Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:279–299. doi: 10.1007/978-1-0716-0978-1_17

Functional Imaging Using Fluorine (19F) MR Methods: Basic Concepts.

Sonia Waiczies, Christian Prinz, Ludger Starke, Jason M Millward, Paula Ramos Delgado, Jens Rosenberg, Marc Nazaré, Helmar Waiczies, Andreas Pohlmann, Thoralf Niendorf
PMCID: PMC9703275  PMID: 33476007

Abstract

Kidney-associated pathologies would greatly benefit from noninvasive and robust methods that can objectively quantify changes in renal function. In the past years there has been a growing incentive to develop new applications for fluorine (19F) MRI in biomedical research to study functional changes during disease states. 19F MRI represents an instrumental tool for the quantification of exogenous 19F substances in vivo. One of the major benefits of 19F MRI is that fluorine in its organic form is absent in eukaryotic cells. Therefore, the introduction of exogenous 19F signals in vivo will yield background-free images, thus providing highly selective detection with absolute specificity in vivo. Here we introduce the concept of 19F MRI, describe existing challenges, especially those pertaining to signal sensitivity, and give an overview of preclinical applications to illustrate the utility and applicability of this technique for measuring renal function in animal models.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.


Full text of this article can be found in Bookshelf.

References

  1. Hingorani DV, Bernstein AS, Pagel MD (2015) A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol Imaging 10(4):245–265. https://doi.org/10.1002/cmmi.1629 doi: 10.1002/cmmi.1629. [DOI] [PMC free article] [PubMed]
  2. Grenier N, Merville P, Combe C (2016) Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol 12(6):348–359 doi: 10.1038/nrneph.2016.44. [DOI] [PubMed]
  3. Martinez GV, Zhang X, García-Martín ML, Morse DL, Woods M, Sherry AD, Gillies RJ (2011) Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents. NMR Biomed 24(10):1380–1391. https://doi.org/10.1002/nbm.1701 doi: 10.1002/nbm.1701. [DOI] [PMC free article] [PubMed]
  4. Brooks RA, Brunetti A, Alger JR, Di Chiro G (1989) On the origin of paramagnetic inhomogeneity effects in blood. Magn Reson Med 12(2):241–248 doi: 10.1002/mrm.1910120210. [DOI] [PubMed]
  5. Günther H (2013) NMR spectroscopy: basic principles, concepts and applications in chemistry. John Wiley & Sons, Hoboken, NJ
  6. Dolbier WR (2009) Guide to fluorine NMR for organic chemists. John Wiley & Sons, Hoboken, NJ
  7. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607. https://doi.org/10.1039/c5cs00541h doi: 10.1039/c5cs00541h. [DOI] [PMC free article] [PubMed]
  8. Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, Dosa E, Finn JP, Gahramanov S, Harisinghani M, Macdougall I, Neuwelt A, Vasanawala SS, Ambady P, Barajas R, Cetas JS, Ciporen J, DeLoughery TJ, Doolittle ND, Fu R, Grinstead J, Guimaraes AR, Hamilton BE, Li X, McConnell HL, Muldoon LL, Nesbit G, Netto JP, Petterson D, Rooney WD, Schwartz D, Szidonya L, Neuwelt EA (2017) Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 92(1):47–66. https://doi.org/10.1016/j.kint.2016.12.037 doi: 10.1016/j.kint.2016.12.037. [DOI] [PMC free article] [PubMed]
  9. Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K (2018) Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep 8(1):2082. https://doi.org/10.1038/s41598-018-19628-z doi: 10.1038/s41598-018-19628-z. [DOI] [PMC free article] [PubMed]
  10. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3(5):703–717. https://doi.org/10.2217/17435889.3.5.703 doi: 10.2217/17435889.3.5.703. [DOI] [PMC free article] [PubMed]
  11. O'Connor PM (2006) Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol 33(10):961–967. https://doi.org/10.1111/j.1440-1681.2006.04475.x doi: 10.1111/j.1440-1681.2006.04475.x. [DOI] [PubMed]
  12. Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40(2):123–137. https://doi.org/10.1111/1440-1681.12034 doi: 10.1111/1440-1681.12034. [DOI] [PMC free article] [PubMed]
  13. Le Dorze M, Legrand M, Payen D, Ince C (2009) The role of the microcirculation in acute kidney injury. Curr Opin Crit Care 15(6):503–508. https://doi.org/10.1097/MCC.0b013e328332f6cf doi: 10.1097/MCC.0b013e328332f6cf. [DOI] [PubMed]
  14. Ries M, Basseau F, Tyndal B, Jones R, Deminière C, Catargi B, Combe C, Moonen CWT, Grenier N (2003) Renal diffusion and BOLD MRI in experimental diabetic nephropathy. J Magn Reson Imaging 17(1):104–113. https://doi.org/10.1002/jmri.10224 doi: 10.1002/jmri.10224. [DOI] [PubMed]
  15. Prasad PV (2006) Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract 103(2):c58–c65. https://doi.org/10.1159/000090610 doi: 10.1159/000090610. [DOI] [PubMed]
  16. Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E (2015) How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol 213(1):19–38. https://doi.org/10.1111/apha.12393 doi: 10.1111/apha.12393. [DOI] [PubMed]
  17. Dardzinski BJ, Sotak CH (1994) Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of P erfluoro-15-crown-5-ether. Magn Reson Med 32(1):88–97 doi: 10.1002/mrm.1910320112. [DOI] [PubMed]
  18. Noth U, Morrissey SP, Deichmann R, Adolf H, Schwarzbauer C, Lutz J, Haase A (1995) In vivo measurement of partial oxygen pressure in large vessels and in the reticuloendothelial system using fast 19F-MRI. Magn Reson Med 34(5):738–745 doi: 10.1002/mrm.1910340513. [DOI] [PubMed]
  19. Chen J, Vemuri C, Palekar RU, Gaut JP, Goette M, Hu L, Cui G, Zhang H, Wickline SA (2015) Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. Am J Physiol Renal Physiol 308(7):28 doi: 10.1152/ajprenal.00457.2014. [DOI] [PMC free article] [PubMed]
  20. Hu L, Chen J, Yang X, Senpan A, Allen JS, Yanaba N, Caruthers SD, Lanza GM, Hammerman MR, Wickline SA (2013) Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear 1H/19F MRI and perfluorocarbon nanoparticles. Magn Reson Med. https://doi.org/10.1002/mrm.24851 doi: 10.1002/mrm.24851. [DOI] [PMC free article] [PubMed]
  21. Riess JG (2005) Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif Cell Blood Sub Biotechnol 33(1):47–63 doi: 10.1081/bio-200046659. [DOI] [PubMed]
  22. Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM (2015) Recent advances in (19)fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering (Beijing, China) 1(4):475–489. https://doi.org/10.15302/j-eng-2015103 doi: 10.15302/j-eng-2015103. [DOI] [PMC free article] [PubMed]
  23. Mitsuno T, Ohyanagi H, Naito R (1982) Clinical studies of a perfluorochemical whole blood substitute (Fluosol-DA) summary of 186 cases. Ann Surg 195(1):60–69. https://doi.org/10.1097/00000658-198201001-00010 doi: 10.1097/00000658-198201001-00010. [DOI] [PMC free article] [PubMed]
  24. Gould SA, Rosen AL, Sehgal LR, Sehgal HL, Langdale LA, Krause LM, Rice CL, Chamberlin WH, Moss GS (1986) Fluosol-DA as a red-cell substitute in acute anemia. N Engl J Med 314(26):1653–1656. https://doi.org/10.1056/nejm198606263142601 doi: 10.1056/nejm198606263142601. [DOI] [PubMed]
  25. McFarland E, Koutcher JA, Rosen BR, Teicher B, Brady TJ (1985) In vivo 19F NMR imaging. J Comput Assist Tomogr 9(1):8–15 doi: 10.1097/00004728-198501000-00002. [DOI] [PubMed]
  26. Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27(3):261–271. https://doi.org/10.1002/nbm.3059 doi: 10.1002/nbm.3059. [DOI] [PubMed]
  27. Parhami P, Fung B (1983) Fluorine-19 relaxation study of perfluoro chemicals as oxygen carriers. J Phys Chem 87(11):1928–1931
  28. Mason RP, Nunnally RL, Antich PP (1991) Tissue oxygenation: a novel determination using 19F surface coil NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn Reson Med 18(1):71–79. https://doi.org/10.1002/mrm.1910180109 doi: 10.1002/mrm.1910180109. [DOI] [PubMed]
  29. Mason RP, Jeffrey FMH, Malloy CR, Babcock EE, Antich PP (1992) A noninvasive assessment of myocardial oxygen tension: 19f nmr spectroscopy of sequestered perfluorocarbon emulsion. Magn Reson Med 27(2):310–317. https://doi.org/10.1002/mrm.1910270210 doi: 10.1002/mrm.1910270210. [DOI] [PubMed]
  30. Pereira PCB, Miranda DM, Oliveira EA, Silva ACSE (2009) Molecular pathophysiology of renal tubular acidosis. Curr Genomics 10(1):51–59. https://doi.org/10.2174/138920209787581262 doi: 10.2174/138920209787581262. [DOI] [PMC free article] [PubMed]
  31. Zhang S, Wu K, Sherry AD (1999) A novel pH-sensitive MRI contrast agent. Angew Chem Int Ed 38(21):3192–3194. https://doi.org/10.1002/(sici)1521-3773(19991102)38:21<3192::aid-anie3192>3.0.co;2-# doi: 10.1002/(sici)1521-3773(19991102)38:21&#x0003c;3192::aid-anie3192&#x0003e;3.0.co;2-#. [DOI] [PubMed]
  32. Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70(3):859–864. https://doi.org/10.1002/mrm.24513 doi: 10.1002/mrm.24513. [DOI] [PubMed]
  33. Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76(Suppl_1):S11–S22. https://doi.org/10.1259/bjr/12913493 doi: 10.1259/bjr/12913493. [DOI] [PubMed]
  34. Gianolio E, Napolitano R, Fedeli F, Arena F, Aime S (2009) Poly-β-cyclodextrin based platform for pH mapping via a ratiometric 19F/1H MRI method. Chem Commun 40:6044–6046. https://doi.org/10.1039/B914540K doi: 10.1039/B914540K. [DOI] [PubMed]
  35. Chang YC, Graves DJ (1985) Use of 6-fluoroderivatives of pyridoxal and pyridoxal phosphate in the study of the coenzyme function in glycogen phosphorylase. J Biol Chem 260(5):2709–2714 [PubMed]
  36. Mehta VD, Kulkarni PV, Mason RP, Constantinescu A, Aravind S, Goomer N, Antich PP (1994) 6-Fluoropyridoxol: a novel probe of cellular pH using 19F NMR spectroscopy. FEBS Lett 349(2):234–238. https://doi.org/10.1016/0014-5793(94)00675-x doi: 10.1016/0014-5793(94)00675-x. [DOI] [PubMed]
  37. He S, Mason RP, Hunjan S, Mehta VD, Arora V, Katipally R, Kulkarni PV, Antich PP (1998) Development of novel 19F NMR pH indicators: synthesis and evaluation of a series of fluorinated vitamin B6 analogues. Bioorg Med Chem 6(9):1631–1639. https://doi.org/10.1016/S0968-0896(98)00104-7 doi: 10.1016/S0968-0896(98)00104-7. [DOI] [PubMed]
  38. Neubauer AM, Myerson J, Caruthers SD, Hockett FD, Winter PM, Chen J, Gaffney PJ, Robertson JD, Lanza GM, Wickline SA (2008) Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 60(5):1066–1072 doi: 10.1002/mrm.21750. [DOI] [PMC free article] [PubMed]
  39. Chalmers KH, De Luca E, Hogg NHM, Kenwright AM, Kuprov I, Parker D, Botta M, Wilson JI, Blamire AM (2010) Design principles and theory of paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance: a proof-of-concept study. Chem Eur J 16(1):134–148. https://doi.org/10.1002/chem.200902300 doi: 10.1002/chem.200902300. [DOI] [PubMed]
  40. Gaudette AI, Thorarinsdottir AE, Harris TD (2017) pH-dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex. Chem Commun 53(96):12962–12965. https://doi.org/10.1039/C7CC08158H doi: 10.1039/C7CC08158H. [DOI] [PubMed]
  41. Xie D, Ohman LE, Que EL (2018) Towards Ni(II) complexes with spin switches for 19F MR-based pH sensing. MAGMA. https://doi.org/10.1007/s10334-018-0698-4 doi: 10.1007/s10334-018-0698-4. [DOI] [PubMed]
  42. Preslar AT, Tantakitti F, Park K, Zhang S, Stupp SI, Meade TJ (2016) 19F magnetic resonance imaging signals from peptide amphiphile nanostructures are strongly affected by their shape. ACS Nano 10(8):7376–7384. https://doi.org/10.1021/acsnano.6b00267 doi: 10.1021/acsnano.6b00267. [DOI] [PMC free article] [PubMed]
  43. Liu KD, Glidden DV, Eisner MD, Parsons PE, Ware LB, Wheeler A, Korpak A, Thompson BT, Chertow GM, Matthay MA (2007) Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury. Crit Care Med 35(12):2755–2761 [PMC free article] [PubMed]
  44. Levy EM, Viscoli CM, Horwitz RI (1996) The effect of acute renal failure on mortality. A cohort analysis. JAMA 275(19):1489–1494 [PubMed]
  45. Jorres A, Gahl GM, Dobis C, Polenakovic MH, Cakalaroski K, Rutkowski B, Kisielnicka E, Krieter DH, Rumpf KW, Guenther C, Gaus W, Hoegel J (1999) Haemodialysis-membrane biocompatibility and mortality of patients with dialysis-dependent acute renal failure: a prospective randomised multicentre trial. International Multicentre Study Group. Lancet 354(9187):1337–1341 doi: 10.1016/s0140-6736(99)01213-1. [DOI] [PubMed]
  46. Brouns R, De Deyn PP (2004) Neurological complications in renal failure: a review. Clin Neurol Neurosurg 107(1):1–16. https://doi.org/10.1016/j.clineuro.2004.07.012 doi: 10.1016/j.clineuro.2004.07.012. [DOI] [PubMed]
  47. Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118(2):140–148 doi: 10.1161/CIRCULATIONAHA.107.737890. [DOI] [PMC free article] [PubMed]
  48. Hitchens TK, Ye Q, Eytan DF, Janjic JM, Ahrens ET, Ho C (2011) 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med 65(4):1144–1153. https://doi.org/10.1002/mrm.22702 doi: 10.1002/mrm.22702. [DOI] [PMC free article] [PubMed]
  49. Temme S, Bonner F, Schrader J, Flögel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(3):329–343. https://doi.org/10.1002/wnan.1163 doi: 10.1002/wnan.1163. [DOI] [PubMed]
  50. Waiczies H, Lepore S, Drechsler S, Qadri F, Purfurst B, Sydow K, Dathe M, Kuhne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S (2013) Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 3:1280. https://doi.org/10.1038/srep01280 doi: 10.1038/srep01280. [DOI] [PMC free article] [PubMed]
  51. Flögel U, Burghoff S, van Lent PL, Temme S, Galbarz L, Ding Z, El-Tayeb A, Huels S, Bonner F, Borg N, Jacoby C, Muller CE, van den Berg WB, Schrader J (2012) Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med 4(146):146ra108. https://doi.org/10.1126/scitranslmed.3003717 doi: 10.1126/scitranslmed.3003717. [DOI] [PubMed]
  52. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987 doi: 10.1038/nbt1121. [DOI] [PubMed]
  53. Waiczies H, Lepore S, Janitzek N, Hagen U, Seifert F, Ittermann B, Purfurst B, Pezzutto A, Paul F, Niendorf T, Waiczies S (2011) Perfluorocarbon particle size influences magnetic resonance signal and immunological properties of dendritic cells. PLoS One 6(7):e21981 doi: 10.1371/journal.pone.0021981. [DOI] [PMC free article] [PubMed]
  54. Waiczies H, Guenther M, Skodowski J, Lepore S, Pohlmann A, Niendorf T, Waiczies S (2013) Monitoring dendritic cell migration using 19F/1H magnetic resonance imaging. J Vis Exp 73:e50251. https://doi.org/10.3791/50251 doi: 10.3791/50251. [DOI] [PMC free article] [PubMed]
  55. Ahrens ET, Helfer BM, O'Hanlon CF, Schirda C (2014) Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn Reson Med 72 (6):1696-1701. https://doi.org/10.1002/mrm.25454 doi: 10.1002/mrm.25454. [DOI] [PMC free article] [PubMed]
  56. Ten Brinke A, Hilkens CMU, Cools N, Geissler EK, Hutchinson JA, Lombardi G, Lord P, Sawitzki B, Trzonkowski P, Van Ham SM, Martinez-Caceres EM (2015) Clinical use of tolerogenic dendritic cells-harmonization approach in european collaborative effort. Mediat Inflamm 2015:8. https://doi.org/10.1155/2015/471719 doi: 10.1155/2015/471719. [DOI] [PMC free article] [PubMed]
  57. Hutchinson JA, Riquelme P, Sawitzki B, Tomiuk S, Miqueu P, Zuhayra M, Oberg HH, Pascher A, Lützen U, Janßen U, Broichhausen C, Renders L, Thaiss F, Scheuermann E, Henze E, Volk H-D, Chatenoud L, Lechler RI, Wood KJ, Kabelitz D, Schlitt HJ, Geissler EK, Fändrich F (2011) Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol 187(5):2072–2078. https://doi.org/10.4049/jimmunol.1100762 doi: 10.4049/jimmunol.1100762. [DOI] [PubMed]
  58. Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129. https://doi.org/10.1002/nbm.1570 doi: 10.1002/nbm.1570. [DOI] [PMC free article] [PubMed]
  59. Jirak D, Galisova A, Kolouchova K, Babuka D, Hruby M (2018) Fluorine polymer probes for magnetic resonance imaging: quo vadis? MAGMA. https://doi.org/10.1007/s10334-018-0724-6 doi: 10.1007/s10334-018-0724-6. [DOI] [PMC free article] [PubMed]
  60. Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, de Vries IJ, Ahrens ET, Mailliard RB (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12(2):238–250. https://doi.org/10.3109/14653240903446902 doi: 10.3109/14653240903446902. [DOI] [PMC free article] [PubMed]
  61. Bonetto F, Srinivas M, Heerschap A, Mailliard R, Ahrens ET, Figdor CG, de Vries IJ (2011) A novel (19)F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 129(2):365–373. https://doi.org/10.1002/ijc.25672 doi: 10.1002/ijc.25672. [DOI] [PMC free article] [PubMed]
  62. Waiczies S, Lepore S, Sydow K, Drechsler S, Ku MC, Martin C, Lorenz D, Schutz I, Reimann HM, Purfurst B, Dieringer MA, Waiczies H, Dathe M, Pohlmann A, Niendorf T (2015) Anchoring dipalmitoyl phosphoethanolamine to nanoparticles boosts cellular uptake and fluorine-19 magnetic resonance signal. Sci Rep 5:8427. https://doi.org/10.1038/srep08427 doi: 10.1038/srep08427. [DOI] [PMC free article] [PubMed]
  63. Hutchinson JA, Ahrens N, Riquelme P, Walter L, Gruber M, Böger CA, Farkas S, Scherer MN, Broichhausen C, Bein T, Schlitt H-J, Fändrich F, Banas B, Geissler EK (2014) Clinical management of patients receiving cell-based immunoregulatory therapy. Transfusion 54(9):2336–2343. https://doi.org/10.1111/trf.12641 doi: 10.1111/trf.12641. [DOI] [PubMed]
  64. Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A (2016) “Eat me” imaging and therapy. Adv Drug Deliv Rev 99(Pt A):2–11. https://doi.org/10.1016/j.addr.2016.01.009 doi: 10.1016/j.addr.2016.01.009. [DOI] [PMC free article] [PubMed]
  65. Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, Kaul S (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Inflammation 102:2745–2750 doi: 10.1161/01.cir.102.22.2745. [DOI] [PubMed]
  66. Steinman RM, Mellman IS, Muller WA, Cohn ZA (1983) Endocytosis and the recycling of plasma membrane. J Cell Biol 96(1):1–27 doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed]
  67. Kaneda MM, Sasaki Y, Lanza GM, Milbrandt J, Wickline SA (2010) Mechanisms of nucleotide trafficking during siRNA delivery to endothelial cells using perfluorocarbon nanoemulsions. Biomaterials 31(11):3079–3086 doi: 10.1016/j.biomaterials.2010.01.006. [DOI] [PMC free article] [PubMed]
  68. Partlow KC, Lanza GM, Wickline SA (2008) Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials 29(23):3367–3375 doi: 10.1016/j.biomaterials.2008.04.030. [DOI] [PMC free article] [PubMed]
  69. Chapelin F, Capitini CM, Ahrens ET (2018) Fluorine-19 MRI for detection and quantification of immune cell therapy for cancer. J Immunother Cancer 6(1):105. https://doi.org/10.1186/s40425-018-0416-9 doi: 10.1186/s40425-018-0416-9. [DOI] [PMC free article] [PubMed]
  70. Chapelin F, Gao S, Okada H, Weber TG, Messer K, Ahrens ET (2017) Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Sci Rep 7(1):17748. https://doi.org/10.1038/s41598-017-17669-4 doi: 10.1038/s41598-017-17669-4. [DOI] [PMC free article] [PubMed]
  71. Sanz-Ortega L, Rojas JM, Marcos A, Portilla Y, Stein JV, Barber DF (2019) T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J Nanobiotechnol 17(1):14. https://doi.org/10.1186/s12951-019-0440-z doi: 10.1186/s12951-019-0440-z. [DOI] [PMC free article] [PubMed]
  72. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86. https://doi.org/10.1126/science.1082160 doi: 10.1126/science.1082160. [DOI] [PubMed]
  73. Bouvain P, Flocke V, Krämer W, Schubert R, Schrader J, Flögel U, Temme S (2018) Dissociation of 19F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions. MAGMA. https://doi.org/10.1007/s10334-018-0723-7 doi: 10.1007/s10334-018-0723-7. [DOI] [PubMed]
  74. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510. https://doi.org/10.1016/j.nantod.2015.06.006 doi: 10.1016/j.nantod.2015.06.006. [DOI] [PMC free article] [PubMed]
  75. Waiczies S, Niendorf T, Lombardi G (2017) Labeling of cell therapies: how can we get it right? Oncoimmunology 2017:e1345403. https://doi.org/10.1080/2162402x.2017.1345403 doi: 10.1080/2162402x.2017.1345403. [DOI] [PMC free article] [PubMed]
  76. Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G (2015) 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 115(2):1106–1129. https://doi.org/10.1021/cr500286d doi: 10.1021/cr500286d. [DOI] [PubMed]
  77. Jiang ZX, Liu X, Jeong EK, Yu YB (2009) Symmetry-guided design and fluorous synthesis of a stable and rapidly excreted imaging tracer for 19F MRI. Angew Chem Int Edn 48(26):4755–4758. https://doi.org/10.1002/anie.200901005 doi: 10.1002/anie.200901005. [DOI] [PMC free article] [PubMed]
  78. Tirotta I, Mastropietro A, Cordiglieri C, Gazzera L, Baggi F, Baselli G, Bruzzone MG, Zucca I, Cavallo G, Terraneo G, Baldelli Bombelli F, Metrangolo P, Resnati G (2014) A superfluorinated molecular probe for highly sensitive in vivo(19)F-MRI. J Am Chem Soc 136(24):8524–8527. https://doi.org/10.1021/ja503270n doi: 10.1021/ja503270n. [DOI] [PubMed]
  79. Peterson KL, Srivastava K, Pierre VC (2018) Fluorinated paramagnetic complexes: sensitive and responsive probes for magnetic resonance spectroscopy and imaging. Front Chem 6:160–160. https://doi.org/10.3389/fchem.2018.00160 doi: 10.3389/fchem.2018.00160. [DOI] [PMC free article] [PubMed]
  80. Kislukhin AA, Xu H, Adams SR, Narsinh KH, Tsien RY, Ahrens ET (2016) Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat Mater 15:662. https://doi.org/10.1038/nmat4585. https://www.nature.com/articles/nmat4585#supplementary-information doi: 10.1038/nmat4585. [DOI] [PMC free article] [PubMed]
  81. Harvey P, Kuprov I, Parker D (2012) Lanthanide complexes as paramagnetic probes for 19F magnetic resonance. Eur J Inorg Chem 2012(12):2015–2022
  82. Jiang Z-X, Feng Y, Yu YB (2011) Fluorinated paramagnetic chelates as potential multi-chromic 19 F tracer agents. Chem Commun 47(25):7233–7235 doi: 10.1039/c1cc11150g. [DOI] [PMC free article] [PubMed]
  83. Hu L, Zhang L, Chen J, Lanza GM, Wickline SA (2011) Diffusional mechanisms augment the fluorine MR relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation. J Magn Reson Imaging 34(3):653–661 doi: 10.1002/jmri.22656. [DOI] [PMC free article] [PubMed]
  84. Srivastava K, Ferrauto G, Young VG, Aime S, Pierre VC (2017) Eight-coordinate, stable Fe(II) complex as a dual 19F and CEST contrast agent for ratiometric pH imaging. Inorg Chem 56(20):12206–12213. https://doi.org/10.1021/acs.inorgchem.7b01629 doi: 10.1021/acs.inorgchem.7b01629. [DOI] [PubMed]
  85. Yu M, Bouley BS, Xie D, Que EL (2019) Highly fluorinated metal complexes as dual 19F and PARACEST imaging agents. Dalton Trans. https://doi.org/10.1039/C9DT01852B doi: 10.1039/C9DT01852B. [DOI] [PMC free article] [PubMed]
  86. Faber C, Schmid F (2016) Pulse sequence considerations and schemes. Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 1–28
  87. Chalmers KH, Kenwright AM, Parker D, Blamire AM (2011) 19F-lanthanide complexes with increased sensitivity for 19F-MRI: optimization of the MR acquisition. Magn Reson Med 66(4):931–936. https://doi.org/10.1002/mrm.22881 doi: 10.1002/mrm.22881. [DOI] [PubMed]
  88. Schmid F, Höltke C, Parker D, Faber C (2013) Boosting 19F MRI—SNR efficient detection of paramagnetic contrast agents using ultrafast sequences. Magn Reson Med 69(4):1056–1062. https://doi.org/10.1002/mrm.24341 doi: 10.1002/mrm.24341. [DOI] [PubMed]
  89. Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD (2015) Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 74(2):537–543. https://doi.org/10.1002/mrm.25437 doi: 10.1002/mrm.25437. [DOI] [PMC free article] [PubMed]
  90. Mastropietro A, De Bernardi E, Breschi GL, Zucca I, Cametti M, Soffientini CD, de Curtis M, Terraneo G, Metrangolo P, Spreafico R, Resnati G, Baselli G (2014) Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for (1)(9)F-MRI studies. J Magn Reson Imaging 40(1):162–170 doi: 10.1002/jmri.24347. [DOI] [PubMed]
  91. Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58(4):725–734. https://doi.org/10.1002/mrm.21352 doi: 10.1002/mrm.21352. [DOI] [PubMed]
  92. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833. https://doi.org/10.1002/mrm.1910030602 doi: 10.1002/mrm.1910030602. [DOI] [PubMed]
  93. Rahmer J, Börnert P, Groen J, Bos C (2006) Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 55(5):1075–1082. https://doi.org/10.1002/mrm.20868 doi: 10.1002/mrm.20868. [DOI] [PubMed]
  94. Hennig J (1999) K-space sampling strategies. Eur Radiol 9(6):1020–1031. https://doi.org/10.1007/s003300050788 doi: 10.1007/s003300050788. [DOI] [PubMed]
  95. Keupp J, Rahmer J, Grässlin I, Mazurkewitz PC, Schaeffter T, Lanza GM, Wickline SA, Caruthers SD (2011) Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn Reson Med 66(4):1116–1122. https://doi.org/10.1002/mrm.22877 doi: 10.1002/mrm.22877. [DOI] [PMC free article] [PubMed]
  96. Hu L, Hockett FD, Chen J, Zhang L, Caruthers SD, Lanza GM, Wickline SA (2011) A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla. J Magn Reson Imaging 34(1):245–252 doi: 10.1002/jmri.22516. [DOI] [PubMed]
  97. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85 doi: 10.1016/j.jmr.2011.09.018. [DOI] [PubMed]
  98. Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes – a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46(2–3):131–155
  99. Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22(8):834–842 doi: 10.1002/nbm.1396. [DOI] [PubMed]
  100. Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808. https://doi.org/10.1038/s41598-017-09622-2 doi: 10.1038/s41598-017-09622-2. [DOI] [PMC free article] [PubMed]
  101. Sack M, Wetterling F, Sartorius A, Ende G, Weber-Fahr W (2014) Signal-to-noise ratio of a mouse brain 13C CryoProbe™ system in comparison with room temperature coils: spectroscopic phantom and in vivo results. NMR Biomed 27(6):709–715. https://doi.org/10.1002/nbm.3110 doi: 10.1002/nbm.3110. [DOI] [PubMed]
  102. Axel L, Hayes C (1985) Surface coil magnetic resonance imaging. Arch Int Physiol Biochim 93(5):11–18. https://doi.org/10.3109/13813458509080620 doi: 10.3109/13813458509080620. [DOI] [PubMed]
  103. Crowley MG, Evelhoch JL, JJH A (1985) The surface-coil NMR receiver in the presence of homogeneous B1 excitation. J Magn Reson 64(1):20–31. https://doi.org/10.1016/0022-2364(85)90026-5 doi: 10.1016/0022-2364(85)90026-5. [DOI]
  104. Goette MJ, Lanza GM, Caruthers SD, Wickline SA (2015) Improved quantitative (19) F MR molecular imaging with flip angle calibration and B1 -mapping compensation. J Magn Reson Imaging 42(2):488–494. https://doi.org/10.1002/jmri.24812 doi: 10.1002/jmri.24812. [DOI] [PMC free article] [PubMed]
  105. Vernikouskaya I, Pochert A, Lindén M, Rasche V (2018) Quantitative 19F MRI of perfluoro-15-crown-5-ether using uniformity correction of the spin excitation and signal reception. MAGMA. https://doi.org/10.1007/s10334-018-0696-6 doi: 10.1007/s10334-018-0696-6. [DOI] [PubMed]
  106. Ladd ME (2018) The quest for higher sensitivity in MRI through higher magnetic fields. Z Med Phys 28(1):1–3. https://doi.org/10.1016/j.zemedi.2017.12.001 doi: 10.1016/j.zemedi.2017.12.001. [DOI] [PubMed]
  107. Niendorf T, Barth M, Kober F, Trattnig S (2016) From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. Magma (New York, NY) 29(3):309–311. https://doi.org/10.1007/s10334-016-0564-1 doi: 10.1007/s10334-016-0564-1. [DOI] [PubMed]
  108. Hoult DI, Lauterbur PC (1979) Sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34(2):425–433
  109. Pohmann R, Speck O, Scheffler K (2016) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med 75(2):801–809. https://doi.org/10.1002/mrm.25677 doi: 10.1002/mrm.25677. [DOI] [PubMed]
  110. Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concept Magn Reson 12(4):173–187. https://doi.org/10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q doi: 10.1002/1099-0534(2000)12:4&#x0003c;173::AID-CMR1&#x0003e;3.0.CO;2-Q. [DOI]
  111. Guérin B, Villena JF, Polimeridis AG, Adalsteinsson E, Daniel L, White JK, Wald LL (2017) The ultimate signal-to-noise ratio in realistic body models. Magn Reson Med 78(5):1969–1980. https://doi.org/10.1002/mrm.26564 doi: 10.1002/mrm.26564. [DOI] [PMC free article] [PubMed]
  112. Schepkin VD, Brey WW, Gor’kov PL, Grant SC (2010) Initial in vivo rodent sodium and proton MR imaging at 21.1 T. Magn Reson Imaging 28(3):400–407. https://doi.org/10.1016/j.mri.2009.10.002 doi: 10.1016/j.mri.2009.10.002. [DOI] [PMC free article] [PubMed]
  113. Waiczies S, Rosenberg JT, Prinz C, Starke L, Millward JM, Ramos Delgado P, Pohlmann A, Kühne A, Waiczies H, Niendorf T (2018) Fluorine-19 magnetic resonance at 21.1 Tesla to detect brain inflammation. Proc Intl Soc Mag Reson Med 26:3314

RESOURCES