Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;1311:205–214. doi: 10.1007/978-3-030-65768-0_15

Targeting Metabolic Cross Talk Between Cancer Cells and Cancer-Associated Fibroblasts.

Jin G Jung, Anne Le
PMCID: PMC9703279  PMID: 34014545

Abstract

Although cancer has classically been regarded as a genetic disease of uncontrolled cell growth, the importance of the tumor microenvironment (TME) [1, 2] is continuously emphasized by the accumulating evidence that cancer growth is not simply dependent on the cancer cells themselves [3, 4] but also dependent on angiogenesis [5-8], inflammation [9, 10], and the supporting roles of cancer-associated fibroblasts (CAFs) [11-13]. After the discovery that CAFs are able to remodel the tumor matrix within the TME and provide the nutrients and chemicals to promote cancer cell growth [14], many studies have aimed to uncover the cross talk between cancer cells and CAFs. Moreover, a new paradigm in cancer metabolism shows how cancer cells act like "metabolic parasites" to take up the high-energy metabolites, such as lactate, ketone bodies, free fatty acids, and glutamine from supporting cells, including CAFs and cancer-associated adipocytes (CAAs) [15, 16]. This chapter provides an overview of the metabolic coupling between CAFs and cancer cells to further define the therapeutic options to disrupt the CAF-cancer cell interactions.


Full text of this article can be found in Bookshelf.

References

  1. Antonio, M. J., Zhang, C., & Le, A. (2021). Different tumor microenvironments lead to different metabolic phenotypes. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_10. doi: 10.1007/978-3-030-65768-0_10. [DOI] [PMC free article] [PubMed]
  2. Nabi, K., & Le, A. (2021). The intratumoral heterogeneity of cancer metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_11. doi: 10.1007/978-3-030-65768-0_11. [DOI] [PMC free article] [PubMed]
  3. Bissell, M. J., & Radisky, D. (2001). Putting tumours in context. Nature Reviews. Cancer, 1(1), 46–54. doi: 10.1038/35094059. [DOI] [PMC free article] [PubMed]
  4. Tlsty, T. D., & Coussens, L. M. (2006). Tumor stroma and regulation of cancer development. Annual Review of Pathology, 1, 119–150. doi: 10.1146/annurev.pathol.1.110304.100224. [DOI] [PubMed]
  5. Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285(21), 1182–1186. doi: 10.1056/NEJM197111182852108. [DOI] [PubMed]
  6. O’Reilly, M. S., et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(2), 277–285. doi: 10.1016/s0092-8674(00)81848-6. [DOI] [PubMed]
  7. Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3(6), 422–433. doi: 10.1038/nrc1094. [DOI] [PubMed]
  8. Kim, K. J., et al. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature, 362(6423), 841–844. doi: 10.1038/362841a0. [DOI] [PubMed]
  9. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. doi: 10.1038/nature01322. [DOI] [PMC free article] [PubMed]
  10. de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7(5), 411–423. doi: 10.1016/j.ccr.2005.04.014. [DOI] [PubMed]
  11. Tlsty, T. D., & Hein, P. W. (2001). Know thy neighbor: Stromal cells can contribute oncogenic signals. Current Opinion in Genetics & Development, 11(1), 54–59. doi: 10.1016/s0959-437x(00)00156-8. [DOI] [PubMed]
  12. Elenbaas, B., & Weinberg, R. A. (2001). Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Experimental Cell Research, 264(1), 169–184. doi: 10.1006/excr.2000.5133. [DOI] [PubMed]
  13. Sazeides, C., & Le, A. (2021). Metabolic relationship between cancer-associated fibroblasts and cancer cells. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_14. doi: 10.1007/978-3-030-65768-0_14. [DOI] [PMC free article] [PubMed]
  14. Calvo, F., et al. (2015). Cdc42EP3/BORG2 and septin network enables mechano-transduction and the emergence of cancer-associated fibroblasts. Cell Reports, 13(12), 2699–2714. doi: 10.1016/j.celrep.2015.11.052. [DOI] [PMC free article] [PubMed]
  15. Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2012). Power surge: Supporting cells “fuel” cancer cell mitochondria. Cell Metabolism, 15(1), 4–5. doi: 10.1016/j.cmet.2011.12.011. [DOI] [PubMed]
  16. Martinez-Outschoorn, U. E., et al. (2011). Energy transfer in “parasitic” cancer metabolism: Mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle, 10(24), 4208–4216. doi: 10.4161/cc.10.24.18487. [DOI] [PMC free article] [PubMed]
  17. Kilvaer, T. K., et al. (2015). Cancer associated fibroblasts in stage I-IIIA NSCLC: Prognostic impact and their correlations with tumor molecular markers. PLoS One, 10(8), e0134965. doi: 10.1371/journal.pone.0134965. [DOI] [PMC free article] [PubMed]
  18. Ha, S. Y., et al. (2014). The prognostic significance of cancer-associated fibroblasts in esophageal squamous cell carcinoma. PLoS One, 9(6), e99955. doi: 10.1371/journal.pone.0099955. [DOI] [PMC free article] [PubMed]
  19. Cheteh, E. H., et al. (2017). Human cancer-associated fibroblasts enhance glutathione levels and antagonize drug-induced prostate cancer cell death. Cell Death & Disease, 8(6), e2848. doi: 10.1038/cddis.2017.225. [DOI] [PMC free article] [PubMed]
  20. Madar, S., Goldstein, I., & Rotter, V. (2013). ‘Cancer associated fibroblasts’—more than meets the eye. Trends in Molecular Medicine, 19(8), 447–453. doi: 10.1016/j.molmed.2013.05.004. [DOI] [PubMed]
  21. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. doi: 10.1016/j.cell.2011.02.013. [DOI] [PubMed]
  22. Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine (Berlin), 89(3), 205–212. doi: 10.1007/s00109-011-0730-x. [DOI] [PMC free article] [PubMed]
  23. Hirschey, M. D., et al. (2015). Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 35(Suppl), S129–S150. doi: 10.1016/j.semcancer.2015.10.002. [DOI] [PMC free article] [PubMed]
  24. Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 25, 47–60. doi: 10.1016/j.semcancer.2014.01.005. [DOI] [PubMed]
  25. Hoang, G., Udupa, S., & Le, A. (2019). Application of metabolomics technologies toward cancer prognosis and therapy. International Review of Cell and Molecular Biology, 347, 191–223. doi: 10.1016/bs.ircmb.2019.07.003. [DOI] [PubMed]
  26. Bruntz, R. C., et al. (2017). Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). The Journal of Biological Chemistry, 292(28), 11601–11609. doi: 10.1074/jbc.R117.776054. [DOI] [PMC free article] [PubMed]
  27. Fan, T. W., et al. (2009). Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Molecular Cancer, 8, 41. doi: 10.1186/1476-4598-8-41. [DOI] [PMC free article] [PubMed]
  28. Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336. doi: 10.1073/pnas.1611406113. [DOI] [PMC free article] [PubMed]
  29. Lane, A. N., & Fan, T. W. (2017). NMR-based stable isotope resolved metabolomics in systems biochemistry. Archives of Biochemistry and Biophysics, 628, 123–131. doi: 10.1016/j.abb.2017.02.009. [DOI] [PMC free article] [PubMed]
  30. Tan, J., & Le, A. (2021). The heterogeneity of breast cancer metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_6. doi: 10.1007/978-3-030-65768-0_6. [DOI] [PMC free article] [PubMed]
  31. Kirsch, B. J., et al. (2021). Non-Hodgkin lymphoma metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_7. doi: 10.1007/978-3-030-65768-0_7. [DOI] [PMC free article] [PubMed]
  32. Barone, I., et al. (2012). Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Cancer Research, 72(6), 1416–1427. doi: 10.1158/0008-5472.CAN-11-2558. [DOI] [PMC free article] [PubMed]
  33. Erez, N., et al. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147. doi: 10.1016/j.ccr.2009.12.041. [DOI] [PubMed]
  34. Casey, T., et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Research and Treatment, 114(1), 47–62. doi: 10.1007/s10549-008-9982-8. [DOI] [PubMed]
  35. Ma, X. J., et al. (2009). Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Research, 11(1), R7. doi: 10.1186/bcr2222. [DOI] [PMC free article] [PubMed]
  36. Finak, G., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5), 518–527. doi: 10.1038/nm1764. [DOI] [PubMed]
  37. Sherman-Baust, C. A., et al. (2003). Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell, 3(4), 377–386. doi: 10.1016/s1535-6108(03)00058-8. [DOI] [PubMed]
  38. Hodkinson, P. S., Mackinnon, A. C., & Sethi, T. (2007). Extracellular matrix regulation of drug resistance in small-cell lung cancer. International Journal of Radiation Biology, 83(11–12), 733–741. doi: 10.1080/09553000701570204. [DOI] [PubMed]
  39. Crawford, Y., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15(1), 21–34. doi: 10.1016/j.ccr.2008.12.004. [DOI] [PubMed]
  40. Straussman, R., et al. (2012). Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 487(7408), 500–504. doi: 10.1038/nature11183. [DOI] [PMC free article] [PubMed]
  41. Bose, S., Zhang, C., & Le, A. (2021). Glucose metabolism in cancer: The Warburg effect and beyond. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_1. doi: 10.1007/978-3-030-65768-0_1. [DOI] [PMC free article] [PubMed]
  42. Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314. doi: 10.1126/science.123.3191.309. [DOI] [PubMed]
  43. Pavlides, S., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001. doi: 10.4161/cc.8.23.10238. [DOI] [PubMed]
  44. Lee, M., & Yoon, J. H. (2015). Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World Journal of Biological Chemistry, 6(3), 148–161. doi: 10.4331/wjbc.v6.i3.148. [DOI] [PMC free article] [PubMed]
  45. Faubert, B., et al. (2017). Lactate metabolism in human lung tumors. Cell, 171(2), 358–371. e9. doi: 10.1016/j.cell.2017.09.019. [DOI] [PMC free article] [PubMed]
  46. van Hall, G., et al. (2009). Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow and Metabolism, 29(6), 1121–1129. doi: 10.1038/jcbfm.2009.35. [DOI] [PubMed]
  47. Medina, J. M., & Tabernero, A. (2005). Lactate utilization by brain cells and its role in CNS development. Journal of Neuroscience Research, 79(1–2), 2–10. doi: 10.1002/jnr.20336. [DOI] [PubMed]
  48. Bartelds, B., et al. (1999). Myocardial lactate metabolism in fetal and newborn lambs. Circulation, 99(14), 1892–1897. doi: 10.1161/01.cir.99.14.1892. [DOI] [PubMed]
  49. Fujiwara, S., et al. (2015). Lactate, a putative survival factor for myeloma cells, is incorporated by myeloma cells through monocarboxylate transporters 1. Experimental Hematology & Oncology, 4, 12. doi: 10.1186/s40164-015-0008-z. [DOI] [PMC free article] [PubMed]
  50. Hirschhaeuser, F., Sattler, U. G., & Mueller-Klieser, W. (2011). Lactate: A metabolic key player in cancer. Cancer Research, 71(22), 6921–6925. doi: 10.1158/0008-5472.CAN-11-1457. [DOI] [PubMed]
  51. Zhao, H., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 5, e10250. doi: 10.7554/eLife.10250. [DOI] [PMC free article] [PubMed]
  52. Ronnov-Jessen, L., Petersen, O. W., & Bissell, M. J. (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiological Reviews, 76(1), 69–125. doi: 10.1152/physrev.1996.76.1.69. [DOI] [PubMed]
  53. Whitaker-Menezes, D., et al. (2011). Evidence for a stromal-epithelial “lactate shuttle” in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle, 10(11), 1772–1783. doi: 10.4161/cc.10.11.15659. [DOI] [PMC free article] [PubMed]
  54. Rattigan, Y. I., et al. (2012). Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Experimental Cell Research, 318(4), 326–335. doi: 10.1016/j.yexcr.2011.11.014. [DOI] [PMC free article] [PubMed]
  55. Hong, C. S., et al. (2016). MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Reports, 14(7), 1590–1601. doi: 10.1016/j.celrep.2016.01.057. [DOI] [PMC free article] [PubMed]
  56. Gladden, L. B. (2004). Lactate metabolism: A new paradigm for the third millennium. The Journal of Physiology, 558(Pt 1), 5–30. doi: 10.1113/jphysiol.2003.058701. [DOI] [PMC free article] [PubMed]
  57. Draoui, N., & Feron, O. (2011). Lactate shuttles at a glance: From physiological paradigms to anti-cancer treatments. Disease Models & Mechanisms, 4(6), 727–732. doi: 10.1242/dmm.007724. [DOI] [PMC free article] [PubMed]
  58. Sonveaux, P., et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation, 118(12), 3930–3942. doi: 10.1172/JCI36843. [DOI] [PMC free article] [PubMed]
  59. Baek, G., et al. (2014). MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Reports, 9(6), 2233–2249. doi: 10.1016/j.celrep.2014.11.025. [DOI] [PubMed]
  60. Pertega-Gomes, N., et al. (2014). A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer, 14, 352. doi: 10.1186/1471-2407-14-352. [DOI] [PMC free article] [PubMed]
  61. Witkiewicz, A. K., et al. (2012). Using the “reverse Warburg effect” to identify high-risk breast cancer patients: Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle, 11(6), 1108–1117. doi: 10.4161/cc.11.6.19530. [DOI] [PMC free article] [PubMed]
  62. Lamb, R., et al. (2014). Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 5(22), 11029–11037. doi: 10.18632/oncotarget.2789. [DOI] [PMC free article] [PubMed]
  63. Wu, H., et al. (2012). Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. The Journal of Pathology, 227(2), 189–199. doi: 10.1002/path.3978. [DOI] [PubMed]
  64. Xie, J., et al. (2014). Beyond Warburg effect--dual metabolic nature of cancer cells. Scientific Reports, 4, 4927. doi: 10.1038/srep04927. [DOI] [PMC free article] [PubMed]
  65. Romero-Garcia, S., et al. (2016). Lactate contribution to the tumor microenvironment: Mechanisms, effects on immune cells and therapeutic relevance. Frontiers in Immunology, 7, 52. doi: 10.3389/fimmu.2016.00052. [DOI] [PMC free article] [PubMed]
  66. Colen, C. B., et al. (2011). Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: An in vivo study. Neoplasia, 13(7), 620–632. doi: 10.1593/neo.11134. [DOI] [PMC free article] [PubMed]
  67. Colen, C. B., et al. (2006). Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: An in vitro study. Neurosurgery, 59(6), 1313–1323. discussion 1323-4. doi: 10.1227/01.NEU.0000249218.65332.BF. [DOI] [PMC free article] [PubMed]
  68. Ovens, M. J., et al. (2010). AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10. The Biochemical Journal, 425(3), 523–530. doi: 10.1042/BJ20091515. [DOI] [PMC free article] [PubMed]
  69. Perez-Escuredo, J., et al. (2016). Monocarboxylate transporters in the brain and in cancer. Biochimica et Biophysica Acta, 1863(10), 2481–2497. doi: 10.1016/j.bbamcr.2016.03.013. [DOI] [PMC free article] [PubMed]
  70. Ben Sahra, I., et al. (2010). Metformin in cancer therapy: A new perspective for an old antidiabetic drug? Molecular Cancer Therapeutics, 9(5), 1092–1099. doi: 10.1158/1535-7163.MCT-09-1186. [DOI] [PubMed]
  71. Kozka, I. J., et al. (1995). The effects of insulin on the level and activity of the GLUT4 present in human adipose cells. Diabetologia, 38(6), 661–666. doi: 10.1007/BF00401836. [DOI] [PubMed]
  72. Martinez-Outschoorn, U. E., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276. doi: 10.4161/cc.9.16.12553. [DOI] [PMC free article] [PubMed]
  73. Li, T., Copeland, C., & Le, A. (2021). Glutamine metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_2. doi: 10.1007/978-3-030-65768-0_2. [DOI] [PMC free article] [PubMed]
  74. Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121. doi: 10.1016/j.cmet.2011.12.009. [DOI] [PMC free article] [PubMed]
  75. Wise, D. R., & Thompson, C. B. (2010). Glutamine addiction: A new therapeutic target in cancer. Trends in Biochemical Sciences, 35(8), 427–433. doi: 10.1016/j.tibs.2010.05.003. [DOI] [PMC free article] [PubMed]
  76. Romero, I. L., et al. (2015). Molecular pathways: Trafficking of metabolic resources in the tumor microenvironment. Clinical Cancer Research, 21(4), 680–686. doi: 10.1158/1078-0432.CCR-14-2198. [DOI] [PMC free article] [PubMed]
  77. Pavlides, S., et al. (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9(17), 3485–3505. doi: 10.4161/cc.9.17.12721. [DOI] [PMC free article] [PubMed]
  78. Wang, Q., et al. (2015). Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. The Journal of Pathology, 236(3), 278–289. doi: 10.1002/path.4518. [DOI] [PMC free article] [PubMed]
  79. Gupta, S., Roy, A., & Dwarakanath, B. S. (2017). Metabolic cooperation and competition in the tumor microenvironment: Implications for therapy. Frontiers in Oncology, 7, 68. doi: 10.3389/fonc.2017.00068. [DOI] [PMC free article] [PubMed]
  80. van Geldermalsen, M., et al. (2016). ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene, 35(24), 3201–3208. doi: 10.1038/onc.2015.381. [DOI] [PMC free article] [PubMed]
  81. Wang, Q., et al. (2014). Targeting glutamine transport to suppress melanoma cell growth. International Journal of Cancer, 135(5), 1060–1071. doi: 10.1002/ijc.28749. [DOI] [PubMed]
  82. Esslinger, C. S., Cybulski, K. A., & Rhoderick, J. F. (2005). Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorganic & Medicinal Chemistry, 13(4), 1111–1118. doi: 10.1016/j.bmc.2004.11.028. [DOI] [PubMed]
  83. Marshall, A. D., et al. (2017). ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogene, 6(7), e367. doi: 10.1038/oncsis.2017.70. [DOI] [PMC free article] [PubMed]
  84. Todorova, V. K., et al. (2011). Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemotherapy and Pharmacology, 67(2), 285–291. doi: 10.1007/s00280-010-1316-y. [DOI] [PubMed]
  85. Wu, D., Zhuo, L., & Wang, X. (2017). Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Seminars in Cell & Developmental Biology, 64, 125–131. doi: 10.1016/j.semcdb.2016.11.003. [DOI] [PubMed]
  86. Grabacka, M., et al. (2016). Regulation of ketone body metabolism and the role of PPARalpha. International Journal of Molecular Sciences, 17, 12. doi: 10.3390/ijms17122093. [DOI] [PMC free article] [PubMed]
  87. Fiaschi, T., et al. (2012). Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Research, 72(19), 5130–5140. doi: 10.1158/0008-5472.CAN-12-1949. [DOI] [PubMed]
  88. Bonuccelli, G., et al. (2010). Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle, 9(17), 3506–3514. doi: 10.4161/cc.9.17.12731. [DOI] [PMC free article] [PubMed]
  89. Martinez-Outschoorn, U. E., et al. (2012). Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle, 11(21), 3956–3963. doi: 10.4161/cc.22136. [DOI] [PMC free article] [PubMed]
  90. Saraon, P., et al. (2013). Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Molecular & Cellular Proteomics, 12(6), 1589–1601. doi: 10.1074/mcp.M112.023887. [DOI] [PMC free article] [PubMed]
  91. Newman, J. C., & Verdin, E. (2014). Ketone bodies as signaling metabolites. Trends in Endocrinology and Metabolism, 25(1), 42–52. doi: 10.1016/j.tem.2013.09.002. [DOI] [PMC free article] [PubMed]
  92. Glew, R. H. (2010). You can get there from here: Acetone, anionic ketones and even-carbon fatty acids can provide substrates for gluconeogenesis. Nigerian Journal of Physiological Sciences, 25(1), 2–4. [PubMed]
  93. Miller, O. N., & Bazzano, G. (1965). Propanediol metabolism and its relation to lactic acid metabolism. Annals of the New York Academy of Sciences, 119(3), 957–973. doi: 10.1111/j.1749-6632.1965.tb47455.x. [DOI] [PubMed]
  94. Pellerin, L., et al. (2005). Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. Journal of Neuroscience Research, 79(1-2), 55–64. doi: 10.1002/jnr.20307. [DOI] [PubMed]
  95. Halford, S., et al. (2017). A first-in-human first-inclass (FIC) trial of the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 in patients with advanced solid tumours. Journal of Clinical Oncology, 35(15_Suppl), 2516.
  96. Nieman, K. M., et al. (2011). Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 17(11), 1498–1503. doi: 10.1038/nm.2492. [DOI] [PMC free article] [PubMed]
  97. Vinokurov, V. L., & Kolosov, A. E. (1980). Ovarian cancer metastasis to the greater omentum. Voprosy Onkologii, 26(2), 30–34. [PubMed]
  98. Park, J. K., et al. (2021). The heterogeneity of lipid metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_3. doi: 10.1007/978-3-030-65768-0_3. [DOI] [PMC free article] [PubMed]
  99. Guaita-Esteruelas, S., et al. (2017). Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins. Molecular Carcinogenesis, 56(1), 208–217. doi: 10.1002/mc.22485. [DOI] [PubMed]
  100. Uehara, H., et al. (2014). Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression. International Journal of Cancer, 135(11), 2558–2568. doi: 10.1002/ijc.28903. [DOI] [PubMed]
  101. Dirat, B., et al. (2011). Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Research, 71(7), 2455–2465. doi: 10.1158/0008-5472.CAN-10-3323. [DOI] [PubMed]

RESOURCES