Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021;2216:327–347. doi: 10.1007/978-1-0716-0978-1_19

Monitoring Renal Hemodynamics and Oxygenation by Invasive Probes: Experimental Protocol.

Kathleen Cantow, Mechthild Ladwig-Wiegard, Bert Flemming, Andreas Pohlmann, Thoralf Niendorf, Erdmann Seeliger
PMCID: PMC9703868  PMID: 33476009

Abstract

Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe methods to study control of renal hemodynamics and tissue oxygenation by means of invasive probes in anesthetized rats. Step-by-step protocols are provided for two setups, one for experiments in laboratories for integrative physiology and the other for experiments within small-animal magnetic resonance scanners.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by a separate chapter describing the basic concepts of quantitatively assessing renal perfusion and oxygenation with invasive probes.


Full text of this article can be found in Bookshelf.

References

  1. Fortrie G, de Geus HRH, Betjes MGH (2019) The aftermath of acute kidney injury: a narrative review of long-term mortality and renal function. Crit Care 23(1):24. https://doi.org/10.1186/s13054-019-2314-z doi: 10.1186/s13054-019-2314-z. [DOI] [PMC free article] [PubMed]
  2. Selby NM, Taal MW (2019) Long-term outcomes after AKI-a major unmet clinical need. Kidney Int 95(1):21–23. https://doi.org/10.1016/j.kint.2018.09.005 doi: 10.1016/j.kint.2018.09.005. [DOI] [PubMed]
  3. Zuk A, Bonventre JV (2019) Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr Opin Nephrol Hypertens. https://doi.org/10.1097/mnh.0000000000000504 doi: 10.1097/mnh.0000000000000504. [DOI] [PMC free article] [PubMed]
  4. Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, Fox CS, Gansevoort RT, Heerspink HJL, Jardine M, Kasiske B, Kottgen A, Kretzler M, Levey AS, Luyckx VA, Mehta R, Moe O, Obrador G, Pannu N, Parikh CR, Perkovic V, Pollock C, Stenvinkel P, Tuttle KR, Wheeler DC, Eckardt KU (2017) Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390(10105):1888–1917. https://doi.org/10.1016/s0140-6736(17)30788-2 doi: 10.1016/s0140-6736(17)30788-2. [DOI] [PubMed]
  5. Bello AK, Levin A, Tonelli M, Okpechi IG, Feehally J, Harris D, Jindal K, Salako BL, Rateb A, Osman MA, Qarni B, Saad S, Lunney M, Wiebe N, Ye F, Johnson DW (2017) Assessment of global kidney health care status. JAMA 317(18):1864–1881. https://doi.org/10.1001/jama.2017.4046 doi: 10.1001/jama.2017.4046. [DOI] [PMC free article] [PubMed]
  6. Brezis M, Rosen S (1995) Hypoxia of the renal medulla—its implications for disease. N Engl J Med 332:647–655 doi: 10.1056/NEJM199503093321006. [DOI] [PubMed]
  7. Fähling M, Seeliger E, Patzak A, Persson PB (2017) Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol 13(3):169–180 doi: 10.1038/nrneph.2016.196. [DOI] [PubMed]
  8. Evans RG, Ince C, Joles JA, Smith DW, May CN, O'Connor PM, Gardiner BS (2013) Haemodynamic influences on kidney oxygenation: the clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 40:106–122 doi: 10.1111/1440-1681.12031. [DOI] [PubMed]
  9. Evans RG, Ow CP, Bie P (2015) The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am J Physiol Renal Physiol 308(2):F101–F102 doi: 10.1152/ajprenal.00587.2014. [DOI] [PubMed]
  10. Shu S, Wang Y, Zheng M, Liu Z, Cai J, Tang C, Dong Z (2019) Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cell 8(3). https://doi.org/10.3390/cells8030207 doi: 10.3390/cells8030207. [DOI] [PMC free article] [PubMed]
  11. Hultstrom M, Becirovic-Agic M, Jonsson S (2018) Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 50(3):127–141. https://doi.org/10.1152/physiolgenomics.00037.2017 doi: 10.1152/physiolgenomics.00037.2017. [DOI] [PubMed]
  12. Calzavacca P, Evans RG, Bailey M, Bellomo R, May CN (2015) Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit Care Med 43(10):e431–e439 doi: 10.1097/CCM.0000000000001198. [DOI] [PubMed]
  13. Ma S, Evans RG, Iguchi N, Tare M, Parkington HC, Bellomo R, May CN, Lankadeva YR (2019) Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation 26(2):e12483. https://doi.org/10.1111/micc.12483 doi: 10.1111/micc.12483. [DOI] [PubMed]
  14. Palm F, Carlsson PO, Hansell P, Hellberg O, Nygren A, Liss P (2003) Altered response in renal blood flow and oxygen tension to contrast media in diabetic rats. Acta Radiol 44(3):347–353 doi: 10.1080/j.1600-0455.2003.00076.x. [DOI] [PubMed]
  15. Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO (2003) Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46(8):1153–1160 doi: 10.1007/s00125-003-1155-z. [DOI] [PubMed]
  16. dos Santos EA, Li LP, Ji L, Prasad PV (2007) Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Investig Radiol 42(3):157–162. https://doi.org/10.1097/01.rli.0000252492.96709.36 doi: 10.1097/01.rli.0000252492.96709.36. [DOI] [PMC free article] [PubMed]
  17. Calvin AD, Misra S, Pflueger A (2010) Contrast-induced acute kidney injury and diabetic nephropathy. Nat Rev Nephrol 6(11):679–688 doi: 10.1038/nrneph.2010.116. [DOI] [PMC free article] [PubMed]
  18. Hansell P, Welch WJ, Blantz RC, Palm F (2013) Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin Exp Pharmacol Physiol 40(2):123–137 doi: 10.1111/1440-1681.12034. [DOI] [PMC free article] [PubMed]
  19. Seeliger E, Flemming B, Wronski T, Ladwig M, Arakelyan K, Godes M, Mockel M, Persson PB (2007) Viscosity of contrast media perturbs renal hemodynamics. J Am Soc Nephrol 18(11):2912–2920 doi: 10.1681/ASN.2006111216. [DOI] [PubMed]
  20. Hoff U, Lukitsch I, Chaykovska L, Ladwig M, Arnold C, Manthati VL, Fuller TF, Schneider W, Gollasch M, Muller DN, Flemming B, Seeliger E, Luft FC, Falck JR, Dragun D, Schunck WH (2011) Inhibition of 20-HETE synthesis and action protects the kidney from ischemia/reperfusion injury. Kidney Int 79(1):57–65 doi: 10.1038/ki.2010.377. [DOI] [PMC free article] [PubMed]
  21. Cantow K, Flemming B, Ladwig-Wiegard M, Persson PB, Seeliger E (2017) Low dose nitrite improves reoxygenation following renal ischemia in rats. Sci Rep 7(1):14597–15058 doi: 10.1038/s41598-017-15058-5. [DOI] [PMC free article] [PubMed]
  22. Seeliger E, Cantow K, Arakelyan K, Ladwig M, Persson PB, Flemming B (2014) Low-dose nitrite alleviates early effects of an X-ray contrast medium on renal hemodynamics and oxygenation in rats. Investig Radiol 49(2):70–77 doi: 10.1097/RLI.0b013e3182a6fea6. [DOI] [PubMed]
  23. Evans RG, Gardiner BS, Smith DW, O'Connor PM (2008) Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol 35(12):1405–1412 doi: 10.1111/j.1440-1681.2008.05063.x. [DOI] [PubMed]
  24. Pohlmann A, Cantow K, Hentschel J, Arakelyan K, Ladwig M, Flemming B, Hoff U, Persson PB, Seeliger E, Niendorf T (2013) Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiol (Oxf) 207(4):673–689 doi: 10.1111/apha.12065. [DOI] [PubMed]
  25. Hirakawa Y, Tanaka T, Nangaku M (2017) Renal hypoxia in CKD; pathophysiology and detecting methods. Front Physiol 8:99. https://doi.org/10.3389/fphys.2017.00099 doi: 10.3389/fphys.2017.00099. [DOI] [PMC free article] [PubMed]
  26. Seeliger E, Wronski T, Ladwig M, Dobrowolski L, Vogel T, Godes M, Persson PB, Flemming B (2009) The renin-angiotensin system and the third mechanism of renal blood flow autoregulation. Am J Physiol Renal Physiol 296(6):F1334–F1345 doi: 10.1152/ajprenal.90476.2008. [DOI] [PubMed]
  27. Flemming B, Seeliger E, Wronski T, Steer K, Arenz N, Persson PB (2000) Oxygen and renal hemodynamics in the conscious rat. J Am Soc Nephrol 11(1):18–24 doi: 10.1681/ASN.V11118. [DOI] [PubMed]
  28. Ferrara F, Cantow K, Flemming B, Skalweit A, Ladwig M, Fähling M, Seeliger E (2017) Effects of liraglutide on control of renal hemodynamics and oxygenation in diabetic rats. Acta Physiol (Oxf) 219(Suppl 711):38
  29. Cantow K, Pohlmann A, Flemming B, Ferrara F, Waiczies S, Grosenick D, Niendorf T, Seeliger E (2016) Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation. Sci Rep 6:29965. https://doi.org/10.1038/srep29965 doi: 10.1038/srep29965. [DOI] [PMC free article] [PubMed]
  30. Emans TW, Janssen BJ, Pinkham MI, Ow CP, Evans RG, Joles JA, Malpas SC, Krediet CT, Koeners MP (2016) Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow. J Physiol 594(21):6287–6300. https://doi.org/10.1113/jp270731 doi: 10.1113/jp270731. [DOI] [PMC free article] [PubMed]
  31. Grosenick D, Cantow K, Arakelyan K, Wabnitz H, Flemming B, Skalweit A, Ladwig M, Macdonald R, Niendorf T, Seeliger E (2015) Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach. Biomed Opt Express 6(2):309–323 doi: 10.1364/BOE.6.000309. [DOI] [PMC free article] [PubMed]
  32. Li LP, Halter S, Prasad PV (2008) Blood oxygen level-dependent MR imaging of the kidneys. Magn Reson Imaging Clin N Am 16(4):613–625. viii doi: 10.1016/j.mric.2008.07.008. [DOI] [PMC free article] [PubMed]
  33. Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E (2015) How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 213(1):19–38 doi: 10.1111/apha.12393. [DOI] [PubMed]
  34. Grenier N, Merville P, Combe C (2016) Radiologic imaging of the renal parenchyma structure and function. Nat Rev Nephrol 12(6):348–359 doi: 10.1038/nrneph.2016.44. [DOI] [PubMed]
  35. Niendorf T, Flemming B, Evans RG, Seeliger E (2016) What do BOLD MR imaging changes in donors’ remaining kidneys tell us? Radiology 281(2):653–655 doi: 10.1148/radiol.2016160411. [DOI] [PubMed]
  36. Brix S, Cantow K, Flemming B, Pohlmann A, Niendorf T, Seeliger E (2018) Interpretation of functional renal MRI findings: where physiology and imaging sciences need to talk across domains. J Magn Reson Imaging 47(4):1140–1141. https://doi.org/10.1002/jmri.25829 doi: 10.1002/jmri.25829. [DOI] [PubMed]
  37. Evans RG, Leong CL, Anderson WP, O'Connor PM (2007) Don’t be so BOLD: potential limitations in the use of BOLD MRI for studies of renal oxygenation. Kidney Int 71(12):1327–1328 doi: 10.1038/sj.ki.5002321. [DOI] [PubMed]
  38. Cantow K, Arakelyan K, Seeliger E, Niendorf T, Pohlmann A (2016) Assessment of renal hemodynamics and oxygenation by simultaneous magnetic resonance imaging (MRI) and quantitative invasive physiological measurements. Methods Mol Biol 1397:129–154. https://doi.org/10.1007/978-1-4939-3353-2_11 doi: 10.1007/978-1-4939-3353-2_11. [DOI] [PubMed]
  39. Pohlmann A, Arakelyan K, Hentschel J, Cantow K, Flemming B, Ladwig M, Waiczies S, Seeliger E, Niendorf T (2014) Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements. Investig Radiol 49(8):547–560 doi: 10.1097/RLI.0000000000000054. [DOI] [PubMed]

RESOURCES