Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2020;2116:801–817. doi: 10.1007/978-1-0716-0294-2_48

In Vivo Bioluminescence Imaging to Assess Compound Efficacy Against Trypanosoma brucei.

Ryan Ritchie, Michael P Barrett, Jeremy C Mottram, Elmarie Myburgh
PMCID: PMC9703276  PMID: 32221957

Abstract

Traditional animal models for human African trypanosomiasis rely on detecting Trypanosoma brucei brucei parasitemia in the blood. Testing the efficacy of new compounds in these models is cumbersome because it may take several months after treatment before surviving parasites become detectable in the blood. To expedite compound screening, we have used a Trypanosoma brucei brucei GVR35 strain expressing red-shifted firefly luciferase to monitor parasite distribution in infected mice through noninvasive whole-body bioluminescence imaging. This protocol describes the infection and in vivo bioluminescence imaging of mice to assess compound efficacy against T. brucei during the two characteristic stages of disease, the hemolymphatic phase (stage 1) and the encephalitic or central nervous system phase (stage 2).


Full text of this article can be found in Bookshelf.

References

  1. Jennings FW, Gray GD (1983) Relapsed parasitaemia following chemotherapy of chronic T. brucei infections in mice and its relation to cerebral trypanosomes. Contrib Microbiol Immunol 7:147–154 [PubMed]
  2. Jennings FW, Rodgers J, Bradley B, Gettinby G, Kennedy PG, Murray M (2002) Human African trypanosomiasis: potential therapeutic benefits of an alternative suramin and melarsoprol regimen. Parasitol Int 51(4):381–388. doi:S1383576902000442 doi: 10.1016/s1383-5769(02)00044-2. [DOI] [PubMed]
  3. Franke-Fayard B, Waters AP, Janse CJ (2006) Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc 1(1):476–485. https://doi.org/10.1038/nprot.2006.69 doi: 10.1038/nprot.2006.69. [DOI] [PubMed]
  4. Miller JL, Murray S, Vaughan AM, Harupa A, Sack B, Baldwin M, Crispe IN, Kappe SH (2013) Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS One 8(4):e60820. https://doi.org/10.1371/journal.pone.0060820 doi: 10.1371/journal.pone.0060820. [DOI] [PMC free article] [PubMed]
  5. Ploemen IH, Prudencio M, Douradinha BG, Ramesar J, Fonager J, van Gemert GJ, Luty AJ, Hermsen CC, Sauerwein RW, Baptista FG, Mota MM, Waters AP, Que I, Lowik CW, Khan SM, Janse CJ, Franke-Fayard BM (2009) Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS One 4(11):e7881. https://doi.org/10.1371/journal.pone.0007881 doi: 10.1371/journal.pone.0007881. [DOI] [PMC free article] [PubMed]
  6. Zelmer A, Carroll P, Andreu N, Hagens K, Mahlo J, Redinger N, Robertson BD, Wiles S, Ward TH, Parish T, Ripoll J, Bancroft GJ, Schaible UE (2012) A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J Antimicrob Chemother 67(8):1948–1960. https://doi.org/10.1093/jac/dks161 doi: 10.1093/jac/dks161. [DOI] [PMC free article] [PubMed]
  7. Lang T, Goyard S, Lebastard M, Milon G (2005) Bioluminescent Leishmania expressing luciferase for rapid and high throughput screening of drugs acting on amastigote-harbouring macrophages and for quantitative real-time monitoring of parasitism features in living mice. Cell Microbiol 7(3):383–392. https://doi.org/10.1111/j.1462-5822.2004.00468.x doi: 10.1111/j.1462-5822.2004.00468.x. [DOI] [PubMed]
  8. Michel G, Ferrua B, Lang T, Maddugoda MP, Munro P, Pomares C, Lemichez E, Marty P (2011) Luciferase-expressing Leishmania infantum allows the monitoring of amastigote population size, in vivo, ex vivo and in vitro. PLoS Negl Trop Dis 5(9):e1323. https://doi.org/10.1371/journal.pntd.0001323 doi: 10.1371/journal.pntd.0001323. [DOI] [PMC free article] [PubMed]
  9. Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM (2014) Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 16(9):1285–1300. https://doi.org/10.1111/cmi.12297 doi: 10.1111/cmi.12297. [DOI] [PMC free article] [PubMed]
  10. Claes F, Vodnala SK, van Reet N, Boucher N, Lunden-Miguel H, Baltz T, Goddeeris BM, Buscher P, Rottenberg ME (2009) Bioluminescent imaging of Trypanosoma brucei shows preferential testis dissemination which may hamper drug efficacy in sleeping sickness. PLoS Negl Trop Dis 3(7):e486 doi: 10.1371/journal.pntd.0000486. [DOI] [PMC free article] [PubMed]
  11. Giroud C, Ottones F, Coustou V, Dacheux D, Biteau N, Miezan B, Van Reet N, Carrington M, Doua F, Baltz T (2009) Murine models for Trypanosoma brucei gambiense disease progression: from silent to chronic infections and early brain tropism. PLoS Negl Trop Dis 3(9):e509. https://doi.org/10.1371/journal.pntd.0000509 doi: 10.1371/journal.pntd.0000509. [DOI] [PMC free article] [PubMed]
  12. McLatchie AP, Burrell-Saward H, Myburgh E, Lewis MD, Ward TH, Mottram JC, Croft SL, Kelly JM, Taylor MC (2013) Highly sensitive in vivo imaging of Trypanosoma brucei expressing “red-shifted” luciferase. PLoS Negl Trop Dis 7(11):e2571. https://doi.org/10.1371/journal.pntd.0002571 doi: 10.1371/journal.pntd.0002571. [DOI] [PMC free article] [PubMed]
  13. Myburgh E, Coles JA, Ritchie R, Kennedy PG, McLatchie AP, Rodgers J, Taylor MC, Barrett MP, Brewer JM, Mottram JC (2013) In vivo imaging of trypanosome-brain interactions and development of a rapid screening test for drugs against CNS stage trypanosomiasis. PLoS Negl Trop Dis 7(8):e2384. https://doi.org/10.1371/journal.pntd.0002384 doi: 10.1371/journal.pntd.0002384. [DOI] [PMC free article] [PubMed]
  14. Burrell-Saward H, Rodgers J, Bradley B, Croft SL, Ward TH (2015) A sensitive and reproducible in vivo imaging mouse model for evaluation of drugs against late-stage human African trypanosomiasis. J Antimicrob Chemother 70(2):510–517. https://doi.org/10.1093/jac/dku393 doi: 10.1093/jac/dku393. [DOI] [PubMed]
  15. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJ, Myburgh E, Gao MY, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh HX, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, Rao SP, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537(7619):229–233. https://doi.org/10.1038/nature19339 doi: 10.1038/nature19339. [DOI] [PMC free article] [PubMed]
  16. Rodgers J, Jones A, Gibaud S, Bradley B, McCabe C, Barrett MP, Gettinby G, Kennedy PG (2011) Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis. PLoS Negl Trop Dis 5(9):e1308. https://doi.org/10.1371/journal.pntd.0001308 doi: 10.1371/journal.pntd.0001308. [DOI] [PMC free article] [PubMed]
  17. Jennings FW, Whitelaw DD, Holmes PH, Chizyuka HG, Urquhart GM (1979) The brain as a source of relapsing Trypanosoma brucei infection in mice after chemotherapy. Int J Parasitol 9(4):381–384. doi:0020-7519(79)90089-4 doi: 10.1016/0020-7519(79)90089-4. [DOI] [PubMed]
  18. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vorstenbosch C, European Federation of Pharmaceutical Industries A, European Centre for the Validation of Alternative M (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21(1):15–23 doi: 10.1002/jat.727. [DOI] [PubMed]

RESOURCES