Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2022 Nov 28;12:20528. doi: 10.1038/s41598-022-24840-z

Optimization of complex engineering problems using modified sine cosine algorithm

Chao Shang 1,, Ting-ting Zhou 1, Shuai Liu 2
PMCID: PMC9705278  PMID: 36443452

Abstract

In this article, a modified version of the Sine Cosine algorithm (MSCA) is proposed to solve the optimization problem. Based on the Sine Cosine algorithm (SCA), the position update formula of SCA is redefined to increase the convergence speed, then the Levy random walk mutation strategy is adopted to improve the population diversity. In order to verify the performance of MSCA, 24 well-known classical benchmark problems and IEEE CEC2017 test suites were introduced, and by comparing MSCA with several popular methods, it is demonstrated that MSCA has good convergence and robustness. Finally, MSCA is used to address six complex engineering design problems, demonstrating the engineering utility of the algorithm.

Subject terms: Civil engineering, Applied mathematics

Introduction

Optimization is the process of finding the best solution to a problem by specific rules1. Traditional optimization techniques need to satisfy the preconditions of continuity and differentiability of the objective function, which makes it impossible to apply anywhere in the real world2. The heuristic algorithm treats the optimization problem as a black box, and does not need to consider the problem information, which brings a boon to the many complex optimization problems. In recent years, as an emerging optimization technology, heuristic algorithms have received widespread popularity in the field of engineering3. Heuristic algorithms are mainly inspired by natural experience and observations, which obtain beneficial information by simulating the cooperation or competition of individuals in the population to find possible better positions in the search space. In general, heuristic algorithms can be classified into three main types4: evolution-based, physics-based and swarm-based algorithms. Evolution-based algorithms are inspired by the laws of biological evolution, individuals exchange information to ensure that they can find a favorable position in the search space. The representative algorithms are Genetic Algorithms (GA)5, Differential Evolution (DE)6 and Evolutionary Strategies (ES)7. Physics-based algorithms inspired by the laws of physics in nature. The most popular methods are Gravitational Search Algorithm (GSA)8, Charged System Search (CSS)9 and Henry gas solubility optimization(HGSO). Swarm-based algorithm mimic social behaviors such as cooperation, competition, and foraging. The most typical algorithms are Ant Colony Optimization (ACO)10, Particle Swarm Optimization (PSO)11 and Harris Hawks Optimization (HHO)12.

Recently, many algorithms have been proposed and received more attention from many researchers. For example—Sadoun et al. 13 have applied the Dwarf Mongoose Optimization algorithm (DMO)14 to predict the effect of Al2O3 nanoparticle content. In15, Reptile search Algorithm (RSA)16 combines with ant colony optimization was developed for churn prediction. In17, Ebola Optimization Search Algorithm (EOSA)18 is used to evaluation the performance convolutional neural networks. In19, Aquila Optimizer (AO)20 is used for weights allocated of forecasting model. In21, Discrete Equilibrium Optimizer and Simulated Annealing is hybridized to solved structural optimization and multi-level image segmentation problems. In22, Snake Optimizer (SO) is proposed to tackle real-world engineering problems. In23, several modified versions of HHO were comprehensively reviewed for engineering application. In24, an Enhanced Remora Optimization Algorithm (EROA) is developed for constrained engineering problems. In25, a modified COOT algorithm is presented to the dimensionality reduction problem. In26, a modified version of Aquila Optimizer (MAO) is developed to solve CEC2017 test suit and five different engineering problems. In27, an Improved Wild Horse Optimizer (IWHO) is proposed to solve high-dimensional cases. In28, a self‑adaptive Harris Hawks optimization algorithm with opposition‑based learning and chaotic local search strategy is used to solve constrained problems. In29, Arithmetic Optimization Algorithm (AOA) is used for the image fusion process.

Sine Cosine Algorithm (SCA)is a swarm-based optimization algorithm that evolves with the help of mathematical models30. The SCA algorithm via a set of random solutions as the beginning, which perfectly avoids the defect that other classical algorithms fall into local optimum in the early search process of optimization. During the search process, periodic sine and cosine trigonometric functions were adopted to adaptively modify the search range to ensure that individuals can fluctuate toward or away from the global optimum31. At the same time, the currently found global best position in the population is continuously updated to improve the ability of individual to move to the optimal position. In2, SCA was tested on several different types of benchmark problems and successfully optimized the cross-section of an aircraft wing. In32, SCA is mixed with Salp Swarm Algorithm (SSA) for feature selection problems. In33, an advanced sine cosine algorithm is employed for assign the weight of ensemble prediction model. In34, a modified version of the SCA is proposed for training multilayer perceptron. In35, a dynamic sine cosine algorithm is employed for solve large scale global optimization problems. In36, a hybrid self-adaptive sine cosine algorithm is proposed to solve engineering application problems.

Although many experts employ different strategies to strive to improve its performance of original SCA, it can be seen from the optimization metrics obtained by the improved version on the test problem that in some cases, SCA exhibits low convergence and inability to jump out of local optima.

Therefore, the aim of this paper is to propose a modified version of the SCA named MSCA. The original formula of SCA is adjusted, which effectively avoids the defect of slow convergence, and improves the search range and optimization ability of the algorithm. After that, while retaining the excellent individuals, the personal best position and the Levy flight strategy in the cuckoo are introduced into the mutation operator to ensure the individual diversity.

To prove the superior performance of MSCA on optimization problems, the proposed method has undergone preliminary performance tests on the classic benchmark functions and the CEC2017 test set. Furthermore, to demonstrate the engineering practicality, the proposed method is experimented on complex engineering problems. Compared with the existing advanced algorithms, the proposed method can obtain more reliable results.

The rest of the article is organized as follows: Section “The modified sine cosine algorithm” briefly introduces the Sine Cosine Algorithm (SCA) and proposes a modified version of Sine Cosine Algorithm (MSCA). In Section “MSCA for numerical optimization problems”, 24 classical benchmark functions and CEC2017 test suites are adopted for numerical experiments to prove search performance of MSCA. Six classical engineering optimization problems are adopted to verify the engineering practicability of MSCA in Section “MSCA for engineering optimization problems”. Finally, Section “Conclusion” summarizes the work of this article.

The modified sine cosine algorithm

Brief introduction of SCA

SCA is a swarm-based optimization method proposed by Mirjalili in 20162. In the optimization process of SCA, all solutions find the best possible position in the search space according to the pattern of sine and cosine random cycles. Same as other algorithm optimization stages, the exploration phase with high disturbance and the development phase with low randomness constitute the optimization process of SCA. The diagram of SCA search mode as shown in Fig. 1, and the two-phases position update equation of SCA is shown as follows:

Xijk+1=Xijk+r1×cosr2×r3×Pjk-Xijk,r40.5Xijk+r1×sinr2×r3×Pjk-Xijk,r4<0.5 1

where Xijk+1 denotes the position of ith individual in jth dimension at (k + 1)th iteration. Pjk denotes the global best position in jth dimension at kth iteration. The parameter r1 decreases linearly with the iterative process, which is used to ensure the balance between exploration and exploitation, the r1 is defined as follows:

r1=a-kak¯ 2

where a is a constant number, and k¯ is the maximum number of iterations. r2 is the random number uniformly distributed in [0, 2π], r3 is the random number uniformly distributed in [0,2], when r3>1, The exchange of information between Pjk and Xijk increases; when r3<1, the influence between Pjk and Xijk is reduced. r4 is a random number in the interval [0,1], which is used to switch with equal probability between sine cosine trigonometric functions.

Figure 1.

Figure 1

Diagram of SCA search mode.

The MSCA algorithm

In this section, a modified version of SCA is proposed to affronts the drawbacks of SCA exhibits optimization stagnation and slow convergence.

Modified position updating of SCA

In the original SCA, only the global optimal position is multiplied by a random factor, which only ensures that the population performs a local search to the current individual position, and ignores the existence of better potential solutions near the global optimal position.

In order to improve the convergence rate and ensure the search balance between the global optimal position and the current individual position, the update formula of SCA is reconstructed. When r4 is less than 0.5, a search mode containing a sine function is used to find a potential better solution near the global optimal position. Otherwise, the cosine function formula is adopted to find a better solution near the current individual position. The modified position update as follows:

Uik=Xik+r1×cosr2×r3×Pk-Xik,r40.5Xik+r1×sinr2×Pk-r3×Xik,r4<0.5 3

where Uik represents the position vector of ith temporary individual at kth iteration. Xik represents the position vector of ith individual at kth iteration. r2, r3 and r4 are random numbers for each position vector of ith temporary individual. Pk represents the position vector of global best-known position at kth iteration.

Levy random walk mutation strategy

In SCA, only the global optimal individual is considered to guide the evolution direction of the population. When individual falls into a local optimal, it is difficult to jump out of the local unfavorable position only with the help of the global optimum position, which eventually leads to optimization stagnation.

Therefore, the personal best position11 and the Levy random walk37 is introduced into MSCA to make up for the shortcoming of cannot jump out of the local optimal. In order to take full advantage of the mutation operator, the global best position is used to form a difference vector with random individuals to act with the Levy random operator, and finally randomly superimposed on the current position or the personal best position to form a new individual. The Mantegna simulates Levy flight with different beta values as presented in Fig. 2. The expression of Xik+1 is defined as follows:

Xik+1=Ur5k+Pk-Ur6k·φ(-1,1)·k¯-kk¯·Levyβ,r7<0.5pBestik+Pk-Ur6k·φ(-1,1)·k¯-kk¯·Levyβ,r70.5 4

where Xik+1 represents the position vector of ith individual at (k + 1)th iteration. pBestik represents the position vector of personal best position of ith individual at kth iteration. r5 and r6 represent the index of randomly selected individuals in the temporary population, r5r6. φ(-1,1) represents the random vector in the interval [-1,1]. Levyβ represents random vector with Levy distribution, β is the tuning parameter.

Figure 2.

Figure 2

Mantegna simulates Levy flight with different beta values.

Execution steps of MSCA

The flowchart of the MSCA is shown in Fig. 3:

Figure 3.

Figure 3

Flowchart of the MSCA method.

MSCA for numerical optimization problems

Compared with the SCA, MSCA has the advantages of better convergence speed and avoiding premature convergence because of the improved position update strategy and the Levy random walk mutation strategy. To further demonstrate the performance of MSCA, 24 classical benchmark problems38 and IEEE CEC2017 test suites39 are adopted to verify the effectiveness of proposed strategy.

Benchmark problem set I: classical benchmark problems

The first set of classical benchmark problems can be divided into unimodal (F1- F6), multimodal (F7-F13) and fixed-dimension multimodal (F14-F24). The unimodal was used to validate the convergence performance of the algorithm, the multimodal was used to test the ability of the method to avoid local stagnation, and the fixed-dimension multimodal was designed to examination the balance levels of the algorithm between exploration and exploitation. The 2D shape of the classical problem are listed in Fig. 4. The problems are listed in detail in Table 1. It is worth pointing out that fmin, range and n represent the theoretical optimal value, the upper and lower bounds and the dimension of the problem, respectively.

Figure 4.

Figure 4

A 2D shape of classical benchmark problems.

Table 1.

Details of 24 classical benchmark problems.

Type Equation n Range fmin
Unimodal F1(x)=i=1nxi2 30 [−100, 100] 0
Unimodal F2x=i=1nxi+i=1nxi 30 [−10, 10] 0
Unimodal F3(x)=i=1nj=1ixj2 30 [−100, 100] 0
Unimodal F4x=maxxi,1in 30 [−100, 100] 0
Unimodal F5(x)=i=1n-1[100(xi+1-xi2)2+(xi-1)2] 30 [−30, 30] 0
Unimodal F6(x)=i=1n(xi+0.5)2 30 [−100, 100] 0
Unimodal F7(x)=i=1nixi4+random[0,1) 30 [−1.28, 1.28] 0
Multimodal F8(x)=i=1n-xisin(|xi|) 30 [−500, 500] −12,567
Multimodal F9(x)=i=1n[xi2-10cos(2πxi)+10] 30 [−5.12, 5.12] 0
Multimodal F10(x)=-20exp(-0.21ni=1nxi2)-exp(1ni=1ncos(2πxi))+20+e 30 [−32, 32] 0
Multimodal F11(x)=14000i=1nxi2-i=1ncos(xii)+1 30 [−600, 600] 0
Multimodal F12x=πn{10sin2(πy1)+i=1n-1(yi-1)2[1+10sin2(πyi+1)]+(yn-1)2}+i=1nu(xi,10,100,4)yi=1+xi+14,u(xi,a,k,m)=k(xi-a)mxi>a0-axi<ak(-xi-a)mxi<-a 30 [−50, 50] 0
Multimodal F13(x)=0.1{sin2(3πx1)+i=1n(xi-1)2[1+sin2(3πxi+1+1)]+(xn-1)2[1+sin2(2πxn)]}+i=1nu(xi,5,100,4) 30 [−50, 50] 0
Fixed F14(x)=[1500+j=1251j+i=12(xi-aij)6]-1 2 [−65.536,65.536] 1
Fixed F15(x)=i=111ai-x1(bi2+bix2)bi2+bix3+x42 4 [−5, 5] 0.0003075
Fixed F16(x)=4x12-2.1x14+13x16+x1x2-4x22+4x24 2 [−5, 5] −1.0316285
Fixed F17(x)=(x2-5.14π2x12+5πx1-6)2+10(1-18π)cosx1+10 2 [−5,10] × [0,15] 0.398
Fixed F18(x)=[1+(x1+x2+1)2(19-14x1+3x12-14x2+6x1x2+3x12)]×[30+(2x1-3x2)2(18-32x1+12x12+48x2-36x1x2+27x22)] 2 [−2, 2] 3
Fixed F19(x)=-i=14ciexp[-j=13aij(xj-pij)2] 3 [0,1] −3.86
Fixed F20(x)=-i=14ciexp[-j=16aij(xj-pij)2] 6 [0,1] −3.32
Fixed F22(x)=-i=15[(x-ai)(x-ai)T+ci]-1 4 [0,10] −10.1532
Fixed F23(x)=-i=17[(x-ai)(x-ai)T+ci]-1 4 [0,10] −10.4028
Fixed F23(x)=-i=110[(x-ai)(x-ai)T+ci]-1 4 [0,10] −10.5363
Fixed F24(x)=x12+x22+25sin2(x1)+sin2(x2) 2 [−5, 5] 0

Parameter settings

For fair comparison, seven existing persuasive algorithms are introduced to compare with MSCA, including GA40, PSO11, GSA8, JAYA41, ALO42, MVO43, GWO44, WOA4, SSA45, HGSO12, AOA46 and SCA2. the population size was set to 50, and the maximum iterations was set to 500 in the selected algorithm. For avoid the influence of randomness, each algorithm was independently repeated for 20 times. The default parameter value settings of all the algorithms are listed in Table 2.

Table 2.

The default parameters of selected algorithm.

Algorithm Detailed parameter Value
GA Mutation probability 0.05
Crossover probability 0.6
PSO Cognitive coefficient(C1) 2.0
Cognitive coefficient(C2) 2.0
Weight (wmax) 0.8
Weight (wmin) 0.3
GSA Attenuation factor a 20
Initial gravitational constant G0 100
MVO Minimum of Wormhole Existence Probability 0.2
Maximum of Wormhole Existence Probability 1.0
GWO Constant a 2.0
WOA Constant a 2.0
SSA Coefficient c1 2exp-4k/k¯2
HGSO Cluster number 5
AOA Control parameter μ 0.5
Control parameter α 5
SCA Constant a 2.0
MSCA Constant a 2.0
Tuning parameter β 1.5

Experimental results analysis

To obey the univariate principle, all algorithms are run independently in the same environment. The comparison results of selected algorithms for 24 benchmark problems are given in Table 3, including the mean and standard deviation (STD). The results of the Wilcoxon ranksum and signed-rank test at 5% level significance level are reported in Tables 4 and 5, respectively. It should be pointed out that in Table 5 , if the result of MSCA is better than the competitive algorithms, that the MSCA is recorded as win, if equal, recorded as tie, otherwise recorded as lose.

Table 3.

Comparison results of selected algorithms for classical benchmark problem.

Function Item GA PSO GSA JAYA ALO MVO GWO WOA SSA HGSO AOA SCA MSCA
F1 Mean 1.45E + 03 8.84E-04 4.85E-12 3.98E + 01 1.43E-04 8.62E-01 1.93E-19 1.91E-69 2.85E-05 3.02E-17 3.51E-23 4.72E + 00 1.13E-75
STD 2.51E + 02 9.82E-04 6.97E-12 9.40E + 00 7.88E-05 2.07E-01 2.63E-19 7.12E-69 5.78E-05 1.14E-16 1.57E-22 8.71E + 00 6.21E-75
F2 Mean 1.28E + 01 5.00E + 00 7.37E-02 6.14E + 00 4.80E + 01 1.12E + 01 4.98E-12 8.59E-52 3.25E + 00 1.58E-15 3.26E-115 1.38E-02 6.76E-47
STD 1.71E + 00 6.82E + 00 2.64E-01 2.54E + 00 4.86E + 01 3.22E + 01 2.95E-12 3.72E-51 1.91E + 00 5.42E-15 1.01E-114 2.05E-02 1.94E-46
F3 Mean 2.07E + 04 5.90E + 03 7.04E + 02 3.85E + 04 2.35E + 03 7.84E + 01 5.07E-03 5.96E + 04 2.25E + 03 2.04E + 02 5.01E-03 6.92E + 03 8.51E + 00
STD 4.07E + 03 4.76E + 03 2.22E + 02 5.66E + 03 1.13E + 03 3.74E + 01 1.38E-02 1.91E + 04 7.83E + 02 3.76E + 02 1.12E-02 4.67E + 03 1.48E + 01
F4 Mean 2.26E + 01 7.77E + 00 4.03E + 00 2.74E + 01 1.75E + 01 1.47E + 00 1.92E-04 4.51E + 01 1.54E + 01 9.38E-02 3.51E-02 2.46E + 01 2.18E-32
STD 9.68E-01 1.77E + 00 1.14E + 00 5.56E + 00 5.31E + 00 6.18E-01 1.64E-04 2.87E + 01 5.75E + 00 1.94E-01 1.31E-02 9.57E + 00 1.19E-31
F5 Mean 2.56E + 05 3.85E + 03 8.91E + 01 3.88E + 03 2.53E + 02 3.62E + 02 2.79E + 01 2.85E + 01 4.50E + 02 2.82E + 01 2.85E + 01 1.61E + 04 2.55E + 01
STD 6.47E + 04 1.63E + 04 6.94E + 01 2.18E + 03 3.73E + 02 5.68E + 02 7.92E-01 3.41E-01 7.22E + 02 2.86E-01 2.40E-01 4.24E + 04 1.66E-01
F6 Mean 1.41E + 03 1.03E-03 6.09E-12 6.79E + 01 1.04E-04 8.26E-01 1.95E + 00 1.09E + 00 1.74E-05 3.40E + 00 3.84E + 00 8.48E + 00 8.46E-04
STD 2.46E + 02 1.10E-03 1.05E-11 2.22E + 01 5.34E-05 2.07E-01 6.30E-01 3.43E-01 2.26E-05 3.39E-01 2.60E-01 5.47E + 00 1.99E-03
F7 Mean 6.54E-01 1.04E + 00 5.55E-01 7.09E-01 5.72E-01 5.25E-01 3.67E-01 5.05E-01 6.95E-01 5.13E-01 4.54E-01 6.49E-01 4.52E-01
STD 3.14E-01 2.13E + 00 2.95E-01 2.85E-01 2.67E-01 2.74E-01 3.19E-01 2.21E-01 3.47E-01 2.84E-01 2.33E-01 2.57E-01 2.98E-01
F8 Mean -1.13E + 04 -9.78E + 03 -2.87E + 03 -5.19E + 03 -5.78E + 03 -8.13E + 03 -5.45E + 03 -9.38E + 03 -7.23E + 03 -4.07E + 03 -3.03E + 38 -3.90E + 03 -1.24E + 04
STD 2.02E + 02 6.03E + 02 4.19E + 02 5.98E + 02 8.90E + 02 7.61E + 02 8.05E + 02 1.77E + 03 8.03E + 02 5.81E + 02 1.35E + 39 2.99E + 02 6.26E + 02
F9 Mean 5.55E + 01 5.72E + 01 1.87E + 01 2.56E + 02 8.34E + 01 1.12E + 02 1.74E + 01 0.00E + 00 5.16E + 01 8.27E + 00 0.00E + 00 3.90E + 01 0.00E + 00
STD 6.38E + 00 1.81E + 01 4.11E + 00 2.00E + 01 2.03E + 01 3.14E + 01 5.25E + 00 0.00E + 00 1.43E + 01 2.69E + 01 0.00E + 00 3.87E + 01 0.00E + 00
F10 Mean 8.93E + 00 2.44E-01 9.00E-07 7.70E + 00 2.38E + 00 1.51E + 00 9.54E-11 4.09E-15 3.57E + 00 5.34E-10 0.00E + 00 1.38E + 01 0.00E + 00
STD 6.41E-01 4.66E-01 4.97E-07 6.11E + 00 8.25E-01 6.08E-01 6.30E-11 2.89E-15 1.18E + 00 1.82E-09 0.00E + 00 9.08E + 00 0.00E + 00
F11 Mean 1.40E + 01 1.72E-02 1.70E + 01 1.39E + 00 2.28E-02 7.58E-01 8.04E-03 0.00E + 00 4.53E-02 4.53E-12 3.47E-01 8.24E-01 0.00E + 00
STD 2.11E + 00 1.56E-02 3.87E + 00 1.11E-01 1.27E-02 9.93E-02 1.47E-02 0.00E + 00 2.88E-02 1.96E-11 1.82E-01 3.17E-01 0.00E + 00
F12 Mean 9.83E + 01 2.84E-01 1.18E + 00 1.93E + 01 1.15E + 01 1.35E + 00 1.55E-01 7.90E-02 8.39E + 00 5.33E-01 6.18E-01 4.07E + 03 2.42E-05
STD 1.85E + 02 3.95E-01 7.00E-01 9.80E + 00 4.75E + 00 1.10E + 00 1.32E-01 3.32E-02 3.15E + 00 1.50E-01 6.88E-02 2.21E + 04 5.04E-06
F13 Mean 7.12E + 04 5.61E-02 8.22E + 00 4.26E + 01 1.17E + 01 1.21E-01 1.40E + 00 1.28E + 00 2.86E + 01 2.48E + 00 2.67E + 00 3.81E + 04 3.78E-03
STD 3.87E + 04 7.19E-02 6.16E + 00 1.01E + 02 1.47E + 01 4.92E-02 2.78E-01 3.61E-01 1.40E + 01 1.77E-01 1.24E-01 1.91E + 05 1.87E-02
F14 Mean 9.98E-01 9.98E-01 4.03E + 00 9.98E-01 1.63E + 00 9.98E-01 5.93E + 00 3.20E + 00 1.25E + 00 1.38E + 00 8.37E + 00 1.40E + 00 9.98E-01
STD 9.96E-09 4.12E-17 2.98E + 00 2.73E-04 8.82E-01 5.00E-11 4.81E + 00 3.66E + 00 4.42E-01 4.71E-01 4.53E + 00 8.07E-01 1.43E-15
F15 Mean 1.05E-03 2.77E-03 6.28E-03 6.32E-04 3.50E-03 5.42E-03 4.41E-03 6.49E-04 4.81E-03 5.46E-04 1.88E-02 9.99E-04 6.13E-04
STD 4.01E-04 5.97E-03 3.33E-03 4.37E-04 6.73E-03 8.39E-03 8.19E-03 3.83E-04 8.04E-03 1.30E-04 3.39E-02 3.36E-04 4.11E-04
F16 Mean -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00 -1.03E + 00
STD 2.27E-05 6.71E-16 1.00E-15 3.05E-05 7.51E-14 5.14E-07 1.26E-08 6.85E-09 6.21E-14 1.80E-05 1.89E-07 3.75E-05 1.58E-13
F17 Mean 3.98E-01 3.98E-01 3.98E-01 3.99E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.99E-01 4.18E-01 4.00E-01 3.98E-01
STD 8.57E-05 0.00E + 00 8.97E-15 1.66E-03 3.89E-14 7.72E-07 2.13E-06 3.99E-04 6.10E-13 1.37E-03 1.27E-02 1.67E-03 7.78E-11
F18 Mean 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 3.00E + 00 2.17E + 01 3.00E + 00 3.00E + 00
STD 4.14E-04 1.24E-15 1.10E-13 7.97E-04 3.65E-13 4.09E-06 1.53E-04 3.99E-03 8.44E-13 3.75E-04 3.20E + 01 2.47E-05 7.71E-13
F19 Mean -3.86E + 00 -3.86E + 00 -3.70E + 00 -3.86E + 00 -3.86E + 00 -3.86E + 00 -3.86E + 00 -3.83E + 00 -3.86E + 00 -3.86E + 00 -3.85E + 00 -3.86E + 00 -3.86E + 00
STD 7.35E-06 2.65E-15 2.46E-01 2.71E-15 1.00E-13 2.19E-06 2.09E-03 5.36E-02 2.39E-02 3.36E-03 4.64E-03 3.40E-03 9.53E-10
F20 Mean -3.28E + 00 -3.28E + 00 -2.29E + 00 -3.24E + 00 -3.26E + 00 -3.25E + 00 -3.27E + 00 -3.08E + 00 -3.28E + 00 -3.27E + 00 -3.00E + 00 -3.03E + 00 -3.29E + 00
STD 5.69E-02 6.57E-02 7.37E-01 6.01E-02 6.06E-02 5.89E-02 8.36E-02 2.68E-01 8.77E-02 6.66E-02 1.06E-01 1.37E-01 5.11E-02
F21 Mean -6.95E + 00 -8.48E + 00 -4.98E + 00 -7.22E + 00 -5.94E + 00 -6.87E + 00 -9.53E + 00 -7.52E + 00 -9.40E + 00 -8.09E + 00 -4.40E + 00 -2.56E + 00 -9.30E + 00
STD 3.54E + 00 2.90E + 00 4.22E-01 2.46E + 00 2.75E + 00 3.04E + 00 1.97E + 00 2.54E + 00 1.85E + 00 1.99E + 00 1.74E + 00 1.94E + 00 1.93E + 00
F22 Mean -7.45E + 00 -8.28E + 00 -8.10E + 00 -8.99E + 00 -7.25E + 00 -9.80E + 00 -1.01E + 01 -7.80E + 00 -8.96E + 00 -7.49E + 00 -3.62E + 00 -4.34E + 00 -1.02E + 01
STD 3.49E + 00 3.12E + 00 2.68E + 00 2.15E + 00 3.08E + 00 1.88E + 00 1.19E + 00 2.81E + 00 2.60E + 00 2.41E + 00 1.66E + 00 1.62E + 00 9.70E-01
F23 Mean -7.39E + 00 -9.61E + 00 -9.11E + 00 -8.96E + 00 -8.08E + 00 -9.73E + 00 -9.72E + 00 -7.09E + 00 -1.05E + 01 -8.09E + 00 -3.85E + 00 -4.70E + 00 -9.82E + 00
STD 3.64E + 00 2.44E + 00 2.70E + 00 2.27E + 00 3.36E + 00 2.14E + 00 2.50E + 00 2.83E + 00 3.26E-10 2.29E + 00 1.91E + 00 1.23E + 00 1.87E + 00
F24 Mean 9.09E-05 8.77E-73 3.38E-16 6.39E-47 2.41E-13 1.90E-06 2.75E-148 8.74E-94 1.15E-13 1.07E-118 0.00E + 00 8.00E-78 2.31E-229
STD 1.13E-04 1.77E-72 6.02E-16 2.08E-46 2.21E-13 1.67E-06 1.21E-147 3.91E-93 1.12E-13 3.92E-118 0.00E + 00 2.99E-77 0.00E + 00

Significant values are in bold.

Table 4.

Wilcoxon ranksum test on classical benchmark functions at 5% level of significance.

Function GA vs MSCA PSO vs MSCA GSA vs MSCA JAYA vs MSCA ALO vs MSCA MVO vs MSCA GWO vs MSCA WOA vs MSCA SSA vs MSCA HGSO vs MSCA AOA vs MSCA SCA vs MSCA
F1 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.92E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F2 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 3.94E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F3 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.06E-07 3.29E-05 6.80E-08 6.80E-08 4.90E-01 2.69E-06 6.80E-08
F4 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F5 6.80E-08 1.20E-06 6.80E-08 6.80E-08 1.20E-06 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F6 6.80E-08 4.57E-01 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F7 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 1.16E-04 6.80E-08 6.80E-08 6.80E-08 3.94E-07 2.56E-07
F8 1.20E-06 6.92E-07 6.80E-08 6.80E-08 6.46E-08 1.23E-07 6.80E-08 1.80E-06 6.80E-08 6.80E-08 1.60E-05 6.80E-08
F9 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 N/A 8.01E-09 6.68E-05 N/A 8.01E-09
F10 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 2.71E-06 8.01E-09 7.86E-09 N/A 8.01E-09
F11 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 8.01E-09 3.37E-07 N/A 8.01E-09 1.98E-02 8.01E-09 8.01E-09
F12 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F13 6.80E-08 6.92E-07 7.90E-08 6.80E-08 9.17E-08 2.56E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F14 4.67E-08 4.91E-09 8.85E-07 4.67E-08 4.41E-01 4.67E-08 4.61E-08 4.67E-08 5.88E-01 4.67E-08 4.67E-08 4.67E-08
F15 3.15E-02 9.07E-02 6.80E-08 1.64E-01 3.15E-02 6.04E-03 9.25E-01 3.51E-01 9.79E-03 3.94E-01 9.21E-04 9.79E-03
F16 6.66E-08 7.80E-09 7.80E-09 6.66E-08 1.14E-02 6.66E-08 6.66E-08 6.66E-08 2.48E-03 6.66E-08 6.66E-08 6.66E-08
F17 6.80E-08 8.01E-09 4.63E-08 1.71E-01 8.50E-07 6.80E-08 6.80E-08 6.80E-08 1.41E-05 6.80E-08 6.80E-08 6.80E-08
F18 6.76E-08 7.95E-09 2.26E-04 6.76E-08 4.02E-01 6.76E-08 6.76E-08 6.76E-08 8.29E-01 6.76E-08 8.47E-07 6.76E-08
F19 6.80E-08 8.01E-09 6.80E-08 8.01E-09 6.46E-08 6.80E-08 6.80E-08 6.80E-08 9.13E-07 6.80E-08 6.80E-08 6.80E-08
F20 6.61E-05 2.34E-01 1.61E-04 8.37E-01 9.25E-01 5.87E-06 1.16E-04 2.06E-06 7.11E-03 3.75E-04 6.80E-08 2.22E-07
F21 2.60E-05 2.81E-03 7.94E-04 1.78E-03 9.79E-03 2.60E-05 8.36E-04 1.60E-05 4.17E-05 2.47E-04 5.87E-06 1.23E-07
F22 6.92E-07 2.25E-02 4.39E-01 6.74E-01 4.90E-01 1.05E-06 1.05E-06 3.42E-07 5.12E-03 4.54E-07 1.23E-07 1.92E-07
F23 1.58E-06 6.80E-05 8.00E-05 3.09E-01 7.64E-02 7.58E-06 9.75E-06 6.92E-07 6.80E-08 4.54E-06 2.22E-07 1.66E-07
F24 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 8.01E-09 6.80E-08

Significant values are in bold.

Table 5.

Wilcoxon signed-rank test on classical benchmark functions at 5% level of significance.

Item Win Tie Lose R+ R- p-value Decision
GA vs MSCA 24 0 0 300 0 1.82E-05  + 
PSO vs MSCA 19 0 5 280 20 2.04E-04  + 
GSA vs MSCA 20 0 4 283 17 1.45E-04  + 
JAYA vs MSCA 23 0 1 298 2 2.35E-05  + 
ALO vs MSCA 19 0 5 281 19 1.82E-04  + 
MVO vs MSCA 24 0 0 300 0 1.82E-05  + 
GWO vs MSCA 21 0 3 248 52 5.11E-03  + 
WOA vs MSCA 21 2 1 293.5 6.5 6.08E-05  + 
SSA vs MSCA 19 0 5 263 37 1.24E-03  + 
AOA vs MSCA 18 2 4 245.5 54.5 8.15E-03  + 
SCA vs MSCA 24 0 0 300 0 1.82E-05  + 

From Table 3, MSCA outperforms GA, MVO and SCA on the mean of all benchmark problems, and the standard deviation of MSCA is smaller than SCA. Furthermore, MSCA wins most problems compared to PSO, GSA, JAYA and ALO.

In Table 4, The p-value of the vast majority of rank sum tests are less than 5%, which illustrates the variability in the overall distribution of target values for the proposed and control methods. At the same time, MSCA achieved p-values of less than 5% in all sign-rank comparisons in Table 5, indicating that the results obtained by MSCA are statistically significant. Overall, MSCA can balance the process between exploration and exploitation.

Robustness and convergence analysis

For validate the robustness and convergence performance of MSCA in classical benchmark problems, the box-plot of all results and convergence curve of best result for JAYA, ALO, MVO, SCA and MSCA are plotted in Figs. 5 and 6.respectively.

Figure 5.

Figure 5

The box-plot of different algorithms on classical benchmark problems.

Figure 6.

Figure 6

The convergence curve on classical benchmark problems.

Box-plot revealed the distribution of results obtained by each method. It can be seen from Fig. 5 that JAYA, ALO, MVO and SCA show different degrees of dispersion in different benchmark problems, while MCSA get more stable and better distribution. And it can be seen from the convergence curve in Fig. 6 that MSCA has a faster convergence rate than other algorithms. Hence, the modified SCA position update formula combined with Levy random walk mutation strategy can get more accurate results.

Benchmark problem set II: CEC2017 test suites

In this section, IEEE CEC2017 test suites are adopted to prove the performance of MSCA, which are mainly divided into four groups: (a) Unimodal, (b) Multimodal, (c) Hybrid and (d) Composition. The definition of the CEC2017 benchmark problems is shown in Table 6. Unlike classical benchmark function problems, this problem involves matrix rotation and global optimum shifted operations.

Table 6.

The definition of CEC2017 test suites.

Type Function Name n Range  fmin
Unimodal F1: Shifted and Rotated Bent Cigar Function 10 [−100, 100] 100
Unimodal F2: Shifted and Rotated Sum of Different Power Function 10 [−100, 100] 200
Unimodal F3: Shifted and Rotated Zakharov Function 10 [−100, 100] 300
Multimodal F4: Shifted and Rotated Rosenbrock’s Function 10 [−100, 100] 400
Multimodal F5: Shifted and Rotated Rastrigin’s Function 10 [−100, 100] 500
Multimodal F6: Shifted and Rotated Expanded Scaffer’s F6 Function 10 [−100, 100] 600
Multimodal F7: Shifted and Rotated Lunacek Bi_Rastrigin Function 10 [−100, 100] 700
Multimodal F8: Shifted and Rotated Non−Continuous Rastrigin’s Function 10 [−100, 100] 800
Multimodal F9: Shifted and Rotated Levy Function 10 [−100, 100] 900
Multimodal F10: Shifted and Rotated Schwefel’s Function 10 [−100, 100] 1000
Hybrid F11: Hybrid Function 1 (N = 3) 10 [−100, 100] 1100
Hybrid F12: Hybrid Function 2 (N = 3) 10 [−100, 100] 1200
Hybrid F13: Hybrid Function 3 (N = 3) 10 [−100, 100] 1300
Hybrid F14: Hybrid Function 4 (N = 4) 10 [−100, 100] 1400
Hybrid F15: Hybrid Function 5 (N = 4) 10 [−100, 100] 1500
Hybrid F16: Hybrid Function 6 (N = 4) 10 [−100, 100] 1600
Hybrid F17: Hybrid Function 6 (N = 5) 10 [−100, 100] 1700
Hybrid F18: Hybrid Function 6 (N = 5) 10 [−100, 100] 1800
Hybrid F19: Hybrid Function 6 (N = 5) 10 [−100, 100] 1900
Hybrid F20: Hybrid Function 6 (N = 6) 10 [−100, 100] 2000
Composition F21: Composition Function 1 (N = 3) 10 [−100, 100] 2100
Composition F22: Composition Function 2 (N = 3) 10 [−100, 100] 2200
Composition F23: Composition Function 3 (N = 4) 10 [−100, 100] 2300
Composition F24: Composition Function 4 (N = 4) 10 [−100, 100] 2400
Composition F25: Composition Function 5 (N = 5) 10 [−100, 100] 2500
Composition F26: Composition Function 6 (N = 5) 10 [−100, 100] 2600
Composition F27: Composition Function 7 (N = 6) 10 [−100, 100] 2700
Composition F28: Composition Function 8 (N = 6) 10 [−100, 100] 2800
Composition F29: Composition Function 9 (N = 3) 10 [−100, 100] 2900
Composition F30: Composition Function 10 (N = 3) 10 [−100, 100] 3000

Experimental results analysis

The statistical results for CEC2017 are illustrated in Table 7. From the table, it can be concluded that MSCA outperforms the other popular methods in most of the CEC2017 benchmark problems. In addition, from the results of the Wilcoxon ranksum and signed-rank test in Tables 8 and 9, it can be concluded that the proposed method is effective in improving the search efficiency of SCA and provides better results than other methods. In conclusion, MSCA is a quite competitive algorithm.

Table 7.

Statistic result of the algorithms on CEC2017 test suit with 10 dimensions.

Function Item GA PSO GSA JAYA ALO MVO GWO WOA SSA HGSO AOA SCA MSCA
F1 Mean 1.12E + 07 9.35E + 06 3.28E + 02 3.81E + 08 1.84E + 03 1.69E + 04 1.78E + 08 4.47E + 08 2.13E + 03 4.40E + 08 1.02E + 10 8.37E + 08 1.55E + 05
STD 5.63E + 06 2.42E + 07 4.24E + 02 1.49E + 08 1.89E + 03 5.93E + 03 2.06E + 08 2.87E + 08 2.22E + 03 4.52E + 08 4.29E + 09 2.45E + 08 8.44E + 04
F2 Mean 6.44E + 06 1.04E + 09 4.60E + 10 4.31E + 07 1.43E + 03 7.26E + 02 5.45E + 09 5.69E + 09 2.04E + 05 6.10E + 08 8.30E + 14 1.19E + 09 1.74E + 05
STD 1.22E + 07 5.58E + 09 7.19E + 10 4.05E + 07 2.69E + 03 1.03E + 03 9.60E + 09 1.58E + 10 3.55E + 05 1.86E + 09 1.39E + 15 2.48E + 09 3.18E + 05
F3 Mean 3.79E + 03 3.00E + 02 1.58E + 04 8.46E + 03 3.00E + 02 3.00E + 02 5.17E + 03 1.24E + 04 3.45E + 02 3.28E + 03 1.50E + 04 2.14E + 03 3.79E + 02
STD 1.47E + 03 3.60E-03 3.32E + 03 2.05E + 03 1.68E-01 7.99E-02 2.85E + 03 8.10E + 03 1.36E + 02 1.30E + 03 4.11E + 03 1.35E + 03 5.77E + 01
F4 Mean 4.07E + 02 4.24E + 02 4.25E + 02 4.10E + 02 4.11E + 02 4.05E + 02 4.29E + 02 4.80E + 02 4.06E + 02 4.35E + 02 1.13E + 03 4.54E + 02 4.07E + 02
STD 9.05E-01 3.94E + 01 1.79E + 01 6.11E-01 1.76E + 01 1.47E + 00 2.82E + 01 5.93E + 01 2.20E + 00 1.82E + 01 4.70E + 02 2.06E + 01 5.94E-01
F5 Mean 5.68E + 02 1.08E + 03 6.13E + 02 1.13E + 03 5.24E + 02 5.29E + 02 5.25E + 02 5.69E + 02 5.30E + 02 5.44E + 02 5.71E + 02 1.95E + 03 5.34E + 02
STD 1.42E + 01 8.77E + 02 1.73E + 02 2.05E + 02 8.60E + 00 1.19E + 01 1.37E + 01 2.17E + 01 1.32E + 01 8.66E + 00 1.89E + 01 4.93E + 02 6.38E + 00
F6 Mean 6.00E + 02 6.00E + 02 6.00E + 02 6.00E + 02 6.00E + 02 6.00E + 02 6.05E + 02 6.45E + 02 6.21E + 02 6.14E + 02 6.42E + 02 6.00E + 02 6.00E + 02
STD 3.47E-03 4.87E-03 3.24E-02 1.10E-02 2.79E-02 1.13E-02 3.49E + 00 1.33E + 01 1.05E + 01 7.71E + 00 5.27E + 00 1.58E-02 1.51E-04
F7 Mean 7.37E + 02 7.24E + 02 7.24E + 02 7.63E + 02 7.41E + 02 7.29E + 02 7.41E + 02 7.94E + 02 7.39E + 02 7.65E + 02 7.93E + 02 7.81E + 02 7.29E + 02
STD 5.81E + 00 5.27E + 00 5.67E + 00 8.03E + 00 1.41E + 01 9.68E + 00 1.57E + 01 2.01E + 01 1.16E + 01 1.17E + 01 1.27E + 01 1.01E + 01 4.03E + 00
F8 Mean 8.16E + 02 8.13E + 02 8.23E + 02 8.47E + 02 8.21E + 02 8.19E + 02 8.20E + 02 8.47E + 02 8.30E + 02 8.40E + 02 8.45E + 02 8.45E + 02 8.09E + 02
STD 3.26E + 00 5.14E + 00 6.23E + 00 6.18E + 00 1.03E + 01 9.59E + 00 7.64E + 00 1.84E + 01 9.80E + 00 7.50E + 00 1.25E + 01 7.41E + 00 2.69E + 00
F9 Mean 9.00E + 02 9.00E + 02 9.00E + 02 9.00E + 02 9.00E + 02 9.00E + 02 9.46E + 02 1.81E + 03 1.03E + 03 9.79E + 02 1.39E + 03 9.00E + 02 9.00E + 02
STD 1.93E-02 1.45E-01 5.83E-01 1.00E-01 3.14E-01 6.88E-01 6.89E + 01 6.45E + 02 1.50E + 02 5.27E + 01 2.13E + 02 1.44E-01 5.26E-05
F10 Mean 1.49E + 03 1.52E + 03 2.90E + 03 2.25E + 03 2.00E + 03 1.70E + 03 1.88E + 03 2.32E + 03 1.96E + 03 2.59E + 03 2.43E + 03 2.40E + 03 1.29E + 03
STD 1.51E + 02 2.15E + 02 2.40E + 02 2.26E + 02 3.94E + 02 2.66E + 02 4.13E + 02 3.71E + 02 3.27E + 02 2.07E + 02 2.66E + 02 2.01E + 02 1.36E + 02
F11 Mean 1.27E + 03 1.17E + 03 1.17E + 04 2.61E + 03 1.17E + 03 1.14E + 03 1.18E + 03 1.36E + 03 1.17E + 03 1.18E + 03 5.60E + 03 2.68E + 03 1.13E + 03
STD 8.15E + 01 3.13E + 02 2.65E + 03 4.85E + 02 6.92E + 01 7.33E + 01 9.02E + 01 2.60E + 02 4.89E + 01 2.79E + 01 6.71E + 03 1.14E + 03 2.14E + 01
F12 Mean 6.64E + 05 1.11E + 06 1.50E + 06 9.96E + 06 1.97E + 06 1.27E + 06 8.08E + 05 4.53E + 06 3.27E + 06 7.92E + 06 3.71E + 08 1.72E + 07 1.84E + 05
STD 5.07E + 05 2.83E + 06 8.49E + 05 9.25E + 06 2.11E + 06 1.13E + 06 8.92E + 05 5.44E + 06 4.58E + 06 6.79E + 06 3.07E + 08 1.68E + 07 3.41E + 05
F13 Mean 1.22E + 04 8.39E + 03 1.13E + 04 1.85E + 04 1.51E + 04 1.30E + 04 1.35E + 04 1.77E + 04 1.66E + 04 3.16E + 04 2.51E + 07 4.33E + 04 3.97E + 03
STD 8.41E + 03 8.48E + 03 2.18E + 03 1.63E + 04 1.30E + 04 1.07E + 04 9.55E + 03 1.91E + 04 1.10E + 04 2.71E + 04 6.38E + 07 2.47E + 04 4.03E + 03
F14 Mean 2.34E + 03 2.08E + 03 1.42E + 04 4.40E + 03 1.24E + 04 1.98E + 03 5.24E + 03 2.97E + 03 4.13E + 03 2.77E + 03 7.80E + 03 6.49E + 03 1.46E + 03
STD 1.03E + 03 1.03E + 03 2.86E + 03 1.70E + 03 6.85E + 03 8.71E + 02 2.40E + 03 1.75E + 03 4.15E + 03 1.35E + 03 7.29E + 03 2.24E + 03 1.46E + 01
F15 Mean 2.95E + 03 4.63E + 03 2.87E + 04 1.02E + 04 3.08E + 04 3.01E + 03 9.88E + 03 1.00E + 04 9.93E + 03 4.50E + 03 1.61E + 04 8.43E + 03 1.59E + 03
STD 1.37E + 03 6.30E + 03 5.87E + 03 6.34E + 03 1.65E + 04 2.27E + 03 6.75E + 03 6.62E + 03 7.74E + 03 2.42E + 03 7.72E + 03 3.37E + 03 1.32E + 02
F16 Mean 1.66E + 03 1.74E + 03 2.25E + 03 1.73E + 03 1.90E + 03 1.75E + 03 1.79E + 03 2.05E + 03 1.82E + 03 1.80E + 03 2.13E + 03 1.80E + 03 1.62E + 03
STD 6.33E + 01 1.34E + 02 1.05E + 02 4.75E + 01 1.85E + 02 1.25E + 02 1.29E + 02 2.08E + 02 1.62E + 02 8.73E + 01 1.81E + 02 9.61E + 01 3.22E + 01
F17 Mean 1.74E + 03 1.78E + 03 1.88E + 03 1.93E + 03 1.83E + 03 1.82E + 03 1.78E + 03 1.84E + 03 1.78E + 03 1.78E + 03 1.89E + 03 1.90E + 03 1.73E + 03
STD 1.93E + 01 6.23E + 01 1.51E + 02 5.63E + 01 1.03E + 02 7.46E + 01 3.27E + 01 6.59E + 01 2.39E + 01 1.25E + 01 8.68E + 01 7.55E + 01 8.08E + 00
F18 Mean 1.40E + 04 3.36E + 04 2.44E + 04 1.01E + 05 4.40E + 04 2.07E + 04 2.14E + 04 1.90E + 04 2.13E + 04 2.44E + 05 2.54E + 08 2.29E + 05 8.86E + 03
STD 1.03E + 04 2.16E + 04 6.49E + 03 5.95E + 04 2.99E + 04 1.44E + 04 1.73E + 04 1.32E + 04 1.44E + 04 3.60E + 05 4.88E + 08 2.43E + 05 6.47E + 03
F19 Mean 5.01E + 03 1.36E + 04 6.44E + 05 1.10E + 04 2.58E + 04 2.47E + 03 2.94E + 04 4.73E + 05 7.15E + 03 6.58E + 03 4.99E + 06 1.24E + 04 1.97E + 03
STD 3.61E + 03 1.65E + 04 5.57E + 05 1.01E + 04 1.77E + 04 8.24E + 02 6.97E + 04 8.96E + 05 6.74E + 03 4.53E + 03 2.15E + 07 8.02E + 03 1.06E + 02
F20 Mean 2.03E + 03 2.08E + 03 2.39E + 03 2.27E + 03 2.20E + 03 2.16E + 03 2.14E + 03 2.24E + 03 2.13E + 03 2.11E + 03 2.16E + 03 2.29E + 03 2.02E + 03
STD 8.67E + 00 8.39E + 01 1.34E + 02 6.44E + 01 1.02E + 02 8.87E + 01 7.87E + 01 8.93E + 01 6.71E + 01 3.51E + 01 6.19E + 01 6.56E + 01 2.21E + 01
F21 Mean 2.27E + 03 2.56E + 03 2.32E + 03 2.67E + 03 2.21E + 03 2.25E + 03 2.32E + 03 2.34E + 03 2.28E + 03 2.24E + 03 2.36E + 03 2.62E + 03 2.20E + 03
STD 5.06E + 01 2.47E + 02 9.78E + 01 6.89E + 01 3.19E + 01 6.49E + 01 9.00E + 00 4.81E + 01 5.97E + 01 2.01E + 01 3.66E + 01 2.15E + 02 5.03E-01
F22 Mean 2.31E + 03 2.32E + 03 2.39E + 03 2.33E + 03 2.30E + 03 2.37E + 03 2.37E + 03 2.63E + 03 2.30E + 03 2.34E + 03 3.16E + 03 2.39E + 03 2.31E + 03
STD 1.60E + 00 2.20E + 01 3.40E + 02 4.46E + 00 2.72E + 00 2.45E + 02 1.72E + 02 5.83E + 02 1.69E + 01 3.46E + 01 3.91E + 02 2.86E + 01 8.96E-01
F23 Mean 2.53E + 03 3.00E + 03 4.76E + 03 2.92E + 03 2.42E + 03 2.41E + 03 2.63E + 03 2.68E + 03 2.62E + 03 2.66E + 03 2.75E + 03 3.30E + 03 2.41E + 03
STD 3.16E + 01 3.93E + 02 9.91E + 02 2.28E + 02 1.09E + 02 1.12E + 00 1.33E + 01 3.35E + 01 8.74E + 00 2.07E + 01 3.86E + 01 1.51E + 02 2.38E + 00
F24 Mean 2.73E + 03 3.24E + 03 2.54E + 03 4.02E + 03 2.61E + 03 2.61E + 03 2.76E + 03 2.78E + 03 2.75E + 03 2.64E + 03 2.90E + 03 3.85E + 03 2.61E + 03
STD 3.93E + 01 9.10E + 02 6.33E + 01 3.34E + 02 4.87E + 01 5.81E + 01 1.57E + 01 5.69E + 01 1.19E + 01 6.55E + 01 1.05E + 02 2.28E + 02 4.12E + 01
F25 Mean 2.94E + 03 2.95E + 03 2.95E + 03 2.97E + 03 2.93E + 03 2.93E + 03 2.95E + 03 3.06E + 03 2.93E + 03 2.96E + 03 3.42E + 03 2.97E + 03 2.94E + 03
STD 1.59E + 01 3.17E + 01 3.43E + 00 9.57E + 00 2.18E + 01 2.89E + 01 3.27E + 01 1.59E + 02 2.45E + 01 1.57E + 01 2.31E + 02 2.96E + 01 1.90E + 01
F26 Mean 4.70E + 03 7.29E + 03 5.65E + 03 7.20E + 03 4.60E + 03 3.73E + 03 3.32E + 03 4.03E + 03 2.94E + 03 3.13E + 03 4.20E + 03 8.11E + 03 4.38E + 03
STD 1.35E + 03 2.36E + 03 1.91E + 02 3.80E + 02 1.54E + 03 1.36E + 03 3.55E + 02 5.70E + 02 2.38E + 02 1.37E + 02 3.91E + 02 6.80E + 02 1.54E + 03
F27 Mean 3.10E + 03 3.13E + 03 3.64E + 03 3.11E + 03 3.12E + 03 3.10E + 03 3.13E + 03 3.18E + 03 3.10E + 03 3.12E + 03 3.61E + 03 3.11E + 03 3.10E + 03
STD 3.45E + 00 3.67E + 01 2.55E + 02 2.29E + 01 2.54E + 01 1.78E + 01 4.32E + 01 5.20E + 01 3.77E + 00 1.71E + 01 2.86E + 02 3.19E + 00 1.29E + 01
F28 Mean 3.22E + 03 3.35E + 03 3.55E + 03 3.42E + 03 3.33E + 03 3.33E + 03 3.40E + 03 3.54E + 03 3.35E + 03 3.31E + 03 4.00E + 03 3.31E + 03 3.35E + 03
STD 8.40E + 01 8.50E + 01 5.74E + 01 1.38E + 02 1.28E + 02 1.18E + 02 8.62E + 01 1.74E + 02 1.69E + 02 8.05E + 01 2.50E + 02 8.27E + 01 1.05E + 02
F29 Mean 3.22E + 03 3.31E + 03 3.95E + 03 3.38E + 03 3.34E + 03 3.21E + 03 3.26E + 03 3.46E + 03 3.22E + 03 3.27E + 03 3.45E + 03 3.54E + 03 3.19E + 03
STD 5.22E + 01 9.69E + 01 3.83E + 02 7.49E + 01 1.14E + 02 4.16E + 01 6.39E + 01 1.52E + 02 6.25E + 01 3.59E + 01 1.48E + 02 1.08E + 02 2.38E + 01
F30 Mean 3.13E + 05 5.32E + 05 3.36E + 06 4.45E + 05 4.56E + 05 4.65E + 05 1.12E + 06 2.53E + 06 1.07E + 06 1.29E + 06 2.31E + 07 1.72E + 06 3.53E + 04
STD 4.61E + 05 5.15E + 05 1.22E + 06 3.77E + 05 7.43E + 05 5.64E + 05 9.98E + 05 2.93E + 06 1.54E + 06 9.50E + 05 4.82E + 07 1.20E + 06 2.51E + 04

Significant values are in bold.

Table 8.

Wilcoxon ranksum test on CEC17 test suit at 5% level of significance.

Function GA vs MSCA PSO vs MSCA GSA vs MSCA JAYA vs MSCA ALO vs MSCA MVO vs MSCA GWO vs MSCA WOA vs MSCA SSA vs MSCA HGSO vs MSCA AOA vs MSCA SCA vs MSCA
F1 6.80E-08 1.56E-04 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.01E-02 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F2 2.22E-07 4.25E-01 6.80E-08 1.92E-07 1.63E-03 1.61E-04 2.56E-07 6.80E-08 1.72E-01 6.80E-08 6.80E-08 6.80E-08
F3 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 2.92E-05 6.80E-08 6.80E-08 6.80E-08
F4 7.64E-02 1.49E-05 1.10E-05 6.80E-08 1.23E-02 9.13E-07 2.00E-04 1.20E-06 4.70E-03 6.80E-08 6.80E-08 6.80E-08
F5 9.17E-08 3.15E-02 4.90E-01 6.80E-08 6.22E-04 9.05E-03 1.78E-03 2.56E-07 1.99E-01 3.75E-04 6.92E-07 6.80E-08
F6 6.80E-08 5.98E-01 6.80E-08 6.80E-08 6.80E-08 6.01E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F7 6.61E-05 3.06E-03 3.64E-03 6.80E-08 4.32E-03 5.65E-02 2.75E-02 6.80E-08 6.22E-04 6.80E-08 6.80E-08 6.80E-08
F8 3.42E-07 2.80E-03 9.07E-08 6.80E-08 4.17E-05 3.05E-04 3.07E-06 6.80E-08 7.90E-08 6.80E-08 6.80E-08 6.80E-08
F9 6.80E-08 6.03E-06 9.75E-06 6.80E-08 3.15E-02 5.08E-01 6.80E-08 6.80E-08 1.60E-05 6.80E-08 6.80E-08 6.80E-08
F10 1.41E-05 7.58E-04 6.80E-08 6.80E-08 6.80E-08 3.94E-07 2.96E-07 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F11 2.96E-07 5.63E-04 6.80E-08 6.80E-08 1.08E-01 7.35E-01 9.79E-03 3.42E-07 4.60E-04 7.58E-06 6.80E-08 6.80E-08
F12 1.25E-05 7.41E-05 5.23E-07 9.17E-08 2.14E-03 8.60E-06 8.35E-03 3.50E-06 6.61E-05 9.17E-08 6.80E-08 6.80E-08
F13 2.75E-04 1.79E-02 6.61E-05 8.36E-04 1.95E-03 2.14E-03 5.09E-04 2.75E-04 2.04E-05 7.95E-07 2.92E-05 9.13E-07
F14 6.80E-08 4.32E-03 6.80E-08 6.80E-08 6.80E-08 5.25E-05 1.23E-07 6.80E-08 6.80E-08 6.80E-08 7.90E-08 6.80E-08
F15 4.54E-07 1.81E-05 6.80E-08 6.80E-08 6.80E-08 2.36E-06 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F16 7.71E-03 6.22E-04 6.80E-08 3.94E-07 1.66E-07 9.75E-06 5.23E-07 1.43E-07 6.01E-07 2.56E-07 7.90E-08 1.66E-07
F17 1.79E-02 2.34E-03 6.01E-07 6.80E-08 4.68E-05 7.58E-06 9.17E-08 6.80E-08 1.66E-07 6.80E-08 6.80E-08 6.80E-08
F18 9.09E-02 3.05E-04 9.75E-06 6.80E-08 2.04E-05 1.55E-02 4.11E-02 1.79E-02 1.14E-02 3.94E-07 1.01E-03 6.80E-08
F19 1.23E-07 6.92E-07 6.80E-08 7.90E-08 6.80E-08 4.32E-03 1.20E-06 6.80E-08 1.06E-07 7.90E-08 7.90E-08 6.80E-08
F20 6.61E-05 1.95E-03 6.80E-08 6.80E-08 1.66E-07 2.22E-07 2.22E-07 9.17E-08 2.56E-07 6.01E-07 1.66E-07 6.80E-08
F21 6.80E-08 1.60E-05 1.08E-01 6.80E-08 6.80E-08 3.10E-01 6.80E-08 6.80E-08 4.11E-02 6.80E-08 6.80E-08 6.80E-08
F22 6.80E-08 5.98E-01 2.23E-02 6.80E-08 1.12E-03 8.36E-04 1.14E-02 1.60E-05 5.25E-05 6.80E-08 6.80E-08 6.80E-08
F23 6.80E-08 7.11E-03 6.80E-08 6.80E-08 1.20E-06 7.90E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08
F24 3.42E-07 4.57E-01 4.54E-06 6.80E-08 7.58E-04 1.23E-02 1.06E-07 1.05E-06 1.66E-07 3.10E-01 9.17E-08 6.80E-08
F25 2.07E-02 5.07E-01 8.36E-04 6.92E-07 3.79E-01 6.56E-03 3.79E-01 6.92E-07 5.61E-01 8.29E-05 6.80E-08 5.87E-06
F26 6.56E-03 9.75E-06 5.98E-01 6.80E-08 2.73E-01 5.25E-05 8.60E-01 5.98E-01 1.58E-06 8.82E-01 5.98E-01 6.80E-08
F27 1.23E-03 1.25E-05 6.80E-08 4.17E-05 5.90E-05 4.57E-01 7.11E-03 5.23E-07 3.51E-01 1.10E-05 6.80E-08 5.25E-05
F28 9.28E-05 1.25E-01 6.80E-08 4.11E-02 4.57E-01 3.38E-04 3.85E-02 8.29E-05 8.39E-01 1.29E-04 9.75E-06 6.39E-02
F29 1.67E-02 4.70E-03 6.80E-08 7.90E-08 1.79E-04 8.82E-01 3.06E-03 6.80E-08 2.18E-01 9.13E-07 3.42E-07 6.80E-08
F30 1.44E-04 3.96E-03 6.80E-08 1.80E-06 3.64E-03 4.70E-03 1.80E-06 2.92E-05 2.14E-03 6.80E-08 6.80E-08 7.90E-08

Significant values are in bold.

Table 9.

Wilcoxon signed-rank test on CEC17 test suit at 5% level of significance.

Item Win Tie Lose R+ R- p-value Decision
GA vs MSCA 29 0 1 448 17 9.32E-06  + 
PSO vs MSCA 27 0 3 443 22 1.49E-05  + 
GSA vs MSCA 27 0 3 429 36 5.31E-05  + 
JAYA vs MSCA 30 0 0 465 0 1.73E-06  + 
ALO vs MSCA 23 0 7 364 101 6.84E-03  + 
MVO vs MSCA 19 0 11 322 143 6.56E-02
GWO vs MSCA 28 0 2 443 22 1.49E-05  + 
WOA vs MSCA 29 0 1 448 17 9.32E-06  + 
SSA vs MSCA 21 0 9 384 81 1.83E-03  + 
HGSO vs MSCA 28 0 2 435 30 3.11E-05  + 
AOA vs MSCA 29 0 1 457 8 3.88E-06  + 
SCA vs MSCA 29 0 1 459 6 3.18E-06  + 

Robustness and convergence analysis

The box-plot for MSCA and SCA for CEC2017 are illustrated in Figs. 7 and 8, respectively. From Fig. 7, the overall distribution of the MSCA optimal solution is more concentrated and better. Notably, in Fig. 8, the overall convergence speed of MSCA is faster than that of SCA. On the whole, the proposed algorithm can improve the convergence rate and solution accuracy, which is an effective tool for solving numerical problems.

Figure 7.

Figure 7

The box-plot of SCA and MSCA on CEC2017.

Figure 8.

Figure 8

The convergence curve of SCA and MSCA on CEC2017.

MSCA for engineering optimization problems

In this subsection, the proposed MSCA tries to handle six famous constrained engineering problems. The parameters of the MCSA are set the same as in Section “MSCA for numerical optimization problems”. In addition, the static penalty function is employed to handle the equation and inequality constraints involved in the problem. The static penalty function is expressed as follows:

fit(x)=f(x)+α[i=1ngi2(x)+j=1phj(x)] 5

where fit(x) and f(x) are the fitness value and objective value, respectively. α is the penalty coefficient. n is the number of inequality constraints. gi(x) is the degree of violation of the ith inequality constraint. p is the number of equality constraints. hj(x) is the degree of violation of the jth equality constraint.

Case I: Three-bar truss design problem

Trusses belong to one of the prefabricated concrete structures. This problem requires finding the minimum volume of the truss according to the decision variables of cross-sectional areas x = x1,x2 = A1,A247, as plotted in Fig. 9, the problem are described as follows:

minf(x)=22x1+x2×ls.t.g1=2x1+x22x12+2x1x2P-σ0g2=x22x12+2x1x2P-σ0g3=1x1+2x2P-σ00x1,x21 6

Figure 9.

Figure 9

The three-bar truss design.

The comparison of best solution result for this problem is displayed in Table 10. As can be observed, the results given by Tsai48 are not feasible while MSCA is significantly better than the results reported in other competitive algorithms. From the comparative results, it is possible to conclude that that MSCA is work well over other methods.

Table 10.

The best solution for three-bar truss design problem.

Algorithm x1 x2 g1 g2 g3 f(x)
Hernández49 0.788 0.408 NA NA NA 263.9
Ray and Saini50 0.795 0.395 −0.00169 −0.26124 −0.74045 264.3
Raj et al.51 0.78976441 0.40517605 −7.084 × 10–9 −1.4675992 −0.53240078 263.89671
Tsai48 0.788 0.408 0.00082 −0.2674 −0.73178 263.68a
Gandomi et al.37 0.78867 0.40902 −0.00029 −0.26853 −0.73176 263.9716
MSCA 0.788690415 0.408205144 −5.2854 × 10–8 −1.464150692 −0.53584936 263.89585052

a means not infeasible; NA means not available. Significant values are in bold.

Case II: Vertical deflection I beam problem

The I-beam structure is one of the design problems for prefabricated buildings with an H-shaped beam in cross-sectional form, as illustrated in Fig. 10. The objective of this problem is to minimize the vertical deflection of an I-beam while satisfying the cross-sectional area and stress constraints for a given load52. Consider the variable x = (x1, x2, x3, x4) = (h, l, t, b), the mathematical formulation of the problem is defined as follows:

minf(x)=5000twh-2tf312+btf36+2btfh-tf22s.t.g1x=2btf+twh-2tf300g2x=18h×104twh-2tf3+2btf4tf2+3hh-2tf+15b×104h-2tftw3+2tfb3610h80;10b50;0.9tw5;0.9tf5 7

Figure 10.

Figure 10

The vertical deflection of an I-beam.

The best solution and statistical results of this problem are listed in Tables 11 and 12, respectively. From Table 11, it can be seen that MSCA obtain the same objective function value as CSA and get better results than ARSM, Improved ARSM and CS methods. It is possible to conclude in Table 12 that again MSCA has noteworthy performance in all metrics.

Table 11.

The best solution for vertical deflection of an I-beam problem.

Algorithm h b tw tf f(x)
ARSM53 80 37.05 1.71 2.31 0.0157
Improved ARSM53 79.99 48.42 0.9 2.4 0.131
CS37 80 50 0.9 2.3216715 0.0130747
CSA54 80 49.99999999 0.9 2.3217923 0.01307412
MSCA 80 50 0.900000012 2.32179198 0.01307412

Significant values are in bold.

Table 12.

Statistical result for vertical deflection of an I-beam problem.

Algorithm Best Median Mean Worst STD
CS37 0.0130747 N/A 0.0132165 0.01353646 1.345 × 10–4
CSA54 0.01307412 0.013091263 0.0131397 0.01339323 9.3686 × 10–5
MSCA 0.01307412 0.013074137 0.01307415 0.01307421 2.59 × 10–8

Significant values are in bold.

Case III: Tension string design problem.

The main goal of this problem is to minimizes the weight of the tension string with variable include wire diameter(d), mean coil diameter(D) and the number of active coils(n), as shown in Fig. 11. the mathematical model for this problem is given as follows:

minf(x)=x3+2x2x12,x=x1,x2,x3=d,D,ns.t.g1x=1-x22x371785x140g2x=4x22-x1x212566x2x13-x14+15108x12-10g3x=1-140.45x1x22x30g4x=x1+x21.5-100.05x12;0.25x21.3;2x315 8

Figure 11.

Figure 11

Tension string design.

The comparison results with respect to the best solution between MSCA and existing algorithms are presented in Table 13, and the related statistical information is listed in Table 14. Based on both tables, MSCA exhibits more competitive results than other methods, indicating that the proposed MSCA algorithm has strong engineering practical value.

Table 13.

The best solution for tension string design problem.

Algorithm x1 x2 x3 f(x)
Belegundu55 0.05 0.3159 14.25 0.0128334
Coello56 0.05148 0.351661 11.632201 0.01270478
Ray and Saini50 0.050417 0.321532 13.979915 0.01306
Coello and Montes57 0.051989 0.363965 10.890522 0.012681
Ray and Liew 58 0.052160217 0.368158695 10.64844226 0.012669249
Raj et al.51 0.053862 0.41128365 8.6843798 0.0127484
Mahdavi et al.59 0.05115438 0.34987116 12.0764321 0.0126706
He and Wang60 0.051728 0.357644 11.244543 0.0126747
Montes and Coello61 0.051643 0.35536 11.397926 0.012698
Kaveh and Talatahari62 0.051865 0.3615 11 0.0126432a
Coelho63 0.051515 0.352529 11.538862 0.012665a
Akay and Karaboga64 0.051749 0.358179 11.203763 0.012665a
MSCA 0.051781993 0.358944836 11.16078852 0.012666807

a means infeasible. Significant values are in bold.

Table 14.

Statistical result for tension string design problem.

Algorithm Best Median Mean Worst STD
Belegundu55 0.0128334 NA NA NA NA
Coello56 0.01270478 0.01275576 0.0127692 0.01282208 3.9390 × 10–5
Ray and Saini50 0.01306 NA 0.015526 0.018992 NA
Coello and Montes57 0.012681 NA 0.012742 0.012973 5.9000 × 10–5
Ray and Liew58 0.01266925 0.01292267 0.01292267 0.01671727 5.92 × 10–4
He and Wang60 0.0126747 NA 0.01273 0.012924 5.1985 × 10–5
Montes and Coello61 0.012698 NA 0.013461 0.16485 9.6600 × 10–4
Kaveh and Talatahari62 0.0126432a NA 0.01272a 0.012884a 3.4888 × 10–5
Coelho63 0.012665a 0.012957a 0.013524a 0.017759a 0.001268
Akay and Karaboga64 0.012665a NA 0.012709a NA 0.012813
MSCA 0.01266681 0.01273110 0.01281752 0.01334238 1.90 × 10–4

NA means not available; a means infeasible. Significant values are in bold.

Case IV: Welded beam design problem

Welded beam design is an important part of the engineering design problem, as shown in Fig. 12, the objective is to minimize the costs of welded beam51 by selecting four variables: the thickness of weld h, length of welded joint l, width of the beam t and thickness of the beam b. The optimization model with variable x=x1,x2,x3,x4=h,l,t,b is expressed as follows:

Figure 12.

Figure 12

Welded beam design.

Version I:

minf(x)=1.10471x12x2+0.04811x3x4(14+x2)s.t.g1x=τx-τmax0g2x=σx-σmax0g3x=x1-x40;g4x=0.125 -x10g5x=δx-0.250g6x=P-Pc00.1x1,x42;0.1x2,x310 9

where the shear stress τ is defined as follows:

τ=τ12+2τ1τ2x22R+τ22;τ1=Px1x22;τ2=MRJ 10
M=PL+x22;J=2x1x22x2212+x1+x322 11
R=x224+x1+x322;σ=6PLx1x32;δ=4PL3Ex33x4 12
Pc=4.013EGx32x4636L21-x32LE4G 13
G=12×106psi,E=30×106psi,P=6000lb,L=14in 14

The MSCA is compared with four optimization methods, and the best solution and statistical results are reported in Tables 15 and 16. the results indicate that MSCA obtained the solution more accurately and more competitive than other methods.

Table 15.

The best solution for welded beam design problem on version I.

Algorithm x1 x2 x3 x4 f(x)
Ragsdell and Phillips65 0.2455 6.196 8.273 0.2455 2.385937
Rao66 0.2455 6.196 8.273 0.2455 2.386
Ray and Liew58 0.244438276 6.237967234 8.288576143 0.244566182 2.3854347
Hwang and He67 0.2231 1.5815 12.8468 0.2245 2.25a
MSCA 0.244249519 6.206365305 8.312174308 0.24432385 2.383286722

a means infeasible. Significant values are in bold.

Table 16.

Statistical result for welded beam design problem on version I.

Algorithm Best Median Mean Worst STD
Ragsdell and Phillips65 2.385937 NA NA NA NA
Rao66 2.386 NA NA NA NA
Ray and Liew58 2.3854347 3.0025883 3.2551371 6.3996785 0.959078
Hwang and He67 2.25a NA 2.26a 2.28a NA
MSCA 2.383286722 2.387845945 2.388104097 2.393825358 0.002758472

NA means not available; a means infeasible. Significant values are in bold.

Version II

In version II, the researchers modified the definitions of some items on the basis of version I and added a new constraint g7, which are defined as follows:

g7x=0.10471x12+0.04811x3x4(14+x2)-50 15
J=22x1x2x224+x1+x322;σ=6PL3x1x33x4 16
Pc=4.013Ex32x4636L21-x32LE4G 17

Tables 17 and 18 summarize the best solution and statistical results for version II, respectively. It can be seen from the simulation results that MSCA can still obtain convincing results with the addition of constraint of g7, indicating that the proposed MSCA performs better than existing studies.

Table 17.

The best solution for welded beam design problem on version II.

Algorithm x1 x2 x3 x4 f(x)
Coello56 0.2088 3.4205 8.9975 0.21 1.748309
Coello and Montes57 0.205986 3.471328 9.020224 0.20648 1.728226
He and Wang60 0.202369 3.544214 9.04821 0.205723 1.728024
Dimopoulos68 0.2015 3.562 9.041398 0.205706 1.731186
Mahdavi et al.59 0.20573 3.47049 9.03662 0.20573 1.7248
Montes et al.69 0.20573 3.470489 9.036624 0.20573 1.724852
Montes and Coello61 0.199742 3.61206 9.0375 0.206082 1.7373
Cagnina et al.70 0.205729 3.470488 9.036624 0.205729 1.724852
Kaveh and Talatahari71 0.205729 3.469875 9.036805 0.205765 1.724849
Kaveh and Talatahari62 0.2057 3.471131 9.036683 0.205731 1.724918
Gandomi et al.72 0.2015 3.562 9.0414 0.2057 1.73121
Mehta and Dasgupta73 0.20572885 3.47050567 9.03662392 0.20572964 1.724855
Akay and Karaboga64 0.20573 3.470489 9.036624 0.20573 1.724852
MSCA 0.205187143 3.266067065 9.03380051 0.205913062 1.69710013

Significant values are in bold.

Table 18.

Statistical result for welded beam design problem on version II.

Algorithm Best Median Mean Worst STD
Coello56 1.748309 NA 1.771973 1.785835 0.01122
Coello and Montes57 1.728226 NA 1.792654 1.993408 0.07471
He and Wang60 1.728024 NA 1.748831 1.782143 0.012926
Dimopoulos68 1.731186 NA NA NA NA
Montes et al.69 1.724852 NA 1.725 NA 1.0 × 10–15
Montes and Coello61 1.7373 NA 1.81329 1.994651 0.0705
Cagnina et al.70 1.724852 NA 2.0574 NA 0.2154
Kaveh and Talatahari71 1.724849 NA 1.727564 1.759522 0.008254
Kaveh and Talatahari62 1.724918 NA 1.729752 1.775961 0.0092
Gandomi et al.72 1.7312065 NA 1.878656 2.3455793 0.2677989
Mehta and Dasgupta73 1.724855 1.724861 1.724865 1.72489 NA
Akay and Karaboga64 1.724852 NA 1.741913 NA 0.031
MSCA 1.69710013 1.700828362 1.70209677 1.722162002 0.005815737

NA means not available. Significant values are in bold.

Case V: Gear train design problem

The gear train design problem was first proposed by Sandgren74 as an unconstrained optimization problem, presented in Fig. 13. The task of the problem is to find the best variable vector x=x1,x2,x3,x4=Td,Tb,Ta,Tf to minimize cost of gear ratio. The optimization formula is given as follows:

minf(x)=16.931-x1x2x3x42s.t.12xi60,i=1,2,3,4xiZ+,i=1,2,3,4 18

where gear ratio = x1x2x3x4.

Figure 13.

Figure 13

Gear train design.

To address this issue, MSCA was compared with several classical methods, and the best solutions recorded for MSCA and other literature results are listed in Table 19. On the other hand, the corresponding statistical results are represented in Table 20. The both tables show that MSCA provides more stable and accurate solutions than other methods.

Table 19.

The best solution for gear train design problem.

Algorithm Td(x1) Tb(x2) Ta(x3) Tf(x4) Gear ratio f(x)
Sandgren75 18 22 45 60 0.146667 5.712 × 10–6
Kannan and Kramer76 13 15 33 41 0.144124 2.146 × 10–8
Deb and Goyal77 19 16 49 43 0.144281 2.701 × 10–12
Gandomi et al.37 19 16 43 49 0.144281 2.701 × 10–12
Garg78 19 16 43 49 0.14428096 2.7008571 × 10–12
MSCA 19 16 43 49 0.14428096 2.7008571 × 10–12

Significant values are in bold.

Table 20.

Statistical result for gear train design problem.

Algorithm Best Median Mean Worst STD
Gandomi et al.78 2.7009 × 10–12 NA 1.9841 × 10–9 2.3576 × 10–9 3.5546 × 10–9
Garg37 2.7008571 × 10–12 9.9215795 × 10–10 1.2149276 × 10–9 3.2999231 × 10–9 8.77 × 10–10
MSCA 2.7008571 × 10–12 2.3078157 × 10–11 4.8092363 × 10–11 3.0675559 × 10–10 7.4270038 × 10–11

NA means not available. Significant values are in bold.

Case VI: Pressure vessel design problem

IN this problem, shown in Fig. 14, the task is to minimize the total cost of the vessel with decision vector x = x1,x2,x3,x4 = Ts,Th,R,L79. The optimization model is constructed as follows:

minf(x)=0.6224x1x3x4+1.7781x2x32+3.1661x12x4+19.84x12x3s.t.g1(x)=-x1+0.0193x30g2(x)=-x2+0.00954x30g3(x)=-πx32x4+43πx33+1,296,0000g4(x)=x4-2400 19

Figure 14.

Figure 14

Pressure vessel design.

Version I:

0.0625x1,x299×0.0625;10x3,x4200 20

The best results and statistical results for version I are reported in Tables 21 and 22, respectively. As can be seen from Table 21, MCSA obtain more objective results than other literature, and from Table 22, MCSA further obtains a more concentrated solution distribution, demonstrating the superior search performance of the proposed method.

Table 21.

The best solution for pressure vessel design problem on version I.

Algorithm x1 x2 x3 x4 f(x)
Sandgren74 1.125 0.625 47.7 117.701 8129.1036
Kannan and Kramer80 1.125 0.625 58.291 43.69 7198.0428
Coello and Montes57 0.8125 0.4375 42.097398 176.65405 6059.946
He and Wang60 0.8125 0.4375 42.091266 176.7465 6061.0777
Montes and Coello61 0.8125 0.4375 42.098087 176.640518 6059.7456
Coelho63 0.8125 0.4375 42.0984 176.6372 6059.7208
He et al.81 0.8125 0.4375 42.098445 176.636595 6059.7143
Montes et al.69 0.8125 0.4375 42.098446 176.636047 6059.70166
Gandomi et al.37 0.8125 0.4375 42.0984456 176.6365958 6059.714335
Akay and Karaboga64 0.8125 0.4375 42.098446 176.636596 6059.714339
MSCA 0.780583407 0.3917558 40.4190779 198.964126 5917.509793

Significant values are in bold.

Table 22.

Statistical result for pressure vessel design problem on version I.

Algorithm Best Median Mean Worst STD
Sandgren74 8129.1036 NA N/A N/A N/A
Kannan and Kramer80 7198.0428 NA N/A N/A N/A
Coello and Montes57 6059.9463 NA 6177.2533 6469.322 130.9297
Montes and Coello61 6059.7456 NA 6850.0049 7332.8798 426
Gandomi et al.37 6059.714 NA 6447.736 6495.347 502.693
Coelho63 6059.7208 6257.5943 6440.3786 7544.4925 448.4711
He et al.81 6059.7143 NA 6289.92881 NA 305.78
Akay and Karaboga64 6059.714339 NA 6245.30814 NA 205
MSCA 5917.509793 5994.4224 6029.24374 6396.551211 113.2470944

NA means not available. Significant values are in bold.

Version II:

0.0625x1,x299×0.0625;10x3200;10x4240 21

In version II, the upper bound of the decision variable x4 is set as 240, the best results and statistical results summarized by MSCA and control methods for version II in Tables 23 and 24, respectively. Analysis from both tables, MSCA reveals better performance than the existing studies. The comparison results further prove that MCSA has better feasibility in engineering than the other approaches.

Table 23.

The best solution for pressure vessel design problem on version II.

Algorithm x1 x2 x3 x4 f(x)
Dimopoulos68 0.75 0.375 38.8601 221.36549 5850.38306
Mahdavi et al.59 0.75 0.375 38.8601 221.36553 5849.76169
Gandomi et al.72 0.75 0.375 38.8601 221.36547 5850.38306
MSCA 0.73822151 0.36818507 38.16830296 232.73616127 5849.52062

Significant values are in bold.

Table 24.

Statistical result for pressure vessel design problem on version II.

Algorithm Best Median Mean Worst STD
Dimopoulos68 5850.383060 NA NA NA NA
Mahdavi et al.59 5849.761700 NA NA NA NA
Gandomi et al.72 5850.383060 NA 5937.337900 6258.968250 164.547470
MSCA 5849.520622 5919.655417 5944.332084 6217.813607 87.356362

NA means not available. Significant values are in bold.

Conclusion

In this article, the position update adjustment strategy and Levy random walk mutation mechanism were adopted into the original SCA to create the proposed MCSA. The position update adjustment strategy considers the swarm search for potentially better solutions around the current individual and the global optimal individual, effectively expanding the search and improving the convergence speed of the original SCA. And the Levy random walk mutation mechanism effectively increases the original SCA diversity to ensure that the SCAs jump out of the local optimal position and improve the search accuracy.

For qualitative analysis of proposed method (MSCA), it has been passed two levels of benchmark test suites—the classic and the IEEE CEC2017 function. box plots and convergence curves were employed to verify the performance of robustness and convergence. In addition, Wilcoxon signed-rank test and ranksum test were adopted to verify statistical significance. The experimental results show that MSCA is able to balance the exploration and exploitation process. Finally, MSCA is used to solve six complex real-world engineering design problems, and the comparison with the results of several other state-of-the-art methods proves that the proposed method can achieve competitive results. Based on the convincing results obtained from existing research, in the future we will try to apply the proposed method to image recognition and time series forecasting problems.

Acknowledgements

The writers would like to thank editors and reviewers for their valuable comments and suggestions.

Author contributions

Conceptualization, C.S.; writing—review and editing, C.S.; validation, T.Z.; data curation, T.Z.; writing—original draft preparation, T.Z. methodology, S.L.; software, S.L.; All authors read and agreed to the published version of the manuscript.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. There are no restrictions on data availability.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Beheshti Z, Shamsuddin SMH. A review of population-based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl. 2013;5(1):1–35. [Google Scholar]
  • 2.Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl-Based Syst. 2016;96:120–133. doi: 10.1016/j.knosys.2015.12.022. [DOI] [Google Scholar]
  • 3.Kaveh, A. Advances in metaheuristic algorithms for optimal design of structures: Springer (2014).
  • 4.Mirjalili S, Lewis A. The whale optimization algorithm. Adv. Eng. Softw. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. [DOI] [Google Scholar]
  • 5.Deb K. An introduction to genetic algorithms. Sadhana. 1999;24:293–315. doi: 10.1007/BF02823145. [DOI] [Google Scholar]
  • 6.Deng W, Shang S, Cai X, Zhao H, Song Y, Xu J. An improved differential evolution algorithm and its application in optimization problem. Soft Comput. 2021;25:5277–5298. doi: 10.1007/s00500-020-05527-x. [DOI] [Google Scholar]
  • 7.Beyer, H. G., & Sendhoff, B. Evolution strategies for robust optimization. In 2006 IEEE International Conference on Evolutionary Computation (pp. 1346-1353) IEEE. (2006).
  • 8.Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: A gravitational search algorithm. Inform. Sci. 2009;179:2232–2248. doi: 10.1016/j.ins.2009.03.004. [DOI] [Google Scholar]
  • 9.Kaveh A, Talatahari S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010;213:267–289. doi: 10.1007/s00707-009-0270-4. [DOI] [Google Scholar]
  • 10.Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006;1(4):28–39. doi: 10.1109/MCI.2006.329691. [DOI] [Google Scholar]
  • 11.Marini F, Walczak B. Particle swarm optimization (PSO). A Tutorial. Chemometr. Intell. Lab. 2015;149:153–165. doi: 10.1016/j.chemolab.2015.08.020. [DOI] [Google Scholar]
  • 12.Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019;97:849–872. doi: 10.1016/j.future.2019.02.028. [DOI] [Google Scholar]
  • 13.Sadoun AM, Najjar IR, Alsoruji GS, Wagih A, Abd Elaziz M. Utilizing a long short-term memory algorithm modified by dwarf mongoose optimization to predict thermal expansion of Cu-Al2O3 nanocomposites. Mathematics. 2022;10(7):1050. doi: 10.3390/math10071050. [DOI] [Google Scholar]
  • 14.Agushaka JO, Ezugwu AE, Abualigah L. Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 2022;391:114570. doi: 10.1016/j.cma.2022.114570. [DOI] [Google Scholar]
  • 15.Al-Shourbaji I, Helian N, Sun Y, Alshathri S, Abd Elaziz M. Boosting ant colony optimization with reptile search algorithm for churn prediction. Mathematics. 2022;10(7):1031. doi: 10.3390/math10071031. [DOI] [Google Scholar]
  • 16.Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH. Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022;191:116158. doi: 10.1016/j.eswa.2021.116158. [DOI] [Google Scholar]
  • 17.Oyelade ON, Ezugwu AE. A bioinspired neural architecture search based convolutional neural network for breast cancer detection using histopathology images. Sci. Rep.-UK. 2021;11:1–28. doi: 10.1038/s41598-021-98978-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Oyelade ON, Ezugwu AES, Mohamed TIA, Abualigah L. Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm. IEEE Access. 2022;10:16150–16177. doi: 10.1109/ACCESS.2022.3147821. [DOI] [Google Scholar]
  • 19.Xing Q, Wang J, Lu H, Wang S. Research of a novel short-term wind forecasting system based on multi-objective Aquila optimizer for point and interval forecast. Energ. Convers. Manage. 2022;263:115583. doi: 10.1016/j.enconman.2022.115583. [DOI] [Google Scholar]
  • 20.Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Indus. Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250. [DOI] [Google Scholar]
  • 21.Guha, R., Ghosh, K.K., Bera, S.K., Sarkar, R. & Mirjalili, S. Discrete equilibrium optimizer combined with simulated annealing for feature selection. Res. Square (2022).
  • 22.Hashim FA, Hussien AG. Snake optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022;242:108320. doi: 10.1016/j.knosys.2022.108320. [DOI] [Google Scholar]
  • 23.Hussien AG, Abualigah L, Abu Zitar R, Hashim FA, Amin M, Saber A, Gandomi AH. Recent advances in harris hawks optimization: A comparative study and applications. Electronics. 2022;11(12):1919. doi: 10.3390/electronics11121919. [DOI] [Google Scholar]
  • 24.Wang S, Hussien AG, Jia H, Abualigah L, Zheng R. Enhanced remora optimization algorithm for solving constrained engineering optimization problems. Mathematics. 2022;10(10):1696. doi: 10.3390/math10101696. [DOI] [Google Scholar]
  • 25.Mostafa, R. R., Hussien, A. G., Khan, M. A., Kadry, S., & Hashim, F. A. Enhanced coot optimization algorithm for dimensionality reduction. In: 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU) (pp. 43-48). IEEE (2022).
  • 26.Yu H, Jia H, Zhou J, Hussien A. Enhanced aquila optimizer algorithm for global optimization and constrained engineering problems. Math. Biosci. Eng. 2022;19(12):14173–14211. doi: 10.3934/mbe.2022660. [DOI] [PubMed] [Google Scholar]
  • 27.Zheng R, Hussien AG, Jia HM, Abualigah L, Wang S, Wu D. An improved wild horse optimizer for solving optimization problems. Mathematics. 2022;10(8):1311. doi: 10.3390/math10081311. [DOI] [Google Scholar]
  • 28.Hussien AG, Amin M. A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cyb. 2022;13:309–336. doi: 10.1007/s13042-021-01326-4. [DOI] [Google Scholar]
  • 29.Singh S, Singh H, Mittal N, Singh H, Hussien AG, Sroubek F. A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation. Expert Syst Appl. 2022;209:118272. doi: 10.1016/j.eswa.2022.118272. [DOI] [Google Scholar]
  • 30.Abualigah L, Diabat A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021;54:2567–2608. doi: 10.1007/s10462-020-09909-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Abd Elaziz M, Oliva D, Xiong S. An improved opposition-based sine cosine algorithm for global optimization. Expert Syst. Appl. 2017;90:484–500. doi: 10.1016/j.eswa.2017.07.043. [DOI] [Google Scholar]
  • 32.Neggaz N, Ewees AA, Elaziz MA, Mafarja M. Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 2020;145:113103. doi: 10.1016/j.eswa.2019.113103. [DOI] [Google Scholar]
  • 33.El-Kenawy ESM, Mirjalili S, Ghoneim SS, Eid MM, El-Said M, Khan ZS, Ibrahim A. Advanced ensemble model for solar radiation forecasting using sine cosine algorithm and newton’s laws. IEEE Access. 2021;9:115750–115765. doi: 10.1109/ACCESS.2021.3106233. [DOI] [Google Scholar]
  • 34.Gupta S, Deep K, Mirjalili S, Kim JH. A modified Sine Cosine Algorithm with novel transition parameter and mutation operator for global optimization. Expert Syst. Appl. 2020;154:113395. doi: 10.1016/j.eswa.2020.113395. [DOI] [Google Scholar]
  • 35.Li Y, Zhao Y, Liu J. Dynamic sine cosine algorithm for large-scale global optimization problems. Expert Syst. Appl. 2021;177:114950. doi: 10.1016/j.eswa.2021.114950. [DOI] [Google Scholar]
  • 36.Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst. Appl. 2019;119:210–230. doi: 10.1016/j.eswa.2018.10.050. [DOI] [Google Scholar]
  • 37.Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput.-Germany. 2013;29:17–35. doi: 10.1007/s00366-011-0241-y. [DOI] [Google Scholar]
  • 38.Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE T Evolut. Comput. 1999;3:82–102. doi: 10.1109/4235.771163. [DOI] [Google Scholar]
  • 39.Wu, G., Mallipeddi, R. & Suganthan, P.N. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report (2017).
  • 40.Whitley D. A genetic algorithm tutorial. Stat. Comput. 1994;4:65–85. doi: 10.1007/BF00175354. [DOI] [Google Scholar]
  • 41.Houssein, E.H., Gad, A.G. & Wazery, Y.M. Jaya Algorithm and Applications: A Comprehensive Review. In: Razmjooy N, Ashourian M, Foroozandeh Z, ''editors'. Metaheuristics and Optimization in Computer and Electrical Engineering. Cham: Springer International Publishing; 3–24 (2021).
  • 42.Mirjalili S. The ant lion optimizer. Adv. Eng. Softw. 2015;83:80–98. doi: 10.1016/j.advengsoft.2015.01.010. [DOI] [Google Scholar]
  • 43.Abualigah L. Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Comput. Appl. 2020;32:12381–12401. doi: 10.1007/s00521-020-04839-1. [DOI] [Google Scholar]
  • 44.Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. [DOI] [Google Scholar]
  • 45.Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. ADV ENG SOFTW. 2017;114:163–191. doi: 10.1016/j.advengsoft.2017.07.002. [DOI] [Google Scholar]
  • 46.Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. The arithmetic optimization algorithm. Comput. Method Appl. M. 2021;376:113609. doi: 10.1016/j.cma.2020.113609. [DOI] [Google Scholar]
  • 47.Nowacki, H. Optimization in pre-contract ship design. (1973).
  • 48.Tsai JFA. Global optimization of nonlinear fractional programming problems in engineering design. Eng. Optimiz. 2005;37:399–409. doi: 10.1080/03052150500066737. [DOI] [Google Scholar]
  • 49.Hernendez, S. Multiobjective structural optimization. Geo. Opt. Tech. Struct. Design. 341–362 (1994).
  • 50.Ray T, Saini P. Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng. Optimiz. 2001;33:735–748. doi: 10.1080/03052150108940941. [DOI] [Google Scholar]
  • 51.Raj KH, Sharma RS, Mishra GS, Dua A, Patvardhan C. An evolutionary computational technique for constrained optimisation in engineering design. J. Inst. Eng. (India): Mech. Eng. Division. 2005;86:121–128. [Google Scholar]
  • 52.Gold, S. & Krishnamurty, S. Trade-offs in robust engineering design. (American Society of Mechanical Engineers, 1997), pp. V2T-V29T.
  • 53.Wang GG. Adaptive response surface method using inherited Latin hypercube design points. J. Mech. Des., Trans. ASME. 2003;125:210–220. doi: 10.1115/1.1561044. [DOI] [Google Scholar]
  • 54.Feng ZK, Niu WJ, Liu S. Cooperation search algorithm: A novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems. Appl. Soft Comput. 2021;98:106734. doi: 10.1016/j.asoc.2020.106734. [DOI] [Google Scholar]
  • 55.Belegundu, A.D. A study of mathematical programming methods for structural optimization. A Study of Mathematical Programming Methods for Structural Optimization (1982).
  • 56.Coello Coello CA. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000;41:113–127. doi: 10.1016/S0166-3615(99)00046-9. [DOI] [Google Scholar]
  • 57.Coello Coello CA, Montes EM. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 2002;16:193–203. doi: 10.1016/S1474-0346(02)00011-3. [DOI] [Google Scholar]
  • 58.Ray T, Liew KM. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE T Evolut. Comput. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. [DOI] [Google Scholar]
  • 59.Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007;188:1567–1579. [Google Scholar]
  • 60.He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intel. 2007;20:89–99. doi: 10.1016/j.engappai.2006.03.003. [DOI] [Google Scholar]
  • 61.Mezura-Montes E, Coello CAC. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J Gen. Syst. 2008;37:443–473. doi: 10.1080/03081070701303470. [DOI] [Google Scholar]
  • 62.Kaveh A, Talatahari S. An improved ant colony optimization for constrained engineering design problems. Eng. Comput. (Swansea, Wales). 2010;27:155–182. doi: 10.1108/02644401011008577. [DOI] [Google Scholar]
  • 63.Coelho LDS. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 2010;37:1676–1683. doi: 10.1016/j.eswa.2009.06.044. [DOI] [Google Scholar]
  • 64.Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 2012;23:1001–1014. doi: 10.1007/s10845-010-0393-4. [DOI] [Google Scholar]
  • 65.Ragsdell KM, Phillips DT. Optimal design of a class of welded structures using geometric programming. J. Manuf. Sci. E. T. ASME. 1976;98:1021–1025. [Google Scholar]
  • 66.Rao, S.S. Engineering optimization: Theory and practice (2019).
  • 67.Hwang SF, He RS. A hybrid real-parameter genetic algorithm for function optimization. Adv. Eng. Inform. 2006;20:7–21. doi: 10.1016/j.aei.2005.09.001. [DOI] [Google Scholar]
  • 68.Dimopoulos GG. Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput. Method Appl. M. 2007;196:803–817. doi: 10.1016/j.cma.2006.06.010. [DOI] [Google Scholar]
  • 69.Mezura-Montes E, Coello CAC, Velázquez-Reyes J, Muñoz-Dávila L. Multiple trial vectors in differential evolution for engineering design. Eng. Optimiz. 2007;39:567–589. doi: 10.1080/03052150701364022. [DOI] [Google Scholar]
  • 70.Cagnina LC, Esquivel SC, Coello Coello CA. Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica (Ljubljana). 2008;32:319–326. [Google Scholar]
  • 71.Kaveh A, Talatahari S. Engineering optimization with hybrid particle swarm and ant colony optimization. Asian J. Civil Eng. 2009;10:611–628. [Google Scholar]
  • 72.Gandomi AH, Yang XS, Alavi AH. Mixed variable structural optimization using Firefly Algorithm. Comput. Struct. 2011;89:2325–2336. doi: 10.1016/j.compstruc.2011.08.002. [DOI] [Google Scholar]
  • 73.Mehta VK, Dasgupta B. A constrained optimization algorithm based on the simplex search method. Eng. Optimiz. 2012;44:537–550. doi: 10.1080/0305215X.2011.598520. [DOI] [Google Scholar]
  • 74.Sandgren, E. Nonlinear integer and discrete programming in mechanical design. In Advances in Design Automation - 1988, (Publ by American Soc of Mechanical Engineers (ASME), New York, NY, United States Kissimmee, FL, USA, 1988), pp. 95–105.
  • 75.Sandgren, E. Nonlinear Integer and Discrete Programming in Mechanical Design. ASME 1988 Design Technology Conferences. 95–105 (1988).
  • 76.Kannan BK, Kramer SN. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Design. 1994;116:405–411. doi: 10.1115/1.2919393. [DOI] [Google Scholar]
  • 77.Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inf. 1996;26:30–45. [Google Scholar]
  • 78.Garg H. A hybrid GSA-GA algorithm for constrained optimization problems. Inform. Sci. 2019;478:499–523. doi: 10.1016/j.ins.2018.11.041. [DOI] [Google Scholar]
  • 79.Kannan, B.K., Kramer S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. (1994).
  • 80.Kannan BK, Kramer SN. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des., Trans. ASME. 1994;116:405–411. doi: 10.1115/1.2919393. [DOI] [Google Scholar]
  • 81.He S, Prempain E, Wu QH. An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optimiz. 2004;36:585–605. doi: 10.1080/03052150410001704854. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request. There are no restrictions on data availability.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES