Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2434:281–299. doi: 10.1007/978-1-0716-2010-6_19

Generation of Humanized Zebrafish Models for the In Vivo Assessment of Antisense Oligonucleotide-Based Splice Modulation Therapies.

Renske Schellens, Erik de Vrieze, Ralph Slijkerman, Hannie Kremer, Erwin van Wijk
PMCID: PMC9703260  PMID: 35213025

Abstract

Antisense oligonucleotide (AON)-based splice modulation is the most widely used therapeutic approach to redirect precursor messenger RNA (pre-mRNA) splicing. To study the functional effect of human mutations affecting pre-mRNA splicing for which AON-based splice redirection would be a potential therapeutic option, humanized knock-in animal models are pivotal. A major limitation of using humanized animal models for this purpose is the reported poor recognition of human splice sites by the splicing machineries of other species. To overcome this problem, we provide a detailed guideline for the generation of functional humanized knock-in zebrafish models to assess the effect of mutation-induced aberrant splicing and subsequent AON-based splice modulation therapy .


Full text of this article can be found in Bookshelf.

References

  1. Liu MM, Zack DJ (2013) Alternative splicing and retinal degeneration. Clin Genet 84:142–149. https://doi.org/10.1111/cge.12181 doi: 10.1111/cge.12181. [DOI] [PMC free article] [PubMed]
  2. Cremers FP, van de Pol DJ, van Driel M et al (1998) Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 7:355–362. https://doi.org/10.1093/hmg/7.3.355 doi: 10.1093/hmg/7.3.355. [DOI] [PubMed]
  3. Hollander den AI, Koenekoop RK, Yzer S et al (2006) Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79:556–561. https://doi.org/10.1086/507318 doi: 10.1086/507318. [DOI] [PMC free article] [PubMed]
  4. Thompson DA, Gyürüs P, Fleischer LL et al (2000) Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 41:4293–4299 [PubMed]
  5. Vaché C, Besnard T, le Berre P et al (2012) Usher syndrome type 2 caused by activation of an USH2A pseudoexon: implications for diagnosis and therapy. Hum Mutat 33:104–108. https://doi.org/10.1002/humu.21634 doi: 10.1002/humu.21634. [DOI] [PubMed]
  6. Hammond SM, Wood MJA (2011) Genetic therapies for RNA mis-splicing diseases. Trends Genet 27:196–205. https://doi.org/10.1016/j.tig.2011.02.004 doi: 10.1016/j.tig.2011.02.004. [DOI] [PubMed]
  7. Slijkerman RWN, Song F, Astuti GDN et al (2015) The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res 48:137–159. https://doi.org/10.1016/j.preteyeres.2015.04.004 doi: 10.1016/j.preteyeres.2015.04.004. [DOI] [PubMed]
  8. Garanto A, van Beersum SEC, Peters TA et al (2013) Unexpected CEP290 mRNA splicing in a humanized knock-in mouse model for Leber congenital amaurosis. PLoS One 8:e79369. https://doi.org/10.1371/journal.pone.0079369 doi: 10.1371/journal.pone.0079369. [DOI] [PMC free article] [PubMed]
  9. Slijkerman R, Goloborodko A, Broekman S et al (2018) Poor splice-site recognition in a humanized zebrafish knockin model for the recurrent deep-Intronic c.7595-2144A>G mutation in USH2A. Zebrafish 15:597. https://doi.org/10.1089/zeb.2018.1613 doi: 10.1089/zeb.2018.1613. [DOI] [PubMed]
  10. Westerfield M (2000) The zebrafish book : a guide for the laboratory use of zebrafish. http://zfin.org/zf_info/zfbook/zfbk.html
  11. Abril JF, Castelo R, Guigó R (2005) Comparison of splice sites in mammals and chicken. Genome Res 15:111–119. https://doi.org/10.1101/gr.3108805 doi: 10.1101/gr.3108805. [DOI] [PMC free article] [PubMed]
  12. Irion U, Krauss J, Nüsslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141:4827–4830. https://doi.org/10.1242/dev.115584 doi: 10.1242/dev.115584. [DOI] [PMC free article] [PubMed]
  13. Singleman C, Holtzman NG (2014) Growth and maturation in the zebrafish, Danio rerio: a staging tool for teaching and research. Zebrafish 11:396–406. https://doi.org/10.1089/zeb.2014.0976 doi: 10.1089/zeb.2014.0976. [DOI] [PMC free article] [PubMed]
  14. Choorapoikayil S, Overvoorde J, Hertog den J (2013) Deriving cell lines from zebrafish embryos and tumors. Zebrafish 10:316–325. https://doi.org/10.1089/zeb.2013.0866 doi: 10.1089/zeb.2013.0866. [DOI] [PMC free article] [PubMed]
  15. Lenassi E, Saihan Z, Bitner-Glindzicz M, Webster AR (2014) The effect of the common c.2299delG mutation in USH2A on RNA splicing. Exp Eye Res 122:9–12. https://doi.org/10.1016/j.exer.2014.02.018 doi: 10.1016/j.exer.2014.02.018. [DOI] [PubMed]
  16. Fu XY, Manley JL (1987) Factors influencing alternative splice site utilization in vivo. Mol Cell Biol 7:738–748. https://doi.org/10.1128/mcb.7.2.738 doi: 10.1128/mcb.7.2.738. [DOI] [PMC free article] [PubMed]
  17. Yao R, Liu D, Jia X et al (2018) CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol 3:135–149. https://doi.org/10.1016/j.synbio.2018.09.004 doi: 10.1016/j.synbio.2018.09.004. [DOI] [PMC free article] [PubMed]
  18. Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9:e98186. https://doi.org/10.1371/journal.pone.0098186 doi: 10.1371/journal.pone.0098186. [DOI] [PMC free article] [PubMed]
  19. Conte J, Potoczniak MJ, Tobe SS (2018) Using synthetic oligonucleotides as standards in probe-based qPCR. BioTechniques 64:177–179. https://doi.org/10.2144/btn-2018-2000 doi: 10.2144/btn-2018-2000. [DOI] [PubMed]

RESOURCES