Abstract
The signal intensity differences measured by an arterial-spin-labelling (ASL) magnetic resonance imaging (MRI) experiment are proportional to the local perfusion, which can be quantified with kinetic modeling. Here we present a step-by-step tutorial for the data post-processing needed to calculate an ASL perfusion map. The process of developing an analysis software is described with the essential program code, which involves nonlinear fitting a tracer kinetic model to the ASL data. Key parameters for the quantification are the arterial transit time (ATT), which is the time the labeled blood takes to flow from the labeling area to the tissue, and the tissue T1. As ATT varies with vasculature, physiology, anesthesia and pathology, it is recommended to measure it using multiple delay times. The tutorial explains how to analyze ASL data with multiple delay times and a T1 map for quantification.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Full text of this article can be found in Bookshelf.
References
- Pell GS, Thomas DL, Lythgoe MF, Calamante F, Howseman AM, Gadian DG et al (1999) Implementation of quantitative FAIR perfusion imaging with a short repetition time in time-course studies. Magn Reson Med 41(4):829–840 doi: 10.1002/(sici)1522-2594(199904)41:4<829::aid-mrm24>3.0.co;2-u. [DOI] [PubMed]
- Kudomi N, Koivuviita N, Liukko KE, Oikonen VJ, Tolvanen T, Iida H et al (2009) Parametric renal blood flow imaging using [15O]H2O and PET. Eur J Nucl Med Mol Imaging 36(4):683–691 doi: 10.1007/s00259-008-0994-8. [DOI] [PubMed]
- Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69 doi: 10.1038/jcbfm.1985.9. [DOI] [PubMed]
- Dobre MC, Ugurbil K, Marjanska M (2007) Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. Magn Reson Imaging 25(5):733–735 doi: 10.1016/j.mri.2006.10.020. [DOI] [PubMed]
- Rajendran R, Lew SK, Yong CX, Tan J, Wang DJ, Chuang KH (2013) Quantitative mouse renal perfusion using arterial spin labeling. NMR Biomed 26(10):1225–1232 doi: 10.1002/nbm.2939. [DOI] [PubMed]
- Duhamel G, Prevost V, Girard OM, Callot V, Cozzone PJ (2014) High-resolution mouse kidney perfusion imaging by pseudo-continuous arterial spin labeling at 11.75T. Magn Reson Med 71(3):1186–1196 doi: 10.1002/mrm.24740. [DOI] [PubMed]
- Hueper K, Gutberlet M, Rong S, Hartung D, Mengel M, Lu X et al (2014) Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function. Radiology 270(1):117–124 doi: 10.1148/radiol.13130367. [DOI] [PubMed]
- Romero CA, Cabral G, Knight RA, Ding G, Peterson EL, Carretero OA (2018) Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats. Am J Physiol Renal Physiol 314(1):F99–F106 doi: 10.1152/ajprenal.00332.2017. [DOI] [PMC free article] [PubMed]
- Wang JJ, Hendrich KS, Jackson EK, Ildstad ST, Williams DS, Ho C (1998) Perfusion quantitation in transplanted rat kidney by MRI with arterial spin labeling. Kidney Int 53(6):1783–1791 doi: 10.1046/j.1523-1755.1998.00945.x. [DOI] [PubMed]
