Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:611–635. doi: 10.1007/978-1-0716-0978-1_37

Analysis of Renal Diffusion-Weighted Imaging (DWI) Using Apparent Diffusion Coefficient (ADC) and Intravoxel Incoherent Motion (IVIM) Models.

Neil Peter Jerome, João S Periquito
PMCID: PMC9703851  PMID: 33476027

Abstract

Analysis of renal diffusion-weighted imaging (DWI) data to derive markers of tissue properties requires careful consideration of the type, extent, and limitations of the acquired data. Alongside data quality and general suitability for quantitative analysis, choice of diffusion model, fitting algorithm, and processing steps can have consequences for the precision, accuracy, and reliability of derived diffusion parameters. Here we introduce and discuss important steps for diffusion-weighted image processing, and in particular give example analysis protocols and pseudo-code for analysis using the apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) models. Following an overview of general principles, we provide details of optional steps, and steps for validation of results. Illustrative examples are provided, together with extensive notes discussing wider context of individual steps, and notes on potential pitfalls.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.


Full text of this article can be found in Bookshelf.

References

  1. Wolf M, de Boer A, Sharma K et al (2018) Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol Dial Transplant 33:ii41–ii50 doi: 10.1093/ndt/gfy198. [DOI] [PMC free article] [PubMed]
  2. Pruijm M, Mendichovszky IA, Liss P et al (2018) Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol Dial Transplant 33:ii22–ii28 doi: 10.1093/ndt/gfy243. [DOI] [PMC free article] [PubMed]
  3. Caroli A, Schneider M, Friedli I et al (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33:ii29–ii40 doi: 10.1093/ndt/gfy163. [DOI] [PMC free article] [PubMed]
  4. Taouli B, Beer AJ, Chenevert T et al (2016) Diffusion-weighted imaging outside the brain: consensus statement from an ISMRM-sponsored workshop. J Magn Reson Imaging 44:521–540 doi: 10.1002/jmri.25196. [DOI] [PMC free article] [PubMed]
  5. Notohamiprodjo M, Chandarana H, Mikheev A et al (2014) Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn Reson Med 1532:1526–1532 doi: 10.1002/mrm.25245. [DOI] [PubMed]
  6. Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202 doi: 10.1002/jmri.24985. [DOI] [PubMed]
  7. Jensen JH, Helpern J, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440 doi: 10.1002/mrm.20508. [DOI] [PubMed]
  8. Bennett KM, Schmainda KM, Bennett RT et al (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50:727–734 doi: 10.1002/mrm.10581. [DOI] [PubMed]
  9. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488 doi: 10.1002/jmri.20683. [DOI] [PubMed]
  10. Orton MR, Jerome NP, Rata M, Koh D-M (2018) IVIM in the body: a general overview. In: Le Bihan D, Iima M, Federau C, Sigmund EE (eds) Intravoxel incoherent Motion MRI. Pan Stanford Publishing Pte. Ltd., Singapore, pp 145–174
  11. Cheng L, Blackledge MD, Collins DJ et al (2016) T2-adjusted computed diffusion-weighted imaging: a novel method to enhance tumour visualisation. Comput Biol Med 79:92–98 doi: 10.1016/j.compbiomed.2016.09.022. [DOI] [PubMed]
  12. Blackledge MD, Leach MO, Collins DJ, Koh D-M (2011) Computed diffusion-weighted MR imaging may improve tumor detection. Radiology 261:573–581 doi: 10.1148/radiol.11101919. [DOI] [PubMed]
  13. Gurney-Champion OJ, Klaassen R, Froeling M et al (2018) Comparison of six fit algorithms for the intravoxel incoherent motion model of diffusionweighted magnetic resonance imaging data of pancreatic cancer patients. PLoS One 13:1–18 doi: 10.1371/journal.pone.0194590. [DOI] [PMC free article] [PubMed]
  14. Meeus EM, Novak J, Withey SB et al (2017) Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue. J Magn Reson Imaging 45:1325–1334 doi: 10.1002/jmri.25411. [DOI] [PMC free article] [PubMed]
  15. Barbieri S, Donati OF, Froehlich JM, Thoeny HC (2016) Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med 75:2175–2184 doi: 10.1002/mrm.25765. [DOI] [PubMed]
  16. Park HJ, Sung YS, Lee SS et al (2017) Intravoxel incoherent motion diffusion-weighted MRI of the abdomen: the effect of fitting algorithms on the accuracy and reliability of the parameters. J Magn Reson Imaging 45:1637–1647 doi: 10.1002/jmri.25535. [DOI] [PubMed]
  17. Vidić I, Jerome NP, Bathen TF et al (2019) Accuracy of breast cancer lesion classification using intravoxel incoherent motion diffusion-weighted imaging is improved by the inclusion of global or local prior knowledge with bayesian methods. J Magn Reson Imaging 50(5):1478–1488 doi: 10.1002/jmri.26772. [DOI] [PubMed]
  18. Jerome NP, Miyazaki K, Collins DJ et al (2016) Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort. Eur Radiol 27:345–353 doi: 10.1007/s00330-016-4318-2. [DOI] [PMC free article] [PubMed]
  19. Orton MR, Collins DJ, Koh DM, Leach MO (2014) Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 71:411–420 doi: 10.1002/mrm.24649. [DOI] [PubMed]
  20. Freiman M, Perez-Rossello JM, Callahan MJ et al (2013) Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med Image Anal 17:325–336 doi: 10.1016/j.media.2012.12.001. [DOI] [PMC free article] [PubMed]
  21. While PT (2017) A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. Magn Reson Med 78:2373–2387 doi: 10.1002/mrm.26598. [DOI] [PubMed]
  22. Meeus EM, Novak J, Dehghani H, Peet AC (2018) Rapid measurement of intravoxel incoherent motion (IVIM) derived perfusion fraction for clinical magnetic resonance imaging. Magn Reson Mater Phys Biol Med 31:269–283 doi: 10.1007/s10334-017-0656-6. [DOI] [PMC free article] [PubMed]
  23. Jerome NP, Papoutsaki M-V, Orton MR et al (2016) Development of a temperature-controlled phantom for magnetic resonance quality assurance of diffusion, dynamic, and relaxometry measurements. Med Phys 43:2998–3007 doi: 10.1118/1.4948997. [DOI] [PubMed]
  24. Shukla-Dave A, Obuchowski NA, Chenevert TL et al (2018) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26518 doi: 10.1002/jmri.26518. [DOI] [PMC free article] [PubMed]
  25. Winfield JM, Tunariu N, Rata M et al (2017) Extracranial soft-tissue tumors: repeatability of apparent diffusion coefficient estimates from diffusion-weighted MR imaging. Radiology 284:88–99 doi: 10.1148/radiol.2017161965. [DOI] [PMC free article] [PubMed]
  26. Jerome NP, D’Arcy JA, Feiweier T et al (2016) Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. Phys Med Biol 61:N667–N680 doi: 10.1088/1361-6560/61/24/N667. [DOI] [PMC free article] [PubMed]
  27. Jerome NP, Orton MR, D’Arcy JA et al (2014) Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 39:235–240 doi: 10.1002/jmri.24140. [DOI] [PubMed]
  28. Jerome NP, Orton MR, D’Arcy JA et al (2015) Use of the temporal median and trimmed mean mitigates effects of respiratory motion in multiple-acquisition abdominal diffusion imaging. Phys Med Biol 60:N9–N20 doi: 10.1088/0031-9155/60/2/N9. [DOI] [PMC free article] [PubMed]
  29. Clark C, Hedehus M, Moseley ME (2001) Diffusion time dependence of the apparent diffusion tensor in healthy human brain and white matter disease. Magn Reson Med 45:1126–1129 doi: 10.1002/mrm.1149. [DOI] [PubMed]
  30. Yen C. read_2dseq :quickly reads Bruker’s 2dseq MRI images. In: MATLAB Cent File Exch. https://www.mathworks.com/matlabcentral/fileexchange/69177-read_2dseq-quickly-reads-bruker-s-2dseq-mri-images
  31. Zubkov M, Stait-Gardner T, Price WS (2014) Efficient and precise calculation of the b-matrix elements in diffusion-weighted imaging pulse sequences. J Magn Reson 243:65–73 doi: 10.1016/j.jmr.2014.03.006. [DOI] [PubMed]
  32. Holland D, Kuperman JM, Dale AM (2010) Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. Neuroimage 50:175–183 doi: 10.1016/j.neuroimage.2009.11.044. [DOI] [PMC free article] [PubMed]
  33. Wurnig MC, Kenkel D, Filli L, Boss A (2016) A standardized parameter-free algorithm for combined intravoxel incoherent motion and diffusion kurtosis analysis of diffusion imaging data. Invest Radiol 51:203–210 doi: 10.1097/RLI.0000000000000223. [DOI] [PubMed]

RESOURCES