eji.201142095. [DOI] [PMC free article] [PubMed]
  2. Hu, X., et al. (2009). Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Molecular Cancer Research, 7(4), 511–522. doi: 10.1158/1541-7786.MCR-08-0107. [DOI] [PubMed]
  3. Li, T., Copeland, C., & Le, A. (2021). Glutamine metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_2. doi: 10.1007/978-3-030-65768-0_2. [DOI] [PMC free article] [PubMed]
  4. Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336. doi: 10.1073/pnas.1611406113. [DOI] [PMC free article] [PubMed]
  5. Martinez-Outschoorn, U. E., et al. (2012). BRCA1 mutations drive oxidative stress and glycolysis in the tumor microenvironment: Implications for breast cancer prevention with antioxidant therapies. Cell Cycle, 11(23), 4402–4413. doi: 10.4161/cc.22776. [DOI] [PMC free article] [PubMed]
  6. Sazeides, C., & Le, A. (2021). Metabolic relationship between cancer-associated fibroblasts and cancer cells. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_14. doi: 10.1007/978-3-030-65768-0_14. [DOI] [PMC free article] [PubMed]
  7. Jung, J. G., & Le, A. (2021). Targeting metabolic cross talk between cancer cells and cancer-associated fibroblasts. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_15. doi: 10.1007/978-3-030-65768-0_15. [DOI] [PMC free article] [PubMed]
  8. Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519–530. doi: 10.1085/jgp.8.6.519. [DOI] [PMC free article] [PubMed]
  9. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. doi: 10.1126/science.1160809. [DOI] [PMC free article] [PubMed]
  10. Bose, S., Zhang, C., & Le, A. (2021). Glucose metabolism in cancer: The Warburg effect and beyond. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_1. doi: 10.1007/978-3-030-65768-0_1. [DOI] [PMC free article] [PubMed]
  11. Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042. doi: 10.1073/pnas.0914433107. [DOI] [PMC free article] [PubMed]
  12. Rajeshkumar, N. V., et al. (2015). Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Research, 75(16), 3355–3364. doi: 10.1158/0008-5472.CAN-15-0108. [DOI] [PMC free article] [PubMed]
  13. Dutta, P., et al. (2013). Evaluation of LDH-A and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors. Cancer Research, 73(14), 4190–4195. doi: 10.1158/0008-5472.CAN-13-0465. [DOI] [PMC free article] [PubMed]
  14. Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4(11), 891–899. doi: 10.1038/nrc1478. [DOI] [PubMed]
  15. Waki, A., et al. (1998). The importance of glucose transport activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro. Nuclear Medicine and Biology, 25(7), 593–597. doi: 10.1016/s0969-8051(98)00038-9. [DOI] [PubMed]
  16. Choi, J., Jung, W. H., & Koo, J. S. (2013). Metabolism-related proteins are differentially expressed according to the molecular subtype of invasive breast cancer defined by surrogate immunohistochemistry. Pathobiology, 80(1), 41–52. doi: 10.1159/000339513. [DOI] [PubMed]
  17. Grover-McKay, M., et al. (1998). Role for glucose transporter 1 protein in human breast cancer. Pathology Oncology Research, 4(2), 115–120. doi: 10.1007/BF02904704. [DOI] [PubMed]
  18. Lloyd, S. M., Arnold, J., & Sreekumar, A. (2015). Metabolomic profiling of hormone-dependent cancers: A bird’s eye view. Trends in Endocrinology and Metabolism, 26(9), 477–485. doi: 10.1016/j.tem.2015.07.001. [DOI] [PMC free article] [PubMed]
  19. Katz-Brull, R., et al. (2002). Metabolic markers of breast cancer: Enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Research, 62(7), 1966–1970. [PubMed]
  20. Eliyahu, G., Kreizman, T., & Degani, H. (2007). Phosphocholine as a biomarker of breast cancer: Molecular and biochemical studies. International Journal of Cancer, 120(8), 1721–1730. doi: 10.1002/ijc.22293. [DOI] [PubMed]
  21. Aboagye, E. O., & Bhujwalla, Z. M. (1999). Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Research, 59(1), 80–84. [PubMed]
  22. Park, J. K., et al. (2021). The heterogeneity of lipid metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_3. doi: 10.1007/978-3-030-65768-0_3. [DOI] [PMC free article] [PubMed]
  23. Hilvo, M., et al. (2011). Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Research, 71(9), 3236–3245. doi: 10.1158/0008-5472.CAN-10-3894. [DOI] [PubMed]
  24. Ramirez de Molina, A., et al. (2002). Increased choline kinase activity in human breast carcinomas: Clinical evidence for a potential novel antitumor strategy. Oncogene, 21(27), 4317–4322. doi: 10.1038/sj.onc.1205556. [DOI] [PubMed]
  25. Rodriguez-Gonzalez, A., et al. (2004). Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action. Oncogene, 23(50), 8247–8259. doi: 10.1038/sj.onc.1208045. [DOI] [PubMed]
  26. Fuhrman, B. J., et al. (2012). Estrogen metabolism and risk of breast cancer in postmenopausal women. Journal of the National Cancer Institute, 104(4), 326–339. doi: 10.1093/jnci/djr531. [DOI] [PMC free article] [PubMed]
  27. Cicatiello, L., et al. (2010). Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. The American Journal of Pathology, 176(5), 2113–2130. doi: 10.2353/ajpath.2010.090837. [DOI] [PMC free article] [PubMed]
  28. Acconcia, F., & Kumar, R. (2006). Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Letters, 238(1), 1–14. doi: 10.1016/j.canlet.2005.06.018. [DOI] [PubMed]
  29. Jia, M., et al. (2016). Estrogen receptor alpha promotes breast cancer by reprogramming choline metabolism. Cancer Research, 76(19), 5634–5646. doi: 10.1158/0008-5472.CAN-15-2910. [DOI] [PubMed]
  30. Devanesan, P., et al. (2001). Catechol estrogen conjugates and DNA adducts in the kidney of male Syrian golden hamsters treated with 4-hydroxyestradiol: Potential biomarkers for estrogen-initiated cancer. Carcinogenesis, 22(3), 489–497. doi: 10.1093/carcin/22.3.489. [DOI] [PubMed]
  31. Cavalieri, E., et al. (2000). Estrogens as endogenous genotoxic agents—DNA adducts and mutations. Journal of the National Cancer Institute. Monographs, 27, 75–93. doi: 10.1093/oxfordjournals.jncimonographs.a024247. [DOI] [PubMed]
  32. Bradlow, H. L., et al. (1996). 2-Hydroxyestrone: The ‘good’ estrogen. The Journal of Endocrinology, 150(Suppl), S259–S265. [PubMed]
  33. Possemato, R., et al. (2011). Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 476(7360), 346–350. doi: 10.1038/nature10350. [DOI] [PMC free article] [PubMed]
  34. Fan, J., et al. (2015). Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chemical Biology, 10(2), 510–516. doi: 10.1021/cb500683c. [DOI] [PMC free article] [PubMed]
  35. Rakheja, D., et al. (2013). The emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasms. Frontiers in Oncology, 3, 169. doi: 10.3389/fonc.2013.00169. [DOI] [PMC free article] [PubMed]
  36. Terunuma, A., et al. (2014). MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. The Journal of Clinical Investigation, 124(1), 398–412. doi: 10.1172/JCI71180. [DOI] [PMC free article] [PubMed]
  37. Yue, W., et al. (2003). Genotoxic metabolites of estradiol in breast: Potential mechanism of estradiol induced carcinogenesis. The Journal of Steroid Biochemistry and Molecular Biology, 86(3–5), 477–486. doi: 10.1016/s0960-0760(03)00377-7. [DOI] [PubMed]
  38. Quinones, A., & Le, A. (2021). The multifaceted glioblastoma: From genomic alterations to metabolic adaptations. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_4. doi: 10.1007/978-3-030-65768-0_4. [DOI] [PMC free article] [PubMed]
  39. Mullarky, E., et al. (2016). Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proceedings of the National Academy of Sciences of the United States of America, 113(7), 1778–1783. doi: 10.1073/pnas.1521548113. [DOI] [PMC free article] [PubMed]
  40. Jerby, L., et al. (2012). Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Research, 72(22), 5712–5720. doi: 10.1158/0008-5472.CAN-12-2215. [DOI] [PubMed]
  41. Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research, 15(21), 6479–6483. doi: 10.1158/1078-0432.CCR-09-0889. [DOI] [PMC free article] [PubMed]
  42. Le, A., & Dang, C. V. (2013). Studying Myc’s role in metabolism regulation. Methods in Molecular Biology, 1012, 213–219. doi: 10.1007/978-1-62703-429-6_14. [DOI] [PMC free article] [PubMed]
  43. Shen, L., et al. (2015). Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proceedings of the National Academy of Sciences of the United States of America, 112(17), 5425–5430. doi: 10.1073/pnas.1501555112. [DOI] [PMC free article] [PubMed]
  44. Hoang, G., Udupa, S., & Le, A. (2019). Application of metabolomics technologies toward cancer prognosis and therapy. International Review of Cell and Molecular Biology, 347, 191–223. doi: 10.1016/bs.ircmb.2019.07.003. [DOI] [PubMed]
  45. Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine (Berlin), 89(3), 205–212. doi: 10.1007/s00109-011-0730-x. [DOI] [PMC free article] [PubMed]
  46. Hirschey, M. D., et al. (2015). Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 35(Suppl), S129–S150. doi: 10.1016/j.semcancer.2015.10.002. [DOI] [PMC free article] [PubMed]
  47. Jove, M., et al. (2017). A plasma metabolomic signature discloses human breast cancer. Oncotarget, 8(12), 19522–19533. doi: 10.18632/oncotarget.14521. [DOI] [PMC free article] [PubMed]
  48. Huang, S., et al. (2016). Novel personalized pathway-based metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Medicine, 8(1), 34. doi: 10.1186/s13073-016-0289-9. [DOI] [PMC free article] [PubMed]
  49. Giskeodegard, G. F., et al. (2010). Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. Journal of Proteome Research, 9(2), 972–979. doi: 10.1021/pr9008783. [DOI] [PubMed]
  50. Mountford, C. E., et al. (2001). Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. The British Journal of Surgery, 88(9), 1234–1240. doi: 10.1046/j.0007-1323.2001.01864.x. [DOI] [PubMed]
  51. Asiago, V. M., et al. (2010). Early detection of recurrent breast cancer using metabolite profiling. Cancer Research, 70(21), 8309–8318. doi: 10.1158/0008-5472.CAN-10-1319. [DOI] [PMC free article] [PubMed]
  52. Oakman, C., et al. (2011). Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Annals of Oncology, 22(6), 1295–1301. doi: 10.1093/annonc/mdq606. [DOI] [PubMed]
  53. Jobard, E., et al. (2014). A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Letters, 343(1), 33–41. doi: 10.1016/j.canlet.2013.09.011. [DOI] [PubMed]
  54. Antonio, M. J., Zhang, C., & Le, A. (2021). Different tumor microenvironments lead to different metabolic phenotypes. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_10. doi: 10.1007/978-3-030-65768-0_10. [DOI] [PMC free article] [PubMed]
  55. Simoes, R. V., et al. (2015). Metabolic plasticity of metastatic breast cancer cells: Adaptation to changes in the microenvironment. Neoplasia, 17(8), 671–684. doi: 10.1016/j.neo.2015.08.005. [DOI] [PMC free article] [PubMed]
  56. Wei, S., et al. (2013). Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Molecular Oncology, 7(3), 297–307. doi: 10.1016/j.molonc.2012.10.003. [DOI] [PMC free article] [PubMed]
  57. Nabi, K., & Le, A. (2021). The intratumoral heterogeneity of cancer metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_11. doi: 10.1007/978-3-030-65768-0_11. [DOI] [PMC free article] [PubMed]
  58. Xu, H. N., et al. (2013). Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging. Springerplus, 2(1), 73. doi: 10.1186/2193-1801-2-73. [DOI] [PMC free article] [PubMed]
  59. Son, S. H., et al. (2014). Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer, 14, 585. doi: 10.1186/1471-2407-14-585. [DOI] [PMC free article] [PubMed]
  60. Park, V. Y., et al. (2016). Intratumoral agreement of high-resolution magic angle spinning magnetic resonance spectroscopic profiles in the metabolic characterization of breast cancer. Medicine (Baltimore), 95(15), e3398. doi: 10.1097/MD.0000000000003398. [DOI] [PMC free article] [PubMed]
  61. Gallagher, F. A., et al. (2020). Imaging breast cancer using hyperpolarized carbon-13 MRI. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 2092–2098. doi: 10.1073/pnas.1913841117. [DOI] [PMC free article] [PubMed]
  62. Marusyk, A., Janiszewska, M., & Polyak, K. (2020). Intratumor heterogeneity: The Rosetta Stone of therapy resistance. Cancer Cell, 37(4), 471–484. doi: 10.1016/j.ccell.2020.03.007. [DOI] [PMC free article] [PubMed]
  63. Schafer, Z. T., et al. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 461(7260), 109–113. doi: 10.1038/nature08268. [DOI] [PMC free article] [PubMed]
  64. Lee, Y. J., et al. (1998). Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. The Journal of Biological Chemistry, 273(9), 5294–5299. doi: 10.1074/jbc.273.9.5294. [DOI] [PubMed]
  65. Ahn, C. S., & Metallo, C. M. (2015). Mitochondria as biosynthetic factories for cancer proliferation. Cancer & Metabolism, 3(1), 1. doi: 10.1186/s40170-015-0128-2. [DOI] [PMC free article] [PubMed]
  66. LeBleu, V. S., et al. (2014). PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nature Cell Biology, 16(10), 992–1003. 1–15. doi: 10.1038/ncb3039. [DOI] [PMC free article] [PubMed]
  67. Robertson-Tessi, M., et al. (2015). Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Research, 75(8), 1567–1579. doi: 10.1158/0008-5472.CAN-14-1428. [DOI] [PMC free article] [PubMed]
  68. Kerbel, R. S. (2009). Issues regarding improving the impact of antiangiogenic drugs for the treatment of breast cancer. Breast, 18(Suppl 3), S41–S47. doi: 10.1016/S0960-9776(09)70271-1. [DOI] [PMC free article] [PubMed]
  69. Ma, S., et al. (2018). The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res, 7, 326. doi: 10.12688/f1000research.11771.1. [DOI] [PMC free article] [PubMed]
  70. Conley, S. J., et al. (2012). Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2784–2789. doi: 10.1073/pnas.1018866109. [DOI] [PMC free article] [PubMed]

RESOURCES