Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;1311:149–160. doi: 10.1007/978-3-030-65768-0_11

The Intratumoral Heterogeneity of Cancer Metabolism.

Karim Nabi, Anne Le
PMCID: PMC9703861  PMID: 34014541

Abstract

Cancer is one of the deadliest diseases in the world, causing over half a million deaths a year in the USA alone. Despite recent advances made in the field of cancer biology and the therapies that have been developed [1, 2], it is clear that more advances are necessary for us to classify cancer as curable. The logical question that arises is simple: Why, despite all the technologies and medical innovations of our time, has a complete cure eluded us? This chapter sheds light on one of cancer's most impactful attributes: its heterogeneity and, more specifically, the intratumoral heterogeneity of cancer metabolism. Simply put, what makes cancer one of the deadliest diseases is its ability to change and adapt. Cancer cells' rapid evolution, coupled with their irrepressible ability to divide, gives most of them the advantage over our immune systems. In this chapter, we delve into the complexities of this adaptability and the vital role that metabolism plays in the rise and progression of this heterogeneity.


Full text of this article can be found in Bookshelf.

References

  1. Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine (Berlin), 89(3), 205–212. doi: 10.1007/s00109-011-0730-x. [DOI] [PMC free article] [PubMed]
  2. Hirschey, M. D., et al. (2015). Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 35(Suppl), S129–S150. doi: 10.1016/j.semcancer.2015.10.002. [DOI] [PMC free article] [PubMed]
  3. Gonzalez-Angulo, A. M., Morales-Vasquez, F., & Hortobagyi, G. N. (2007). Overview of resistance to systemic therapy in patients with breast cancer. Advances in Experimental Medicine and Biology, 608, 1–22. doi: 10.1007/978-0-387-74039-3_1. [DOI] [PubMed]
  4. Prasetyanti, P. R., & Medema, J. P. (2017). Intra-tumor heterogeneity from a cancer stem cell perspective. Molecular Cancer, 16(1), 41. doi: 10.1186/s12943-017-0600-4. [DOI] [PMC free article] [PubMed]
  5. Jogi, A., et al. (2012). Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Upsala Journal of Medical Sciences, 117(2), 217–224. doi: 10.3109/03009734.2012.659294. [DOI] [PMC free article] [PubMed]
  6. Bu, Y., & Cao, D. (2012). The origin of cancer stem cells. Frontiers in Bioscience (Scholar Edition), 4, 819–830. doi: 10.2741/s302. [DOI] [PubMed]
  7. Yang, T., et al. (2014). Cancer stem cells: Constantly evolving and functionally heterogeneous therapeutic targets. Cancer Research, 74(11), 2922–2927. doi: 10.1158/0008-5472.CAN-14-0266. [DOI] [PMC free article] [PubMed]
  8. Gonzalez-Garcia, I., Sole, R. V., & Costa, J. (2002). Metapopulation dynamics and spatial heterogeneity in cancer. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13085–13089. doi: 10.1073/pnas.202139299. [DOI] [PMC free article] [PubMed]
  9. Gerlinger, M., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366(10), 883–892. doi: 10.1056/NEJMoa1113205. [DOI] [PMC free article] [PubMed]
  10. Park, S. Y., et al. (2010). Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. The Journal of Clinical Investigation, 120(2), 636–644. doi: 10.1172/JCI40724. [DOI] [PMC free article] [PubMed]
  11. Tan, J., & Le, A. (2021). The heterogeneity of breast cancer metabolism. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_6 doi: 10.1007/978-3-030-65768-0_6. [DOI] [PMC free article] [PubMed]
  12. Greger, V., et al. (1994). Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Human Genetics, 94(5), 491–496. doi: 10.1007/BF00211013. [DOI] [PubMed]
  13. Parker, N. R., et al. (2016). Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Scientific Reports, 6, 22477. doi: 10.1038/srep22477. [DOI] [PMC free article] [PubMed]
  14. Quinones, A., & Le, A. (2021). The multifaceted glioblastoma: From genomic alterations to metabolic adaptations. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_4 doi: 10.1007/978-3-030-65768-0_4. [DOI] [PMC free article] [PubMed]
  15. Okegawa, T., et al. (2017). Intratumor heterogeneity in primary kidney cancer revealed by metabolic profiling of multiple spatially separated samples within tumors. eBioMedicine, 19, 31–38. doi: 10.1016/j.ebiom.2017.04.009. [DOI] [PMC free article] [PubMed]
  16. Masson, N., & Ratcliffe, P. J. (2014). Hypoxia signaling pathways in cancer metabolism: The importance of co-selecting interconnected physiological pathways. Cancer & Metabolism, 2(1), 3. doi: 10.1186/2049-3002-2-3. [DOI] [PMC free article] [PubMed]
  17. Semenza, G. L. (2013). HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. The Journal of Clinical Investigation, 123(9), 3664–3671. doi: 10.1172/JCI67230. [DOI] [PMC free article] [PubMed]
  18. Bose, S., Zhang, C., & Le, A. (2021). Glucose metabolism in cancer: The Warburg effect and beyond. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_1 doi: 10.1007/978-3-030-65768-0_1. [DOI] [PMC free article] [PubMed]
  19. Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121. doi: 10.1016/j.cmet.2011.12.009. [DOI] [PMC free article] [PubMed]
  20. Lee, S. L., & Fanburg, B. L. (1987). Glycolytic activity and enhancement of serotonin uptake by endothelial cells exposed to hypoxia/anoxia. Circulation Research, 60(5), 653–658. doi: 10.1161/01.res.60.5.653. [DOI] [PubMed]
  21. Cox, T. R., & Erler, J. T. (2011). Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Disease Models & Mechanisms, 4(2), 165–178. doi: 10.1242/dmm.004077. [DOI] [PMC free article] [PubMed]
  22. Forsythe, J. A., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613. doi: 10.1128/mcb.16.9.4604. [DOI] [PMC free article] [PubMed]
  23. Mazure, N. M., et al. (1996). Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Research, 56(15), 3436–3440. [PubMed]
  24. Brychtova, S., et al. (2008). The role of vascular endothelial growth factors and their receptors in malignant melanomas. Neoplasma, 55(4), 273–279. [PubMed]
  25. De Bock, K., et al. (2013). Role of PFKFB3-driven glycolysis in vessel sprouting. Cell, 154(3), 651–663. doi: 10.1016/j.cell.2013.06.037. [DOI] [PubMed]
  26. Parra-Bonilla, G., et al. (2010). Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299(4), L513–L522. doi: 10.1152/ajplung.00274.2009. [DOI] [PMC free article] [PubMed]
  27. Peters, K., et al. (2009). Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of “aerobic glycolysis” and proliferation. Cellular Physiology and Biochemistry, 24(5-6), 483–492. doi: 10.1159/000257490. [DOI] [PubMed]
  28. Polet, F., & Feron, O. (2013). Endothelial cell metabolism and tumour angiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force. Journal of Internal Medicine, 273(2), 156–165. doi: 10.1111/joim.12016. [DOI] [PubMed]
  29. Merchan, J. R., et al. (2010). Antiangiogenic activity of 2-deoxy-D-glucose. PLoS One, 5(10), e13699. doi: 10.1371/journal.pone.0013699. [DOI] [PMC free article] [PubMed]
  30. Wang. (2011). Q., et al., 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One, 6(2), e17234. doi: 10.1371/journal.pone.0017234. [DOI] [PMC free article] [PubMed]
  31. Yeh, W. L., Lin, C. J., & Fu, W. M. (2008). Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Molecular Pharmacology, 73(1), 170–177. doi: 10.1124/mol.107.038851. [DOI] [PubMed]
  32. Kimura, H., et al. (1996). Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Research, 56(23), 5522–5528. [PubMed]
  33. Lanzen, J., et al. (2006). Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Research, 66(4), 2219–2223. doi: 10.1158/0008-5472.CAN-03-2958. [DOI] [PubMed]
  34. Bennewith, K. L., & Durand, R. E. (2004). Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Research, 64(17), 6183–6189. doi: 10.1158/0008-5472.CAN-04-0289. [DOI] [PubMed]
  35. Secomb, T. W., et al. (1993). Analysis of oxygen transport to tumor tissue by microvascular networks. International Journal of Radiation Oncology, Biology, Physics, 25(3), 481–489. doi: 10.1016/0360-3016(93)90070-c. [DOI] [PubMed]
  36. Barger, J. F., & Plas, D. R. (2010). Balancing biosynthesis and bioenergetics: Metabolic programs in oncogenesis. Endocrine-Related Cancer, 17(4), R287–R304. doi: 10.1677/ERC-10-0106. [DOI] [PubMed]
  37. Schafer, Z. T., et al. (2009). Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 461(7260), 109–113. doi: 10.1038/nature08268. [DOI] [PMC free article] [PubMed]
  38. Samudio, I., et al. (2010). Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. The Journal of Clinical Investigation, 120(1), 142–156. doi: 10.1172/JCI38942. [DOI] [PMC free article] [PubMed]
  39. Buzzai, M., et al. (2005). The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene, 24(26), 4165–4173. doi: 10.1038/sj.onc.1208622. [DOI] [PubMed]
  40. Le, A., et al. (2014). Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter. Proceedings of the National Academy of Sciences of the United States of America, 111(34), 12486–12491. doi: 10.1073/pnas.1402012111. [DOI] [PMC free article] [PubMed]
  41. Zheng, J. (2012). Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncology Letters, 4(6), 1151–1157. doi: 10.3892/ol.2012.928. [DOI] [PMC free article] [PubMed]
  42. Li, T., Copeland, C., & Le, A. (2021). Glutamine metabolism in cancer. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_2 doi: 10.1007/978-3-030-65768-0_2. [DOI] [PMC free article] [PubMed]
  43. Sazeides, C., & Le, A. (2021). Metabolic relationship between cancer-associated fibroblasts and cancer cells. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_14 doi: 10.1007/978-3-030-65768-0_14. [DOI] [PMC free article] [PubMed]
  44. Jung, J. G., & Le, A. (2021). Targeting metabolic cross talk between cancer cells and cancer-associated fibroblasts. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_15 doi: 10.1007/978-3-030-65768-0_15. [DOI] [PMC free article] [PubMed]
  45. Martinez-Outschoorn, U. E., Lisanti, M. P., & Sotgia, F. (2014). Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Seminars in Cancer Biology, 25, 47–60. doi: 10.1016/j.semcancer.2014.01.005. [DOI] [PubMed]
  46. Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336. doi: 10.1073/pnas.1611406113. [DOI] [PMC free article] [PubMed]
  47. Hoang, G., Udupa, S., & Le, A. (2019). Application of metabolomics technologies toward cancer prognosis and therapy. International Review of Cell and Molecular Biology, 347, 191–223. doi: 10.1016/bs.ircmb.2019.07.003. [DOI] [PubMed]
  48. Fluegen, G., et al. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120–132. doi: 10.1038/ncb3465. [DOI] [PMC free article] [PubMed]
  49. Eales, K. L., Hollinshead, K. E., & Tennant, D. A. (2016). Hypoxia and metabolic adaptation of cancer cells. Oncogene, 5, e190. doi: 10.1038/oncsis.2015.50. [DOI] [PMC free article] [PubMed]
  50. Dang, C. V., Le, A., & Gao, P. (2009). MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clinical Cancer Research, 15(21), 6479–6483. doi: 10.1158/1078-0432.CCR-09-0889. [DOI] [PMC free article] [PubMed]
  51. Le, A., & Dang, C. V. (2013). Studying Myc’s role in metabolism regulation. Methods in Molecular Biology, 1012, 213–219. doi: 10.1007/978-1-62703-429-6_14. [DOI] [PMC free article] [PubMed]
  52. Wong, N., De Melo, J., & Tang, D. (2013). PKM2, a central point of regulation in cancer metabolism. International Journal of Cell Biology, 2013, 242513. doi: 10.1155/2013/242513. [DOI] [PMC free article] [PubMed]
  53. Kidd, E. A., & Grigsby, P. W. (2008). Intratumoral metabolic heterogeneity of cervical cancer. Clinical Cancer Research, 14(16), 5236–5241. doi: 10.1158/1078-0432.CCR-07-5252. [DOI] [PubMed]
  54. Zhao, S., et al. (2005). Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. Journal of Nuclear Medicine, 46(4), 675–682. [PubMed]
  55. Farwell, M. D., Pryma, D. A., & Mankoff, D. A. (2014). PET/CT imaging in cancer: Current applications and future directions. Cancer, 120(22), 3433–3445. doi: 10.1002/cncr.28860. [DOI] [PubMed]
  56. Plathow, C., & Weber, W. A. (2008). Tumor cell metabolism imaging. Journal of Nuclear Medicine, 49(Suppl 2), 43S–63S. doi: 10.2967/jnumed.107.045930. [DOI] [PubMed]
  57. Mena, E., et al. (2017). Value of intratumoral metabolic heterogeneity and quantitative 18F-FDG PET/CT parameters to predict prognosis in patients with HPV-positive primary oropharyngeal squamous cell carcinoma. Clinical Nuclear Medicine, 42(5), e227–e234. doi: 10.1097/RLU.0000000000001578. [DOI] [PMC free article] [PubMed]
  58. Ojelabi, O. A., et al. (2016). WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. The Journal of Biological Chemistry, 291(52), 26762–26772. doi: 10.1074/jbc.M116.759175. [DOI] [PMC free article] [PubMed]
  59. Rapisarda, A., et al. (2004). Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: Mechanism and therapeutic implications. Cancer Research, 64(4), 1475–1482. doi: 10.1158/0008-5472.can-03-3139. [DOI] [PubMed]
  60. Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042. doi: 10.1073/pnas.0914433107. [DOI] [PMC free article] [PubMed]
  61. Rajeshkumar, N. V., et al. (2015). Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Research, 75(16), 3355–3364. doi: 10.1158/0008-5472.CAN-15-0108. [DOI] [PMC free article] [PubMed]
  62. Dutta, P., et al. (2013). Evaluation of LDH-A and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors. Cancer Research, 73(14), 4190–4195. doi: 10.1158/0008-5472.CAN-13-0465. [DOI] [PMC free article] [PubMed]
  63. Antonio, M. J., Zhang, C., & Le, A. (2021). Different tumor microenvironments lead to different metabolic phenotypes. Advances in Experimental Medicine and Biology, 1311, https://doi.org/10.1007/978-3-030-65768-0_10. doi: 10.1007/978-3-030-65768-0_10. [DOI] [PMC free article] [PubMed]

RESOURCES