Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;1311:249–263. doi: 10.1007/978-3-030-65768-0_18

Metabolic Intersection of Cancer and Cardiovascular Diseases: Opportunities for Cancer Therapy.

Giang Hoang, Kiet Nguyen, Anne Le
PMCID: PMC9703259  PMID: 34014548

Abstract

According to data from the World Health Organization, cardiovascular diseases and cancer are the two leading causes of mortality in the world [1]. Despite the immense effort to study these diseases and the constant innovation in treatment modalities, the number of deaths associated with cardiovascular diseases and cancer is predicted to increase in the coming decades [1]. From 2008 to 2030, due to population growth and population aging in many parts of the world, the number of deaths caused by cancer globally is projected to increase by 45%, corresponding to an annual increase of around four million people [1]. For cardiovascular diseases, this number is six million people [1]. In the United States, treatments for these two diseases are among the most costly and result in a disproportionate impact on low- and middleincome people. As the fight against these fatal diseases continues, it is crucial that we continue our investigation and broaden our understanding of cancer and cardiovascular diseases to innovate our prognostic and treatment approaches. Even though cardiovascular diseases and cancer are usually studied independently [2-12], there are some striking overlaps between their metabolic behaviors and therapeutic targets, suggesting the potential application of cardiovascular disease treatments for cancer therapy. More specifically, both cancer and many cardiovascular diseases have an upregulated glutaminolysis pathway, resulting in low glutamine and high glutamate circulating levels. Similar treatment modalities, such as glutaminase (GLS) inhibition and glutamine supplementation, have been identified to target glutamine metabolism in both cancer and some cardiovascular diseases. Studies have also found similarities in lipid metabolism, specifically fatty acid oxidation (FAO) and synthesis. Pharmacological inhibition of FAO and fatty acid synthesis have proven effective against many cancer types as well as specific cardiovascular conditions. Many of these treatments have been tested in clinical trials, and some have been medically prescribed to patients to treat certain diseases, such as angina pectoris [13, 14]. Other metabolic pathways, such as tryptophan catabolism and pyruvate metabolism, were also dysregulated in both diseases, making them promising treatment targets. Understanding the overlapping traits exhibited by both cancer metabolism and cardiovascular disease metabolism can give us a more holistic view of how important metabolic dysregulation is in the progression of diseases. Using established links between these illnesses, researchers can take advantage of the discoveries from one field and potentially apply them to the other. In this chapter, we highlight some promising therapeutic discoveries that can support our fight against cancer, based on common metabolic traits displayed in both cancer and cardiovascular diseases.


Full text of this article can be found in Bookshelf.

References

  1. World Health Organization (2010). Chapter 1: Burden: Mortality, morbidity and risk factors. In Global status report on noncommunicable diseases. Geneva: WHO.
  2. Woolbright, B. L., et al. (2018). The role of pyruvate dehydrogenase kinase-4 (PDK4) in bladder cancer and chemoresistance. Molecular Cancer Therapeutics, 17(9), 2004–2012. doi: 10.1158/1535-7163.MCT-18-0063. [DOI] [PMC free article] [PubMed]
  3. Sun, W., et al. (2015). The role of pyruvate dehydrogenase complex in cardiovascular diseases. Life Sciences, 121, 97–103. doi: 10.1016/j.lfs.2014.11.030. [DOI] [PubMed]
  4. Wirleitner, B., et al. (2003). Immune activation and degradation of tryptophan in coronary heart disease. European Journal of Clinical Investigation, 33(7), 550–554. doi: 10.1046/j.1365-2362.2003.01186.x. [DOI] [PubMed]
  5. Singh, N., et al. (2016). Inhibition of fatty acid synthase is protective in pulmonary hypertension. British Journal of Pharmacology, 173(12), 2030–2045. doi: 10.1111/bph.13495. [DOI] [PMC free article] [PubMed]
  6. Itkonen, H. M., et al. (2017). Lipid degradation promotes prostate cancer cell survival. Oncotarget, 8(24), 38264–38275. doi: 10.18632/oncotarget.16123. [DOI] [PMC free article] [PubMed]
  7. Folmes, C. D., et al. (2009). High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency. Journal of Molecular and Cellular Cardiology, 47(1), 142–148. doi: 10.1016/j.yjmcc.2009.03.005. [DOI] [PubMed]
  8. Ito, K., et al. (2012). A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature Medicine, 18(9), 1350–1358. doi: 10.1038/nm.2882. [DOI] [PMC free article] [PubMed]
  9. Chavez-Tostado, M., et al. (2017). Oral glutamine reduces myocardial damage after coronary revascularization under cardiopulmonary bypass. A randomized clinical trial. Nutrición Hospitalaria, 34(2), 277–283. doi: 10.20960/nh.519. [DOI] [PubMed]
  10. Jin, L., Alesi, G. N., & Kang, S. (2016). Glutaminolysis as a target for cancer therapy. Oncogene, 35(28), 3619–3625. doi: 10.1038/onc.2015.447. [DOI] [PMC free article] [PubMed]
  11. Durante, W. (2019). The emerging role of l-glutamine in cardiovascular health and disease. Nutrients, 11, 9. doi: 10.3390/nu11092092. [DOI] [PMC free article] [PubMed]
  12. Medina, M. A. (2001). Glutamine and cancer. The Journal of Nutrition, 131(9 Suppl), 2539S–2542S; discussion 2550S-1S. doi: 10.1093/jn/131.9.2539S. [DOI] [PubMed]
  13. Ashrafian, H., Horowitz, J. D., & Frenneaux, M. P. (2007). Perhexiline. Cardiovascular Drug Reviews, 25(1), 76–97. doi: 10.1111/j.1527-3466.2007.00006.x. [DOI] [PubMed]
  14. Kennedy, J. A., et al. (2000). Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. Journal of Cardiovascular Pharmacology, 36(6), 794–801. doi: 10.1097/00005344-200012000-00016. [DOI] [PubMed]
  15. Li, T., Copeland, C., & Le, A. (2021). Glutamine metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_2. doi: 10.1007/978-3-030-65768-0_2. [DOI] [PMC free article] [PubMed]
  16. Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121. doi: 10.1016/j.cmet.2011.12.009. [DOI] [PMC free article] [PubMed]
  17. Souba, W. W. (1993). Glutamine and cancer. Annals of Surgery, 218(6), 715–728. doi: 10.1097/00000658-199312000-00004. [DOI] [PMC free article] [PubMed]
  18. Medina, M. A., et al. (1992). Relevance of glutamine metabolism to tumor cell growth. Molecular and Cellular Biochemistry, 113(1), 1–15. doi: 10.1007/BF00230880. [DOI] [PubMed]
  19. Espat, N. J., et al. (1995). Normalization of tumor-induced increases in hepatic amino acid transport after surgical resection. Annals of Surgery, 221(1), 50–58. doi: 10.1097/00000658-199501000-00006. [DOI] [PMC free article] [PubMed]
  20. Medina, M. A., Quesada, A. R., & Nunez, I. (1991). de Castro, L-glutamine transport in native vesicles isolated from Ehrlich ascites tumor cell membranes. Journal of Bioenergetics and Biomembranes, 23(4), 689–697. doi: 10.1007/BF00785818. [DOI] [PubMed]
  21. Xi, P., et al. (2011). Regulation of protein metabolism by glutamine: Implications for nutrition and health. Frontiers in Bioscience (Landmark Ed), 16, 578–597. doi: 10.2741/3707. [DOI] [PubMed]
  22. Cruzat, V., et al. (2018). Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients, 10, 11. doi: 10.3390/nu10111564. [DOI] [PMC free article] [PubMed]
  23. Zheng, Y., et al. (2016). Metabolites of glutamate metabolism are associated with incident cardiovascular events in the PREDIMED PREvencion con DIeta MEDiterranea (PREDIMED) Trial. Journal of the American Heart Association, 5, 9. doi: 10.1161/JAHA.116.003755. [DOI] [PMC free article] [PubMed]
  24. Morris, C. R., et al. (2008). Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood, 111(1), 402–410. doi: 10.1182/blood-2007-04-081703. [DOI] [PMC free article] [PubMed]
  25. Dornier, E., et al. (2017). Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nature Communications, 8(1), 2255. doi: 10.1038/s41467-017-02101-2. [DOI] [PMC free article] [PubMed]
  26. Budczies, J., et al. (2015). Glutamate enrichment as new diagnostic opportunity in breast cancer. International Journal of Cancer, 136(7), 1619–1628. doi: 10.1002/ijc.29152. [DOI] [PubMed]
  27. Koochekpour, S., et al. (2012). Serum glutamate levels correlate with Gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells. Clinical Cancer Research, 18(21), 5888–5901. doi: 10.1158/1078-0432.CCR-12-1308. [DOI] [PMC free article] [PubMed]
  28. Vangipurapu, J., et al. (2019). Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5,181 Finnish men. Diabetes, 68(6), 1353–1358. doi: 10.2337/db18-1076. [DOI] [PubMed]
  29. Bodi, V., et al. (2012). Metabolomic profile of human myocardial ischemia by nuclear magnetic resonance spectroscopy of peripheral blood serum: A translational study based on transient coronary occlusion models. Journal of the American College of Cardiology, 59(18), 1629–1641. doi: 10.1016/j.jacc.2011.09.083. [DOI] [PubMed]
  30. Xiang, L., et al. (2019). Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death & Disease, 10(2), 40. doi: 10.1038/s41419-018-1291-5. [DOI] [PMC free article] [PubMed]
  31. Chan, S. Y., & Loscalzo, J. (2008). Pathogenic mechanisms of pulmonary arterial hypertension. Journal of Molecular and Cellular Cardiology, 44(1), 14–30. doi: 10.1016/j.yjmcc.2007.09.006. [DOI] [PMC free article] [PubMed]
  32. Piao, L., et al. (2013). Cardiac glutaminolysis: A maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. Journal of Molecular Medicine (Berlin), 91(10), 1185–1197. doi: 10.1007/s00109-013-1064-7. [DOI] [PMC free article] [PubMed]
  33. Ge, J., et al. (2018). Glutaminolysis promotes collagen translation and stability via alpha-ketoglutarate-mediated mTOR activation and proline hydroxylation. American Journal of Respiratory Cell and Molecular Biology, 58(3), 378–390. doi: 10.1165/rcmb.2017-0238OC. [DOI] [PMC free article] [PubMed]
  34. Saha, S. K., et al. (2019). Multiomics analysis reveals that GLS and GLS2 differentially modulate the clinical outcomes of cancer. Journal of Clinical Medicine, 8, 3. doi: 10.3390/jcm8030355. [DOI] [PMC free article] [PubMed]
  35. Matre, P., et al. (2016). Inhibiting glutaminase in acute myeloid leukemia: Metabolic dependency of selected AML subtypes. Oncotarget, 7(48), 79722–79735. doi: 10.18632/oncotarget.12944. [DOI] [PMC free article] [PubMed]
  36. Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336. doi: 10.1073/pnas.1611406113. [DOI] [PMC free article] [PubMed]
  37. Wang, J. B., et al. (2010). Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 18(3), 207–219. doi: 10.1016/j.ccr.2010.08.009. [DOI] [PMC free article] [PubMed]
  38. Robinson, M. M., et al. (2007). Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). The Biochemical Journal, 406(3), 407–414. doi: 10.1042/BJ20070039. [DOI] [PMC free article] [PubMed]
  39. Gross, M. I., et al. (2014). Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Molecular Cancer Therapeutics, 13(4), 890–901. doi: 10.1158/1535-7163.MCT-13-0870. [DOI] [PubMed]
  40. Zimmermann, S. C., et al. (2016). Allosteric glutaminase inhibitors based on a 1,4-di(5-amino-1,3,4-thiadiazol-2-yl)butane scaffold. ACS Medicinal Chemistry Letters, 7(5), 520–524. doi: 10.1021/acsmedchemlett.6b00060. [DOI] [PMC free article] [PubMed]
  41. Xiang, Y., et al. (2015). Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. The Journal of Clinical Investigation, 125(6), 2293–2306. doi: 10.1172/JCI75836. [DOI] [PMC free article] [PubMed]
  42. Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine (Berlin), 89(3), 205–212. doi: 10.1007/s00109-011-0730-x. [DOI] [PMC free article] [PubMed]
  43. Hirschey, M. D., et al. (2015). Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 35(Suppl), S129–S150. doi: 10.1016/j.semcancer.2015.10.002. [DOI] [PMC free article] [PubMed]
  44. Bertero, T., et al. (2016). Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension. The Journal of Clinical Investigation, 126(9), 3313–3335. doi: 10.1172/JCI86387. [DOI] [PMC free article] [PubMed]
  45. Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research, 15(21), 6479–6483. doi: 10.1158/1078-0432.CCR-09-0889. [DOI] [PMC free article] [PubMed]
  46. Le, A., & Dang, C. V. (2013). Studying Myc’s role in metabolism regulation. Methods in Molecular Biology, 1012, 213–219. doi: 10.1007/978-1-62703-429-6_14. [DOI] [PMC free article] [PubMed]
  47. Martin-Rufian, M., et al. (2014). Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. Journal of Molecular Medicine (Berlin), 92(3), 277–290. doi: 10.1007/s00109-013-1105-2. [DOI] [PMC free article] [PubMed]
  48. Xiang, L., et al. (2013). Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochimica et Biophysica Acta, 1833(12), 2996–3005. doi: 10.1016/j.bbamcr.2013.08.003. [DOI] [PubMed]
  49. Miller, R. A., et al. (2018). Targeting hepatic glutaminase activity to ameliorate hyperglycemia. Nature Medicine, 24(4), 518–524. doi: 10.1038/nm.4514. [DOI] [PMC free article] [PubMed]
  50. Lee, Y. Z., et al. (2014). Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget, 5(15), 6087–6101. doi: 10.18632/oncotarget.2173. [DOI] [PMC free article] [PubMed]
  51. Austgen, T. R., et al. (1992). The effects of glutamine-enriched total parenteral nutrition on tumor growth and host tissues. Annals of Surgery, 215(2), 107–113. doi: 10.1097/00000658-199202000-00003. [DOI] [PMC free article] [PubMed]
  52. Fahr, M. J., et al. (1994). Harry M. Vars Research Award. Glutamine enhances immunoregulation of tumor growth. JPEN Journal of Parenteral and Enteral Nutrition, 18(6), 471–476. doi: 10.1177/0148607194018006471. [DOI] [PubMed]
  53. Yoshida, S., et al. (1995). Effect of glutamine supplementation on protein metabolism and glutathione in tumor-bearing rats. JPEN Journal of Parenteral and Enteral Nutrition, 19(6), 492–497. doi: 10.1177/0148607195019006492. [DOI] [PubMed]
  54. Gaurav, K., et al. (2012). Glutamine: A novel approach to chemotherapy-induced toxicity. Indian Journal of Medical and Paediatric Oncology, 33(1), 13–20. doi: 10.4103/0971-5851.96962. [DOI] [PMC free article] [PubMed]
  55. Savarese, D. M., et al. (2003). Prevention of chemotherapy and radiation toxicity with glutamine. Cancer Treatment Reviews, 29(6), 501–513. doi: 10.1016/s0305-7372(03)00133-6. [DOI] [PubMed]
  56. Greenfield, J. R., et al. (2009). Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. The American Journal of Clinical Nutrition, 89(1), 106–113. doi: 10.3945/ajcn.2008.26362. [DOI] [PMC free article] [PubMed]
  57. Opara, E. C., et al. (1996). L-glutamine supplementation of a high fat diet reduces body weight and attenuates hyperglycemia and hyperinsulinemia in C57BL/6J mice. The Journal of Nutrition, 126(1), 273–279. doi: 10.1093/jn/126.1.273. [DOI] [PubMed]
  58. Khogali, S. E., et al. (2002). Is glutamine beneficial in ischemic heart disease? Nutrition, 18(2), 123–126. doi: 10.1016/s0899-9007(01)00768-7. [DOI] [PubMed]
  59. Sufit, A., et al. (2012). Pharmacologically dosed oral glutamine reduces myocardial injury in patients undergoing cardiac surgery: A randomized pilot feasibility trial. JPEN Journal of Parenteral and Enteral Nutrition, 36(5), 556–561. doi: 10.1177/0148607112448823. [DOI] [PubMed]
  60. Zabot, G. P., et al. (2014). Glutamine prevents oxidative stress in a model of mesenteric ischemia and reperfusion. World Journal of Gastroenterology, 20(32), 11406–11414. doi: 10.3748/wjg.v20.i32.11406. [DOI] [PMC free article] [PubMed]
  61. Kim, K. S., et al. (2013). The effect of glutamine on cerebral ischaemic injury after cardiac arrest. Resuscitation, 84(9), 1285–1290. doi: 10.1016/j.resuscitation.2013.03.019. [DOI] [PubMed]
  62. Prem, J. T., et al. (1999). The role of glutamine in skeletal muscle ischemia/reperfusion injury in the rat hind limb model. American Journal of Surgery, 178(2), 147–150. doi: 10.1016/s0002-9610(99)00148-8. [DOI] [PubMed]
  63. Esposito, E., et al. (2011). Glutamine contributes to ameliorate inflammation after renal ischemia/reperfusion injury in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 383(5), 493–508. doi: 10.1007/s00210-011-0610-5. [DOI] [PubMed]
  64. Stangl, R., et al. (2011). Reduction of liver ischemia-reperfusion injury via glutamine pretreatment. The Journal of Surgical Research, 166(1), 95–103. doi: 10.1016/j.jss.2009.09.047. [DOI] [PubMed]
  65. Niihara, Y., et al. (2005). L-glutamine therapy reduces endothelial adhesion of sickle red blood cells to human umbilical vein endothelial cells. BMC Blood Disorder, 5, 4. doi: 10.1186/1471-2326-5-4. [DOI] [PMC free article] [PubMed]
  66. Niihara, Y., et al. (2018). A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. The New England Journal of Medicine, 379(3), 226–235. doi: 10.1056/NEJMoa1715971. [DOI] [PubMed]
  67. Park, J. K., et al. (2021). The heterogeneity of lipid metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_3. doi: 10.1007/978-3-030-65768-0_3. [DOI] [PMC free article] [PubMed]
  68. Ma, Y., et al. (2018). Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Letters, 435, 92–100. doi: 10.1016/j.canlet.2018.08.006. [DOI] [PMC free article] [PubMed]
  69. Liu, P. P., et al. (2016). Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene, 35(43), 5663–5673. doi: 10.1038/onc.2016.103. [DOI] [PMC free article] [PubMed]
  70. Shao, H., et al. (2016). Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget, 7(4), 3832–3846. doi: 10.18632/oncotarget.6757. [DOI] [PMC free article] [PubMed]
  71. Shi, J., et al. (2016). High expression of CPT1A predicts adverse outcomes: A potential therapeutic target for acute myeloid leukemia. eBioMedicine, 14, 55–64. doi: 10.1016/j.ebiom.2016.11.025. [DOI] [PMC free article] [PubMed]
  72. Liu, Y. (2006). Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer and Prostatic Diseases, 9(3), 230–234. doi: 10.1038/sj.pcan.4500879. [DOI] [PubMed]
  73. Tan, J., & Le, A. (2021). The heterogeneity of breast cancer metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_6. doi: 10.1007/978-3-030-65768-0_6. [DOI] [PMC free article] [PubMed]
  74. Carracedo, A., et al. (2012). A metabolic prosurvival role for PML in breast cancer. The Journal of Clinical Investigation, 122(9), 3088–3100. doi: 10.1172/JCI62129. [DOI] [PMC free article] [PubMed]
  75. Wang, Y. N., et al. (2018). CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 37(46), 6025–6040. doi: 10.1038/s41388-018-0384-z. [DOI] [PubMed]
  76. Quinones, A., & Le, A. (2021). The multifaceted glioblastoma: From genomic alterations to metabolic adaptations. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_4. doi: 10.1007/978-3-030-65768-0_4. [DOI] [PMC free article] [PubMed]
  77. Buzzai, M., et al. (2005). The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene, 24(26), 4165–4173. doi: 10.1038/sj.onc.1208622. [DOI] [PubMed]
  78. Xie, Z., et al. (2016). Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism. Cell Reports, 14(5), 991–999. doi: 10.1016/j.celrep.2016.01.004. [DOI] [PMC free article] [PubMed]
  79. Lopaschuk, G. D., et al. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90(1), 207–258. doi: 10.1152/physrev.00015.2009. [DOI] [PubMed]
  80. Fillmore, N., Mori, J., & Lopaschuk, G. D. (2014). Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. British Journal of Pharmacology, 171(8), 2080–2090. doi: 10.1111/bph.12475. [DOI] [PMC free article] [PubMed]
  81. Schulze, P. C., Drosatos, K., & Goldberg, I. J. (2016). Lipid use and misuse by the heart. Circulation Research, 118(11), 1736–1751. doi: 10.1161/CIRCRESAHA.116.306842. [DOI] [PMC free article] [PubMed]
  82. Ma, Y., et al. (2020). Functional analysis of molecular and pharmacological modulators of mitochondrial fatty acid oxidation. Scientific Reports, 10(1), 1450. doi: 10.1038/s41598-020-58334-7. [DOI] [PMC free article] [PubMed]
  83. Bensaad, K., et al. (2014). Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Reports, 9(1), 349–365. doi: 10.1016/j.celrep.2014.08.056. [DOI] [PubMed]
  84. Halama, A., et al. (2018). Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Letters, 430, 133–147. doi: 10.1016/j.canlet.2018.05.017. [DOI] [PubMed]
  85. Jung, Y. Y., Kim, H. M., & Koo, J. S. (2015). Expression of lipid metabolism-related proteins in metastatic breast cancer. PLoS One, 10(9), e0137204. doi: 10.1371/journal.pone.0137204. [DOI] [PMC free article] [PubMed]
  86. Hua, Y., et al. (2011). Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation. Journal of Proteome Research, 10(8), 3513–3521. doi: 10.1021/pr200147g. [DOI] [PubMed]
  87. Luo, X., et al. (2017). Emerging roles of lipid metabolism in cancer metastasis. Molecular Cancer, 16(1), 76. doi: 10.1186/s12943-017-0646-3. [DOI] [PMC free article] [PubMed]
  88. Pascual, G., et al. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541(7635), 41–45. doi: 10.1038/nature20791. [DOI] [PubMed]
  89. Dean, E. J., et al. (2016). Preliminary activity in the first in human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. Journal of Clinical Oncology, 34(15_suppl), 2512–2512.
  90. Takikawa, O. (2005). Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated L-tryptophan metabolism. Biochemical and Biophysical Research Communications, 338(1), 12–19. doi: 10.1016/j.bbrc.2005.09.032. [DOI] [PubMed]
  91. Zhai, L., et al. (2015). Molecular pathways: Targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clinical Cancer Research, 21(24), 5427–5433. doi: 10.1158/1078-0432.CCR-15-0420. [DOI] [PMC free article] [PubMed]
  92. Hofmann, F. (2010). Ido brings down the pressure in systemic inflammation. Nature Medicine, 16(3), 265–267. doi: 10.1038/nm0310-265. [DOI] [PubMed]
  93. Mangge, H., et al. (2014). Disturbed tryptophan metabolism in cardiovascular disease. Current Medicinal Chemistry, 21(17), 1931–1937. doi: 10.2174/0929867321666140304105526. [DOI] [PMC free article] [PubMed]
  94. Pertovaara, M., et al. (2007). Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: The cardiovascular risk in Young Finns study. Clinical and Experimental Immunology, 148(1), 106–111. doi: 10.1111/j.1365-2249.2007.03325.x. [DOI] [PMC free article] [PubMed]
  95. Niinisalo, P., et al. (2010). Activation of indoleamine 2,3-dioxygenase-induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. Annals of Medicine, 42(1), 55–63. doi: 10.3109/07853890903321559. [DOI] [PubMed]
  96. Sakurai, K., et al. (2005). Study of indoleamine 2,3-dioxygenase expression in patients with breast cancer. Gan to Kagaku Ryoho, 32(11), 1546–1549. [PubMed]
  97. Uyttenhove, C., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 9(10), 1269–1274. doi: 10.1038/nm934. [DOI] [PubMed]
  98. Opitz, C. A., et al. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 478(7368), 197–203. doi: 10.1038/nature10491. [DOI] [PubMed]
  99. Katz, J. B., Muller, A. J., & Prendergast, G. C. (2008). Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunological Reviews, 222, 206–221. doi: 10.1111/j.1600-065X.2008.00610.x. [DOI] [PubMed]
  100. Le, A., Udupa, S., & Zhang, C. (2019). The metabolic interplay between cancer and other diseases. Trends Cancer, 5(12), 809–821. doi: 10.1016/j.trecan.2019.10.012. [DOI] [PMC free article] [PubMed]
  101. Calvani, M., Reda, E., & Arrigoni-Martelli, E. (2000). Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Research in Cardiology, 95(2), 75–83. doi: 10.1007/s003950050167. [DOI] [PubMed]
  102. Bose, S., Zhang, C., & Le, A. (2021). Glucose metabolism in cancer: The Warburg effect and beyond. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_1. doi: 10.1007/978-3-030-65768-0_1. [DOI] [PMC free article] [PubMed]
  103. Bersin, R. M., & Stacpoole, P. W. (1997). Dichloroacetate as metabolic therapy for myocardial ischemia and failure. American Heart Journal, 134(5 Pt 1), 841–855. doi: 10.1016/s0002-8703(97)80007-5. [DOI] [PubMed]
  104. Stacpoole, P. W. (2017). Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. Journal of the National Cancer Institute, 109, 11. doi: 10.1093/jnci/djx071. [DOI] [PubMed]
  105. Sradhanjali, S., & Reddy, M. M. (2018). Inhibition of pyruvate dehydrogenase kinase as a therapeutic strategy against cancer. Current Topics in Medicinal Chemistry, 18(6), 444–453. doi: 10.2174/1568026618666180523105756. [DOI] [PubMed]
  106. Lu, C. W., et al. (2011). Overexpression of pyruvate dehydrogenase kinase 3 increases drug resistance and early recurrence in colon cancer. The American Journal of Pathology, 179(3), 1405–1414. doi: 10.1016/j.ajpath.2011.05.050. [DOI] [PMC free article] [PubMed]
  107. Stacpoole, P. W., et al. (1998). Clinical pharmacology and toxicology of dichloroacetate. Environmental Health Perspectives, 106(Suppl 4), 989–994. doi: 10.1289/ehp.98106s4989. [DOI] [PMC free article] [PubMed]
  108. Hoang, G., Udupa, S., & Le, A. (2019). Application of metabolomics technologies toward cancer prognosis and therapy. International Review of Cell and Molecular Biology, 347, 191–223. doi: 10.1016/bs.ircmb.2019.07.003. [DOI] [PubMed]

RESOURCES