Abstract
Despite the many recent breakthroughs in cancer research, oncology has traditionally been seen as a distinct field from other diseases. Recently, more attention has been paid to repurposing established therapeutic strategies and targets of other diseases towards cancer treatment, with some of these attempts generating promising outcomes [1, 2]. Recent studies using advanced metabolomics technologies [3] have shown evidence of close metabolic similarities between cancer and neurological diseases. These studies have unveiled several metabolic characteristics shared by these two categories of diseases, including metabolism of glutamine, gamma-aminobutyric acid (GABA), and N-acetyl-aspartyl-glutamate (NAAG) [4-6]. The striking metabolic overlap between cancer and neurological diseases sheds light on novel therapeutic strategies for cancer treatment. For example, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), one of the glutamate carboxypeptidase II (GCP II) inhibitors that prevent the conversion of NAAG to glutamate, has been shown to suppress cancer growth [6, 7]. These promising results have led to an increased interest in integrating this metabolic overlap between cancer and neurological diseases into the study of cancer metabolism. The advantages of studying this metabolic overlap include not only drug repurposing but also translating existing knowledge from neurological diseases to the field of cancer research. This chapter discusses the specific overlapping metabolic features between cancer and neurological diseases, focusing on glutamine, GABA, and NAAG metabolisms. Understanding the interconnections between cancer and neurological diseases will guide researchers and clinicians to find more effective cancer treatments.
Full text of this article can be found in Bookshelf.
References
- Young, S. Z., & Bordey, A. (2009). GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda), 24, 171–185. doi: 10.1152/physiol.00002.2009. [DOI] [PMC free article] [PubMed]
- Udupa, S., et al. (2019). Upregulation of the glutaminase II pathway contributes to glutamate production upon glutaminase 1 inhibition in pancreatic cancer. Proteomics, 19(21–22), e1800451. doi: 10.1002/pmic.201800451. [DOI] [PMC free article] [PubMed]
- Hoang, G., Udupa, S., & Le, A. (2019). Application of metabolomics technologies toward cancer prognosis and therapy. International Review of Cell and Molecular Biology, 347, 191–223. doi: 10.1016/bs.ircmb.2019.07.003. [DOI] [PubMed]
- Mates, J. M., et al. (2019). Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Letters, 467, 29–39. doi: 10.1016/j.canlet.2019.09.011. [DOI] [PubMed]
- Matuszek, M., Jesipowicz, M., & Kleinrok, Z. (2001). GABA content and GAD activity in gastric cancer. Medical Science Monitor, 7(3), 377–381. [PubMed]
- Nguyen, T., et al. (2019). Uncovering the role of N-acetyl-aspartyl-glutamate as a glutamate reservoir in cancer. Cell Reports, 27(2), 491–501. e6. doi: 10.1016/j.celrep.2019.03.036. [DOI] [PMC free article] [PubMed]
- Yao, V., et al. (2010). Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate, 70(3), 305–316. doi: 10.1002/pros.21065. [DOI] [PubMed]
- Li, T., Copeland, C., & Le, A. (2021). Glutamine metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_2. doi: 10.1007/978-3-030-65768-0_2. [DOI] [PMC free article] [PubMed]
- Still, E. R., & Yuneva, M. O. (2017). Hopefully devoted to Q: Targeting glutamine addiction in cancer. British Journal of Cancer, 116(11), 1375–1381. doi: 10.1038/bjc.2017.113. [DOI] [PMC free article] [PubMed]
- Medina, M. A. (2001). Glutamine and cancer. The Journal of Nutrition, 131(9 Suppl), 2539S–2542S; discussion 2550S-1S. doi: 10.1093/jn/131.9.2539S. [DOI] [PubMed]
- Struzynska, L., & Sulkowski, G. (2004). Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions. Journal of Inorganic Biochemistry, 98(6), 951–958. doi: 10.1016/j.jinorgbio.2004.02.010. [DOI] [PubMed]
- Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. The Journal of Nutrition, 130(4S Suppl), 1007S–1015S. doi: 10.1093/jn/130.4.1007S. [DOI] [PubMed]
- Takahashi, H., et al. (1991). Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. The American Journal of Physiology, 261(3 Pt 2), H825–H829. doi: 10.1152/ajpheart.1991.261.3.H825. [DOI] [PubMed]
- Andersen, J. V., et al. (2017). Alterations in cerebral cortical glucose and glutamine metabolism precedes amyloid plaques in the APPswe/PSEN1dE9 mouse model of Alzheimer’s disease. Neurochemical Research, 42(6), 1589–1598. doi: 10.1007/s11064-016-2070-2. [DOI] [PubMed]
- Leegwater-Kim, J., & Cha, J. H. (2004). The paradigm of Huntington’s disease: Therapeutic opportunities in neurodegeneration. NeuroRx, 1(1), 128–138. doi: 10.1602/neurorx.1.1.128. [DOI] [PMC free article] [PubMed]
- Burbaeva, G., et al. (2003). Glutamine synthetase and glutamate dehydrogenase in the prefrontal cortex of patients with schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27(4), 675–680. doi: 10.1016/s0278-5846(03)00078-2. [DOI] [PubMed]
- Suarez, I., Bodega, G., & Fernandez, B. (2002). Glutamine synthetase in brain: Effect of ammonia. Neurochemistry International, 41(2-3), 123–142. doi: 10.1016/s0197-0186(02)00033-5. [DOI] [PubMed]
- Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336. doi: 10.1073/pnas.1611406113. [DOI] [PMC free article] [PubMed]
- Xiang, Y., et al. (2015). Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. The Journal of Clinical Investigation, 125(6), 2293–2306. doi: 10.1172/JCI75836. [DOI] [PMC free article] [PubMed]
- Zimmermann, S. C., et al. (2016). Allosteric glutaminase inhibitors based on a 1,4-di(5-amino-1,3,4-thiadiazol-2-yl)butane scaffold. ACS Medicinal Chemistry Letters, 7(5), 520–524. doi: 10.1021/acsmedchemlett.6b00060. [DOI] [PMC free article] [PubMed]
- Rais, R., et al. (2016). Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: A potential treatment for glioblastoma. Journal of Medicinal Chemistry, 59(18), 8621–8633. doi: 10.1021/acs.jmedchem.6b01069. [DOI] [PubMed]
- Le, A., Udupa, S., & Zhang, C. (2019). The metabolic interplay between cancer and other diseases. Trends Cancer, 5(12), 809–821. doi: 10.1016/j.trecan.2019.10.012. [DOI] [PMC free article] [PubMed]
- Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121. doi: 10.1016/j.cmet.2011.12.009. [DOI] [PMC free article] [PubMed]
- Koochekpour, S., et al. (2012). Serum glutamate levels correlate with Gleason score and glutamate blockade decreases proliferation, migration, and invasion and induces apoptosis in prostate cancer cells. Clinical Cancer Research, 18(21), 5888–5901. doi: 10.1158/1078-0432.CCR-12-1308. [DOI] [PMC free article] [PubMed]
- Walton, H. S., & Dodd, P. R. (2007). Glutamate-glutamine cycling in Alzheimer’s disease. Neurochemistry International, 50(7-8), 1052–1066. doi: 10.1016/j.neuint.2006.10.007. [DOI] [PubMed]
- Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45(5), 583–595. doi: 10.1016/j.neuint.2004.03.007. [DOI] [PubMed]
- Zheng, P., et al. (2019). The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 5(2), eaau8317. doi: 10.1126/sciadv.aau8317. [DOI] [PMC free article] [PubMed]
- Madeira, C., et al. (2018). Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Frontiers in Psychiatry, 9, 713. doi: 10.3389/fpsyt.2018.00713. [DOI] [PMC free article] [PubMed]
- Behrens, P. F., et al. (2002). Impaired glutamate transport and glutamate-glutamine cycling: Downstream effects of the Huntington mutation. Brain, 125(Pt 8), 1908–1922. doi: 10.1093/brain/awf180. [DOI] [PubMed]
- O’Donovan, S. M., Sullivan, C. R., & McCullumsmith, R. E. (2017). The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophrenia, 3(1), 32. doi: 10.1038/s41537-017-0037-1. [DOI] [PMC free article] [PubMed]
- Robert, S. M., & Sontheimer, H. (2014). Glutamate transporters in the biology of malignant gliomas. Cellular and Molecular Life Sciences, 71(10), 1839–1854. doi: 10.1007/s00018-013-1521-z. [DOI] [PMC free article] [PubMed]
- Arnone, D., et al. (2015). Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: Meta-analysis of absolute prefrontal neuro-metabolic concentrations. European Neuropsychopharmacology, 25(8), 1109–1117. doi: 10.1016/j.euroneuro.2015.04.016. [DOI] [PubMed]
- North, W. G., et al. (2017). NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment. Clinical Pharmacology, 9, 79–86. doi: 10.2147/CPAA.S140057. [DOI] [PMC free article] [PubMed]
- Li, C. T., Yang, K. C., & Lin, W. C. (2018). Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies. Frontiers in Psychiatry, 9, 767. doi: 10.3389/fpsyt.2018.00767. [DOI] [PMC free article] [PubMed]
- Meador-Woodruff, J. H., & Healy, D. J. (2000). Glutamate receptor expression in schizophrenic brain. Brain Research. Brain Research Reviews, 31(2–3), 288–294. doi: 10.1016/s0165-0173(99)00044-2. [DOI] [PubMed]
- Herner, A., et al. (2011). Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. International Journal of Cancer, 129(10), 2349–2359. doi: 10.1002/ijc.25898. [DOI] [PubMed]
- Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research, 15(21), 6479–6483. doi: 10.1158/1078-0432.CCR-09-0889. [DOI] [PMC free article] [PubMed]
- Le, A., & Dang, C. V. (2013). Studying Myc’s role in metabolism regulation. Methods in Molecular Biology, 1012, 213–219. doi: 10.1007/978-1-62703-429-6_14. [DOI] [PMC free article] [PubMed]
- Gabay, M., Li, Y., & Felsher, D. W. (2014). MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor Perspectives in Medicine, 4, 6. doi: 10.1101/cshperspect.a014241. [DOI] [PMC free article] [PubMed]
- Wise, D. R., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782–18787. doi: 10.1073/pnas.0810199105. [DOI] [PMC free article] [PubMed]
- Hu, W., et al. (2010). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7455–7460. doi: 10.1073/pnas.1001006107. [DOI] [PMC free article] [PubMed]
- Gao, P., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765. doi: 10.1038/nature07823. [DOI] [PMC free article] [PubMed]
- Lee, H. G., et al. (2009). The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. The American Journal of Pathology, 174(3), 891–897. doi: 10.2353/ajpath.2009.080583. [DOI] [PMC free article] [PubMed]
- Niu, Z., et al. (2015). Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochimica et Biophysica Sinica Shanghai, 47(3), 183–191. doi: 10.1093/abbs/gmu129. [DOI] [PubMed]
- Zhang, X., Ge, Y. L., & Tian, R. H. (2009). The knockdown of c-myc expression by RNAi inhibits cell proliferation in human colon cancer HT-29 cells in vitro and in vivo. Cellular & Molecular Biology Letters, 14(2), 305–318. doi: 10.2478/s11658-009-0001-9. [DOI] [PMC free article] [PubMed]
- Lukey, M. J., Katt, W. P., & Cerione, R. A. (2017). Targeting amino acid metabolism for cancer therapy. Drug Discovery Today, 22(5), 796–804. doi: 10.1016/j.drudis.2016.12.003. [DOI] [PMC free article] [PubMed]
- Jiang, J., Srivastava, S., & Zhang, J. (2019). Starve cancer cells of glutamine: Break the spell or make a hungry monster? Cancers (Basel), 11, 6. doi: 10.3390/cancers11060804. [DOI] [PMC free article] [PubMed]
- Dong, X. X., Wang, Y., & Qin, Z. H. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica, 30(4), 379–387. doi: 10.1038/aps.2009.24. [DOI] [PMC free article] [PubMed]
- Cooper, A. J., & Kuhara, T. (2014). alpha-Ketoglutaramate: An overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metabolic Brain Disease, 29(4), 991–1006. doi: 10.1007/s11011-013-9444-9. [DOI] [PMC free article] [PubMed]
- Dorai, T., et al., High Levels of Glutaminase II Pathway Enzymes in Normal and Cancerous Prostate Suggest a Role in ‘Glutamine Addiction’. Biomolecules, 2019. 10(1). doi: 10.3390/biom10010002. [DOI] [PMC free article] [PubMed]
- Vergara, F., F. Plum, and T.E. Duffy, Alphaketoglutaramate: increased concentrations in the cerebrospinal fluid of patients in hepatic coma. Science, 1974. 183(4120): p. 81–3. doi: 10.1126/science.183.4120.81. [DOI] [PubMed]
- Wong, C. G., Bottiglieri, T., & Snead, O. C., 3rd. (2003). GABA, gamma-hydroxybutyric acid, and neurological disease. Annals of Neurology, 54(Suppl 6), S3–S12. doi: 10.1002/ana.10696. [DOI] [PubMed]
- Zhang, D., et al. (2014). GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Letters, 348(1–2), 100–108. doi: 10.1016/j.canlet.2014.03.006. [DOI] [PubMed]
- Watanabe, M., et al. (2002). GABA and GABA receptors in the central nervous system and other organs. International Review of Cytology, 213, 1–47. doi: 10.1016/s0074-7696(02)13011-7. [DOI] [PubMed]
- Feldblum, S., Erlander, M. G., & Tobin, A. J. (1993). Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. Journal of Neuroscience Research, 34(6), 689–706. doi: 10.1002/jnr.490340612. [DOI] [PubMed]
- Hettema, J. M., et al. (2006). Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Molecular Psychiatry, 11(8), 752–762. doi: 10.1038/sj.mp.4001845. [DOI] [PubMed]
- Bowers, G., Cullinan, W. E., & Herman, J. P. (1998). Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. The Journal of Neuroscience, 18(15), 5938–5947. doi: 10.1523/JNEUROSCI.18-15-05938.1998. [DOI] [PMC free article] [PubMed]
- Kimura, R., et al. (2013). Glutamate acid decarboxylase 1 promotes metastasis of human oral cancer by beta-catenin translocation and MMP7 activation. BMC Cancer, 13, 555. doi: 10.1186/1471-2407-13-555. [DOI] [PMC free article] [PubMed]
- Wu, Z., et al. (2014). Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nature Communications, 5, 4159. doi: 10.1038/ncomms5159. [DOI] [PMC free article] [PubMed]
- Sterley, T. L., Howells, F. M., & Russell, V. A. (2013). Evidence for reduced tonic levels of GABA in the hippocampus of an animal model of ADHD, the spontaneously hypertensive rat. Brain Research, 1541, 52–60. doi: 10.1016/j.brainres.2013.10.023. [DOI] [PubMed]
- Schuller, H. M., Al-Wadei, H. A., & Majidi, M. (2008). Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis, 29(10), 1979–1985. doi: 10.1093/carcin/bgn041. [DOI] [PMC free article] [PubMed]
- Ulrich, D. (2015). Amyloid-beta impairs synaptic inhibition via GABA(A) receptor endocytosis. The Journal of Neuroscience, 35(24), 9205–9210. doi: 10.1523/JNEUROSCI.0950-15.2015. [DOI] [PMC free article] [PubMed]
- Klebig, C., et al. (2005). Characterization of {gamma}-aminobutyric acid type A receptor-associated protein, a novel tumor suppressor, showing reduced expression in breast cancer. Cancer Research, 65(2), 394–400. [PubMed]
- Bero, A. W., et al. (2011). Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nature Neuroscience, 14(6), 750–756. doi: 10.1038/nn.2801. [DOI] [PMC free article] [PubMed]
- Kim, Y. S., & Yoon, B. E. (2017). Altered GABAergic signaling in brain disease at various stages of life. Experimental Neurobiology, 26(3), 122–131. doi: 10.5607/en.2017.26.3.122. [DOI] [PMC free article] [PubMed]
- Jiang, X., et al. (2012). GABAB receptor complex as a potential target for tumor therapy. The Journal of Histochemistry and Cytochemistry, 60(4), 269–279. doi: 10.1369/0022155412438105. [DOI] [PMC free article] [PubMed]
- Mombereau, C., et al. (2004). Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology, 29(6), 1050–1062. doi: 10.1038/sj.npp.1300413. [DOI] [PubMed]
- Azuma, H., et al. (2003). Gamma-aminobutyric acid as a promoting factor of cancer metastasis; induction of matrix metalloproteinase production is potentially its underlying mechanism. Cancer Research, 63(23), 8090–8096. [PubMed]
- Cryan, J. F., & Slattery, D. A. (2010). GABAB receptors and depression. Current status. Advances in Pharmacology, 58, 427–451. doi: 10.1016/S1054-3589(10)58016-5. [DOI] [PubMed]
- Budhram, A., et al. (2019). Diagnosing autoimmune limbic encephalitis. CMAJ, 191(19), E529–E534. doi: 10.1503/cmaj.181548. [DOI] [PMC free article] [PubMed]
- Lin, J., et al. (2019). Encephalitis with antibodies against the GABAB receptor: High mortality and risk factors. Frontiers in Neurology, 10, 1030. doi: 10.3389/fneur.2019.01030. [DOI] [PMC free article] [PubMed]
- Arino, H., et al. (2015). Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurology, 72(8), 874–881. doi: 10.1001/jamaneurol.2015.0749. [DOI] [PMC free article] [PubMed]
- Nene, Y., et al. (2019). A case of anti-glutamic acid decarboxylase-65 antibody positive stiff person syndrome presenting initially as acute peripheral vestibulopathy, leading to delayed diagnosis after multiple hospitalizations. Cureus, 11(11), e6083. doi: 10.7759/cureus.6083. [DOI] [PMC free article] [PubMed]
- Lee, Y. Y., et al. (2019). Association of stiff-person syndrome with autoimmune endocrine diseases. World Journal of Clinical Cases, 7(19), 2942–2952. doi: 10.12998/wjcc.v7.i19.2942. [DOI] [PMC free article] [PubMed]
- Dinkel, K., et al. (1998). Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Annals of Neurology, 44(2), 194–201. doi: 10.1002/ana.410440209. [DOI] [PubMed]
- Rakocevic, G., & Floeter, M. K. (2012). Autoimmune stiff person syndrome and related myelopathies: Understanding of electrophysiological and immunological processes. Muscle & Nerve, 45(5), 623–634. doi: 10.1002/mus.23234. [DOI] [PMC free article] [PubMed]
- Neale, J. H., Bzdega, T., & Wroblewska, B. (2000). N-Acetylaspartylglutamate: The most abundant peptide neurotransmitter in the mammalian central nervous system. Journal of Neurochemistry, 75(2), 443–452. doi: 10.1046/j.1471-4159.2000.0750443.x. [DOI] [PubMed]
- Kirsch, B. J., et al. (2021). Non-Hodgkin lymphoma metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_7. doi: 10.1007/978-3-030-65768-0_7. [DOI] [PMC free article] [PubMed]
- Quinones, A., & Le, A. (2021). The multifaceted glioblastoma: From genomic alterations to metabolic adaptations. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_4. doi: 10.1007/978-3-030-65768-0_4. [DOI] [PMC free article] [PubMed]
- Passani, L. A., et al. (1997). N-acetylaspartylglutamate, N-acetylaspartate, and N-acetylated alpha-linked acidic dipeptidase in human brain and their alterations in Huntington and Alzheimer’s diseases. Molecular and Chemical Neuropathology, 31(2), 97–118. doi: 10.1007/BF02815236. [DOI] [PubMed]
- Zhao, J., et al. (2001). NAAG inhibits KCl-induced [(3)H]-GABA release via mGluR3, cAMP, PKA and L-type calcium conductance. The European Journal of Neuroscience, 13(2), 340–346. [PubMed]
- Cartmell, J., & Schoepp, D. D. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. Journal of Neurochemistry, 75(3), 889–907. doi: 10.1046/j.1471-4159.2000.0750889.x. [DOI] [PubMed]
- D’Onofrio, M., et al. (2003). Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. Journal of Neurochemistry, 84(6), 1288–1295. doi: 10.1046/j.1471-4159.2003.01633.x. [DOI] [PubMed]
- Brocke, K. S., et al. (2010). Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biology & Therapy, 9(6), 455–468. doi: 10.4161/cbt.9.6.10898. [DOI] [PubMed]
- Ciceroni, C., et al. (2013). Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death and Differentiation, 20(3), 396–407. doi: 10.1038/cdd.2012.150. [DOI] [PMC free article] [PubMed]
- Arcella, A., et al. (2005). Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro-Oncology, 7(3), 236–245. doi: 10.1215/S1152851704000961. [DOI] [PMC free article] [PubMed]
- Stepulak, A., et al. (2009). Expression of glutamate receptor subunits in human cancers. Histochemistry and Cell Biology, 132(4), 435–445. doi: 10.1007/s00418-009-0613-1. [DOI] [PubMed]
- Aronica, E., et al. (2003). Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. The European Journal of Neuroscience, 17(10), 2106–2118. doi: 10.1046/j.1460-9568.2003.02657.x. [DOI] [PubMed]
- Zhou, K., et al. (2014). mGlu3 receptor blockade inhibits proliferation and promotes astrocytic phenotype in glioma stem cells. Cell Biology International, 38(4), 426–434. doi: 10.1002/cbin.10207. [DOI] [PubMed]
- Ciceroni, C., et al. (2008). Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor signaling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology, 55(4), 568–576. doi: 10.1016/j.neuropharm.2008.06.064. [DOI] [PubMed]
- Wise, D. R., & Thompson, C. B. (2010). Glutamine addiction: A new therapeutic target in cancer. Trends in Biochemical Sciences, 35(8), 427–433. doi: 10.1016/j.tibs.2010.05.003. [DOI] [PMC free article] [PubMed]
- Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv, 460(2), 525–542. doi: 10.1007/s00424-010-0809-1. [DOI] [PubMed]
- Tsai, G. C., et al. (1991). Reductions in acidic amino acids and N-acetylaspartylglutamate in amyotrophic lateral sclerosis CNS. Brain Research, 556(1), 151–156. doi: 10.1016/0006-8993(91)90560-i. [DOI] [PubMed]
- Zhou, J., et al. (2005). NAAG peptidase inhibitors and their potential for diagnosis and therapy. Nature Reviews. Drug Discovery, 4(12), 1015–1026. doi: 10.1038/nrd1903. [DOI] [PubMed]
- Asaka, R., & Le, A. (2019). Dual role of N-acetyl-aspartyl-glutamate metabolism in cancer monitor and therapy. Molecular & Cellular Oncology, 6(5), e1627273. doi: 10.1080/23723556.2019.1627273. [DOI] [PMC free article] [PubMed]
- Tsai, G., et al. (1995). Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Archives of General Psychiatry, 52(10), 829–836. doi: 10.1001/archpsyc.1995.03950220039008. [DOI] [PubMed]
- Rowland, L. M., et al. (2013). In vivo measurements of glutamate, GABA, and NAAG in schizophrenia. Schizophrenia Bulletin, 39(5), 1096–1104. doi: 10.1093/schbul/sbs092. [DOI] [PMC free article] [PubMed]
- Mesters, J. R., et al. (2006). Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. The EMBO Journal, 25(6), 1375–1384. doi: 10.1038/sj.emboj.7600969. [DOI] [PMC free article] [PubMed]
- Ghosh, A., & Heston, W. D. (2004). Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. Journal of Cellular Biochemistry, 91(3), 528–539. doi: 10.1002/jcb.10661. [DOI] [PubMed]
- Evans, J. C., et al. (2016). The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. British Journal of Pharmacology, 173(21), 3041–3079. doi: 10.1111/bph.13576. [DOI] [PMC free article] [PubMed]
