Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:257–266. doi: 10.1007/978-1-0716-0978-1_15

Sodium (23Na) MRI of the Kidney: Basic Concept.

James T Grist, Esben Søvsø Hansen, Frank G Zöllner, Christoffer Laustsen
PMCID: PMC9703250  PMID: 33476005

Abstract

The handling of sodium by the renal system is a key indicator of renal function. Alterations in the corticomedullary distribution of sodium are considered important indicators of pathology in renal diseases. The derangement of sodium handling can be noninvasively imaged using sodium magnetic resonance imaging (23Na MRI), with data analysis allowing for the assessment of the corticomedullary sodium gradient. Here we introduce sodium imaging, describe the existing methods, and give an overview of preclinical sodium imaging applications to illustrate the utility and applicability of this technique for measuring renal sodium handling.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Full text of this article can be found in Bookshelf.

References

  1. Christensen JD, Barrère BJ, Boada FE et al (1996) Quantitative tissue sodium concentration mapping of normal rat brain. Magn Reson Med 36:83–89 doi: 10.1002/mrm.1910360115. [DOI] [PubMed]
  2. Zöllner FG, Konstandin S, Lommen J et al (2016) Quantitative sodium MRI of kidney. NMR Biomed 29:197–205 doi: 10.1002/nbm.3274. [DOI] [PubMed]
  3. Maril N, Margalit R, Mispelter J, Degani H (2004) Functional sodium magnetic resonance imaging of the intact rat kidney. Kidney Int 65:927–935 doi: 10.1111/j.1523-1755.2004.00475.x. [DOI] [PubMed]
  4. Maril N, Margalit R, Mispelter J, Degani H (2005) Sodium magnetic resonance imaging of diuresis: spatial and kinetic response. Magn Reson Med 53:545–552 doi: 10.1002/mrm.20359. [DOI] [PubMed]
  5. Maril N, Margalit R, Rosen S et al (2006) Detection of evolving acute tubular necrosis with renal 23Na MRI: studies in rats. Kidney Int 69:765–768 doi: 10.1038/sj.ki.5000152. [DOI] [PubMed]
  6. Zöllner FG, Kalayciyan R, Chacón-Caldera J et al (2014) Pre-clinical functional magnetic resonance imaging part I: the kidney. Z Med Phys 24:286–306 doi: 10.1016/j.zemedi.2014.05.002. [DOI] [PubMed]
  7. Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54:1305–1310 doi: 10.1002/mrm.20696. [DOI] [PubMed]
  8. Benkhedah N, Bachert P, Semmler W, Nagel AM (2012) Three-dimensional biexponential weighted (23) Na imaging of the human brain with higher SNR and shorter acquisition time. Magn Reson Med 765:754–765 doi: 10.1002/mrm.24516. [DOI] [PubMed]
  9. Riemer F, Solanky BS, Wheeler-Kingshott CAM, Golay X (2018) Bi-exponential 23 Na T 2 * component analysis in the human brain. NMR Biomed 31(5):e3899 doi: 10.1002/nbm.3899. [DOI] [PubMed]
  10. Tsang A, Stobbe RW, Beaulieu C (2013) Evaluation of B0-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7 T. J Magn Reson 230:134–144 doi: 10.1016/j.jmr.2013.01.017. [DOI] [PubMed]
  11. Hancu I, Boada FE, Shen GX (1999) Three-dimensional triple-quantum-filtered 23Na imaging of in vivo human brain. Magn Reson Med 42:1146–1154 doi: 10.1002/(sici)1522-2594(199912)42:6<1146::aid-mrm20>3.0.co;2-s. [DOI] [PubMed]
  12. Ackerman JJH, Grove TH, Wong GG et al (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283:2–5 doi: 10.1038/283167a0. [DOI] [PubMed]
  13. Mueller OM, Hayes CE, Eash M et al (2006) An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson 63:622–628
  14. Kalayciyan R, Malzacher M, Neudecker S, Gretz N SL (2013) 23Na/1H in-vivo renal MRI of rodent kidney at 3T by using a double-tuned transceiver resonator system. In: International Society for Magnetic Resonance in Medicine. Salt-Lake City, p 4355
  15. Hancu I, Boada FE, Shen GX (1999) Three-dimensional triple-quantum – filtered 23 Na imaging of in vivo human brain. Magn Reson Med 42(6):1146–1154 doi: 10.1002/(sici)1522-2594(199912)42:6<1146::aid-mrm20>3.0.co;2-s. [DOI] [PubMed]
  16. Qian Y, Panigrahy A, Laymon CM et al (2014) Short-T2 imaging for quantifying concentration of sodium ((23) Na) of bi-exponential T2 relaxation. Magn Reson Med 00:00–00 doi: 10.1002/mrm.25393. [DOI] [PMC free article] [PubMed]
  17. Konstandin S, Nagel AM (2014) Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. MAGMA 27:5–19 doi: 10.1007/s10334-013-0394-3. [DOI] [PubMed]
  18. Boada FE, Gillen JS, Shen GX et al (1997) Fast three dimensional sodium imaging. Magn Reson Med 37:706–715 doi: 10.1002/mrm.1910370512. [DOI] [PubMed]
  19. Angelica MD, Fong Y (2008) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 141:520–529 doi: 10.1002/mrm.22381. [DOI] [PMC free article] [PubMed]
  20. Nagel AM, Laun FB, Weber M-A et al (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573 doi: 10.1002/mrm.22157. [DOI] [PubMed]
  21. Riemer F, Solanky BS, Stehning C et al (2014) Sodium (23Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory. MAGMA 27:35–46 doi: 10.1007/s10334-013-0395-2. [DOI] [PMC free article] [PubMed]
  22. Gurney PT, Hargreaves BA, Nishimura DG (2006) Design and analysis of a practical 3D cones trajectory. Magn Reson Med 55:575–582 doi: 10.1002/mrm.20796. [DOI] [PubMed]
  23. Grist JT, Riemer F, McLean MA et al (2018) Imaging intralesional heterogeneity of sodium concentration in multiple sclerosis: initial evidence from 23Na-MRI. J Neurol Sci 387:111–114 doi: 10.1016/j.jns.2018.01.027. [DOI] [PMC free article] [PubMed]
  24. Milani B, Ansaloni A, Sousa-Guimaraes S et al (2016) Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol Dial Transplant 32(12):2097–2105 doi: 10.1093/ndt/gfw362. [DOI] [PubMed]
  25. Maril N, Rosen Y, Reynolds GH et al (2006) Sodium MRI of the human kidney at 3 tesla. Magn Reson Med 56:1229–1234 doi: 10.1002/mrm.21031. [DOI] [PubMed]
  26. Neuberger T, Gulani V, Webb A (2007) Sodium renal imaging in mice at high magnetic fields. Magn Reson Med 58:1067–1071 doi: 10.1002/mrm.21402. [DOI] [PubMed]
  27. Haneder S, Juras V, Michaely HJ et al (2014) In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results. Eur Radiol 24:494–501 doi: 10.1007/s00330-013-3032-6. [DOI] [PubMed]
  28. Qi H, Nørlinger TS, Nielsen PM et al (2016) Early diabetic kidney maintains the corticomedullary urea and sodium gradient. Physiol Rep 4:1–6 doi: 10.14814/phy2.12714. [DOI] [PMC free article] [PubMed]
  29. Giovannetti G, Pingitore A, Positano V et al (2014) Improving sodium magnetic resonance in humans by design of a dedicated 23Na surface coil. Measurement 50:285–292
  30. Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40:123–137 doi: 10.1111/1440-1681.12034. [DOI] [PMC free article] [PubMed]
  31. Basile DP, Anderson MD, Sutton TA (2012) Pathophysiology of acute kidney injury. Compr Physiol 2:1303–1353 doi: 10.1002/cphy.c110041. [DOI] [PMC free article] [PubMed]
  32. Nielsen PM, Szocska Hansen ES, Nørlinger TS et al (2016) Renal ischemia and reperfusion assessment with three-dimensional hyperpolarized13C,15N2-urea. Magn Reson Med 76:1524–1530 doi: 10.1002/mrm.26377. [DOI] [PubMed]
  33. Perazella MA (2015) Gadolinium-contrast toxicity in patients with kidney disease: nephrotoxicity and nephrogenic systemic fibrosis. Curr Drug Saf 3:67–75 doi: 10.2174/157488608783333989. [DOI] [PubMed]
  34. McFarland JG (1999) Perioperative blood transfusions: indications and options. Chest 115:113S–121S doi: 10.1378/chest.115.suppl_2.113s. [DOI] [PubMed]
  35. Thomas R, Kanso A, Sedor JR (2008) Chronic kidney disease and its complications. Prim Care 35:329–344 doi: 10.1016/j.pop.2008.01.008. [DOI] [PMC free article] [PubMed]
  36. Bertelsen LB, Nielsen PM, Qi H et al (2017) Diabetes induced renal urea transport alterations assessed with 3D hyperpolarized13C,15N-urea. Magn Reson Med 77:1650–1655 doi: 10.1002/mrm.26256. [DOI] [PubMed]
  37. Cox EF, Buchanan CE, Bradley CR et al (2017) Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease. Front Physiol 8:1–15 doi: 10.3389/fphys.2017.00696. [DOI] [PMC free article] [PubMed]
  38. Piskunowicz M, Hofmann L, Zuercher E et al (2015) A new technique with high reproducibility to estimate renal oxygenation using BOLD-MRI in chronic kidney disease. Magn Reson Imaging 33:253–261 doi: 10.1016/j.mri.2014.12.002. [DOI] [PubMed]
  39. Pruijm M, Milani B, Burnier M (2017) Blood oxygenation level-dependent mri to assess renal oxygenation in renal diseases: progresses and challenges. Front Physiol 7:1–7 doi: 10.3389/fphys.2016.00667. [DOI] [PMC free article] [PubMed]
  40. Nielsen PM, Eldirdiri A, Bertelsen LB et al (2017) Fumarase activity: an in vivo and in vitro biomarker for acute kidney injury. Sci Rep 7:40812 doi: 10.1038/srep40812. [DOI] [PMC free article] [PubMed]
  41. Zimmer F, Zöllner FG, Hoeger S et al (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849 doi: 10.1371/journal.pone.0053849. [DOI] [PMC free article] [PubMed]
  42. Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370 doi: 10.1155/2016/2027370. [DOI] [PMC free article] [PubMed]

RESOURCES