Abstract
Background
There is uncertainty in the treatment options for resectable hypopharyngeal squamous cell carcinoma.
Methods
A systematic review of randomised controlled trials (RCTs) was performed. Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE, EMBASE, Science Citation Index, and Conference Proceedings databases and trial registries were searched until November 2020 for randomized controlled trials performed on resectable hypopharyngeal squamous cell carcinoma. Two systematic review authors independently identified studies and extracted data. The primary outcomes evaluated were overall survival, disease-free survival, any recurrence, local recurrence, loco-regional recurrence, distal recurrence and laryngectomy-free survival. The secondary outcomes were response rates following neoadjuvant treatment and comparison of treatment-related toxicity. Assessment of risk of bias was performed for the selected studies using Cochrane’s tool for assessing risk of bias. The studies were evaluated for the quality of evidence using GRADE (Grading of Recommendations, Assessment, Development and Evaluations). Risk ratios (RR), rate ratios, and hazard ratios (HR) were calculated along with 95% confidence intervals (95% CI). The Meta-analysis was performed using a random-effects model.
Results
Five RCTs met the inclusion criteria for this review. The risk of bias was unclear or high for the trials. Non-organ preservation(n = 140) versus organ preservation (n = 144) (two trials): no statistically significant difference could be identified for any of the primary outcomes. Concurrent chemoradiotherapy (n = 37) versus sequential chemotherapy followed by radiotherapy (n = 34) (one trial): no statistically significant difference was noted between the two treatment arms for overall survival, disease-free survival and loco-regional recurrence. Laryngectomy-free survival was found to be superior in concurrent chemoradiotherapy arm (HR:0.28, 95% CI 0.13, 0.57). Induction chemotherapy followed by concurrent chemoradiotherapy (n = 53) versus induction chemotherapy followed by radiotherapy (n = 60) (one trial): no statistically significant difference was noted between the treatment arms for overall survival, disease-free survival and laryngectomy-free survival. Preoperative radiotherapy (n = 24) versus postoperative radiotherapy (n = 23) (one trial): overall survival was found to be better in the postoperative radiotherapy arm (HR:2.44, 95% CI1.18, 5.03). No statistically significant difference was noted in terms of treatment-related toxicity.
Conclusions
There are considerable uncertainties in the management of resectable hypopharyngeal cancer.
Trail registration
PROSPERO registration: CRD42019155613.
Introduction
Hypopharyngeal cancer includes cancers of the pyriform sinus, post cricoid area and posterior pharyngeal wall. Hypopharyngeal cancers are rare and account for less than 0.5% of all cancers and 3–5% of head and neck cancers [1]. They have a large geographical variation—being relatively rare in Eastern Asia, Africa and Northern Europe (incidence under 0.5:100, 000) and more common in India, Brazil, Central and Western Europe (incidence of 2.5:100, 000). The incidence in India and France are substantially higher at 8–15 cases per 100, 000 population in males [1]. It is an aggressive cancer and reported to have the highest mortality rates among head and neck cancers [1, 2]. Late clinical presentation is typical, with 70%–90% of patients presenting at Stage III or IV disease and is at least in part attributable to the anatomy and location of the hypopharynx [3]. The estimated 5-year overall survival rate for treated stage III and IV hypopharyngeal cancer patients varies between approximately 15% and 40%, depending on tumor-related factors, patient-related factors, and treatment approaches [4].
Treatments applied to cancer hypopharynx have included surgery, radiotherapy (RT), concurrent chemoradiotherapy(CRT), or a combination of these. Total laryngopharyngectomy with postoperative radiotherapy, despite being organ ablating and severely disabling, was the treatment of choice for locally advanced cancers and was considered the standard of care till the 1990s. Larynx removal was advocated because of its anatomical proximity and also risks of aspiration if it was retained, and non-surgical treatment with radiotherapy was noted to be associated with poorer cure rates [5]. Current practice, however, aims for both oncologic cure and laryngeal preservation and is enabled by great sophistication in assessment by radiology and greater efficacy of non-surgical treatments by the addition of chemotherapy to radiotherapy. Laryngeal preservation may be undertaken by surgical or non-surgical methods. In the context of hypopharyngeal cancers however, surgical organ preservation by a partial laryngopharyngectomy is occasionally feasible in very select patients with T1-T2 cancers of the upper hypopharynx and also good pulmonary reserve [6], and organ preservation/ laryngeal preservation is only feasible by non-surgical means in the vast majority of instances.
Non-surgical organ preservation has been explored for laryngeal cancers and for hypopharyngeal cancers by induction chemotherapy (IC) and concurrent chemoradiotherapy (CRT) (Veterans Affair, EORTC 24891, and RTOG 91–11 trials) [7–9] and is now recommended practice for moderately advanced (T3) laryngeal cancers [10]. In comparison to laryngeal cancers, hypopharyngeal cancers have distinctly different biology, a higher rate of regional and distant metastases, poor ability to salvage late recurrence with surgery, and poorer overall prognosis [11]. Extrapolation of the results of the trials conducted for laryngeal squamous cell carcinoma (SCC) and subgroup analyses of multi-site head-and-neck squamous cell carcinoma trials to the hypopharynx is therefore not appropriate. Whether, and in which situations, the attempt towards organ preservation is appropriate with regards to oncological and survival outcomes is an open and unanswered question [12].
Currently available published systematic reviews on hypopharyngeal cancer include retrospective data along with prospective randomized controlled trial data and are limited by the risk of bias inherent in retrospective data [2, 13], i.e., the risk of bias in the studies were not considered while arriving at conclusions. This current meta-analysis is as per the guidelines for a Cochrane review and restricts itself to the available prospective randomized controlled trials comparing the efficacy of organ preservation techniques (IC, CRT and RT) and non-organ preservation techniques (surgery) for management of resectable hypopharyngeal cancers.
Materials and methods
The detailed protocol has been registered in PROSPERO (CRD42019155613) [14]. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) 2009 guidance was used to conduct and report this systematic review [15].
Criteria for selection
Only randomized controlled trials (RCT) performed in patients with resectable hypopharyngeal cancers were considered for inclusion. Studies involving patients with non-squamous histology, carcinoma-in-situ and unresectable hypopharyngeal cancers were excluded. Comparisons involving total laryngopharyngectomy followed by adjuvant radiotherapy and/or organ-preservation modalities like radiotherapy and chemoradiotherapy (concurrent and sequential) were included in this review. The primary outcomes evaluated were overall survival, disease-free survival, any recurrence, local recurrence, loco-regional recurrence, distal recurrence and laryngectomy-free survival. The secondary outcomes were response rates following induction chemotherapy and comparison of treatment-related toxicity. There were no language restrictions.
Databases searched
Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE, EMBASE, Science Citation Index, and Conference Proceedings databases were searched until 21 November 2020. We also searched the clinical trial registries: Clinicaltrials.gov (http://www.ClinicalTrials.gov/) and The World Health Organization International Clinical Trials Registry Platform (www.who.int/trialsearch) on 21 November 2020. The detailed search strategy is available in S1 Table.
Study selection
Screening of retrieved records (after removal of duplicates) was performed independently by SP and PS. Full texts were retrieved for any records identified as relevant by the screening of titles and abstracts. The final study selection was performed independently by SP and PS based on full texts. Any discrepancy in screening and final study selection was resolved by KG and AT.
Assessment of risk of bias
Assessment of risk of bias was performed for the selected studies using Cochrane’s tool for assessing risk of bias [16]. The risk of bias was evaluated based on the following domains: sequence generation of randomization, allocation concealment, blinding, incomplete outcome data, selective outcome reporting, and other sources of bias [16]. The risk of bias assessment was performed independently by SP and PS. Any discrepancy was arbitrated by KG and AT.
Data extraction
Data extraction from selected studies was conducted independently by SP and PS using a predefined Microsoft Excel-based data extraction form designed by KG and piloted by SP and PS. Discrepancies in the data extracted were resolved by AT and KG. Data collected from the studies were: country of origin, number of centres involved, patient selection criteria, description of the intervention in each arm, the sample size in each arm with post-randomization drop-out, risk of bias and outcome data.
Statistical analysis
The statistical analysis was performed using Revman 5.4.1 [17]. Due to the clinical heterogeneity identified between the studies, the meta-analysis was performed using a random-effects model where applicable. For the time to event outcomes (overall survival, disease-free survival and laryngectomy-free survival), the logarithm of hazard-ratio and standard error were calculated using methods described by Parmar et al [18]; the meta-analysis was performed using the generic-inverse variance method. For the binary outcomes (any recurrence, local recurrence, loco-regional recurrence, regional recurrence and distal recurrence), risk ratios were calculated, and the meta-analysis was performed using the Mantel-Haenszel method where applicable. For the treatment-related complications and toxicities, the logarithm of rate ratio and standard error were calculated; the meta-analysis was performed using the generic inverse method where applicable.
Heterogeneity
We explored the clinical differences between the studies by comparing the inclusion and exclusion criteria of the participants, the way the intervention and control treatments were delivered, and the outcomes measured. We assessed the methodological differences by comparing the risk of bias in the studies.
We assessed the statistical heterogeneity between the studies using I2. We interpreted I2 using the guidance available from the Cochrane handbook.
In the presence of statistical heterogeneity, we planned to perform various subgroup analyses (hypopharyngeal subsite, T classification, N classification) but did not perform these because of the paucity of data.
Reporting bias
We planned to explore reporting bias using funnel plot visual asymmetry and statistical tests for funnel plot asymmetry but did not perform these because of the few trials in this review.
Grading of certainty of evidence
The studies were evaluated for the certainty of evidence using GRADE (Grading of Recommendations, Assessment, Development and Evaluations). The overall certainty was graded as very low, low, moderate or high. The domains considered for calculating the overall certainty were: risk of bias, imprecision, inconsistency, indirectness and publication bias [19].
Sample size calculations
The sample size was calculated to assess the adequacy of sample size in existing trials and to direct future randomized controlled trials using the software Power and Sample size PS version 3.1.2.
Results
Description of studies
We identified a total of 3269 references. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection is depicted in Fig 1 and the PRISMA checklist for this manuscript is available as S1 Fig.
Fig 1. PRISMA flow-chart.
Of these 3269 references, 5 randomized controlled trials (6 references) were eventually included for the meta-analysis. The risk of bias (ROB) of the trials included has been represented in Fig 2. The descriptive details of the trials have been summarized in Table 1 [20–24]. There were a total of 4 comparisons in these 5 trials.
Fig 2. Figure demonstrating risk of bias (ROB).
Table 1. Characteristics of included studies.
| Study | Inclusion Criteria | Subsite | Intervention I | Intervention II | Sample Size (Intervention I: Intervention II) | Mean Follow up (years) |
|---|---|---|---|---|---|---|
| Non-organ preservation versus organ preservation | ||||||
| Beauvillain 1997 [20] | T3, T4, N0-N3, resectable hypopharyngeal SCC | PFS-90 | 3 cycles 2-drug induction chemotherapy followed by surgery (day 45) and postoperative radiotherapy | 3 cycles 2-drug induction chemotherapy followed by radiotherapy on day 45 | 46:44 | 7.7 |
| Lefebvre 2012 [21] | Pyriform sinus or hypopharyngeal aspect of aryepiglottic folds Classified as T2 (AJCC, 1987)—as T2, T3, T4 N0, N1, N2a or N2b neck involvement N2c included till 1990 |
PFS-152 AEF-42 |
Immediate surgery with postoperative radiotherapy 50–70 Gy | 2-drug induction chemotherapy. CR after three cycles → radiotherapy, less than CR → surgery | 94:100 | 10.5 |
| Concurrent chemoradiotherapy versus sequential chemotherapy followed by radiotherapy | ||||||
| Prades 2010 [22] | Previously untreated T3 pyriform sinus SCC with fixed cords | T3 PFS | Pretreatment neck dissection followed by concurrent chemoradiotherapy | Pretreatment neck dissection followed by 2-drug induction chemotherapy. Participants with complete response or 80% partial response received radiotherapy and participants with <80% partial response received surgery | 37:34 | 2 |
| Preoperative radiotherapy versus postoperative radiotherapy | ||||||
| Vandenbrouck 1977 [23] | Tumors confined to the mucosa of the pyriform sinus, aryepiglottic fold, and arytenoid area | PFS-28 Marginal Zone-7 Pharyngoesophageal junction-7 AEF-3 Hypopharynx unspecified-2 |
Preoperative radiotherapy followed by surgery | Surgery followed by postoperative radiotherapy | 24:23 | 5 |
| Induction chemotherapy followed by concurrent chemoradiotherapy (IC-CRT) versus induction chemotherapy followed by radiotherapy (IC-RT) | ||||||
| Yi 2020 [24] | Stage III-IV A-B hypopharyngeal cancer | Unknown | 3-drug induction chemotherapy followed by concurrent chemoradiotherapy (surgery for primary not reaching large partial response) | 3-drug induction chemotherapy followed by radiotherapy (surgery for primary not reaching large partial response) | 53:60 | 3.4 |
Abbreviations: SCC—Squamous cell carcinoma, PFS—Pyriform sinus, AEF—Aryepiglottic foldT—Tumor stage, N—Nodal stage
Effect estimates
The forest plots for each pairwise comparison are provided in Fig 3. For response rates and treatment-related toxicity, it was not possible to perform a quantitative analysis. Effect estimates could only be calculated for laryngectomy-free survival for two out of four comparisons. Narrative summaries of the outcomes where quantitative analysis could not be performed are presented in Table 2 (response rates and laryngectomy-free survival) and Table 3 (treatment related-toxicity).
Fig 3. Forest plots for various comparisons and outcomes.
a: Overall Survival. b: Disease-Free Survival. c: Any Recurrence. d: Local Recurrence. e: Loco-Regional Recurrence. f: Distal Recurrence. g: Treatment-Related Toxicity. h: Laryngectomy-Free Survival.
Table 2. Summary of treatment-related toxicity.
| Study | Intervention I | Intervention II | Toxicity: Intervention I* | Toxicity: Intervention II* | Reason why quantitative analysis was not performed |
|---|---|---|---|---|---|
| Non-organ preservation versus organ preservation | |||||
| Beauvillain 1997 [20] | 2-drug induction chemotherapy followed by surgery | 2-drug induction chemotherapy followed by radiotherapy | 24/46 | 23/44 | Inadequately reported: only toxicities related to chemotherapy were reported |
| Lefebvre 2012 [21] | Immediate surgery followed by radiotherapy | 2-drug induction chemotherapy followed by radiotherapy in responders and surgery in non-responders | 2/94 | 15/100 | Inadequately reported: only toxicities requiring cessation of treatment were reported |
| Concurrent chemoradiotherapy versus sequential chemotherapy followed by radiotherapy | |||||
| Prades 2010 [22] | Pre-treatment neck dissection followed by concurrent chemoradiotherapy | Pre-treatment neck dissection followed by 2-drug induction chemotherapy followed by radiotherapy in responders and surgery in non-responders | 50/37 | 49/34 | Inadequately reported: surgical complications were not mentioned suggesting that bias |
| Preoperative radiotherapy versus postoperative radiotherapy | |||||
| Vandenbrouck 1977 [23] | Preoperative radiotherapy followed by surgery | Surgery followed by post-operative radiotherapy | 25/24 | 14/23 | Rate ratio calculated and reported |
| Induction chemotherapy followed by concurrent chemoradiotherapy (IC-CRT) versus induction chemotherapy followed by radiotherapy (IC-RT) | |||||
| Yi 2020 [24] | 3-drug induction chemotherapy followed by concurrent chemoradiotherapy (surgery for primary not reaching large partial response) | 3-drug induction chemotherapy followed by radiotherapy (surgery for primary not reaching large partial response) | 40.78%** | 5.08%** | Inadequately reported: The denominator was not reported clearly–so number of events could not be calculated |
*- Number of Events/number of participants
**- p<0.001
Table 3. Response assessment following induction chemotherapy and larynx preservation rates.
| Study | Response assessment | Response definition | Response rate | Laryngeal preservation rate |
|---|---|---|---|---|
| Non-organ preservation versus organ preservation | ||||
| Beauvillain 1997 [20] | Oropharyngeal fibreoptic evaluation under general anesthesia between day 35 and 45 of induction chemotherapy | Not reported | Intervention I: Complete response: 3 (tumor), 7 (node); partial response: - 28 (tumor), 11 (node); stabilisation: 15 (tumor), 15 (node), progression: 0 Intervention II: Complete response: 10 (tumor), 6 (node); partial response: 25 (tumor), 16 (node); stable: 8 (tumor), 7 (node); progression:1 (tumor), 1 (node) |
Not reported |
| Lefebvre 2012 [21] | Endoscopy before every cycle of induction chemotherapy and 2 weeks after the previous cycle. CT scan was recommended but not mandatory. | Complete response: complete resolution of the primary tumor with return of laryngeal mobility Partial response: decrease in primary tumor area greater than or equal to 50% Progression: increase greater than 25% |
Reported only for 97 participants in the organ preservation group Complete response: 52; partial response: 31; stable: 13; progression: 1 |
Organ preservation group: 28% at 3 years, 15% at 5 years, and 8.7% at 10 years Non-organ preservation group: not applicable |
| Concurrent chemoradiotherapy versus sequential chemotherapy followed by radiotherapy | ||||
| Prades 2010 [22] | Endoscopic evaluation and CT imaging at 3 weeks after completion of induction chemotherapy | Not reported | Concurrent chemoradiotherapy- 92%, Sequential chemotherapy followed by radiotherapy-67.65% at 2 years | |
| Preoperative radiotherapy versus postoperative radiotherapy | ||||
| Vandenbrouck 1977 [23] | Not reported | Not reported | ||
| Induction chemotherapy followed by concurrent chemoradiotherapy (IC-CRT) versus induction chemotherapy followed by radiotherapy (IC-RT) | ||||
| Yi 2020 [24] | Not reported | Induction chemotherapy followed by concurrent chemoradiotherapy:86.3% Induction chemotherapy followed by radiotherapy:85.4% at 3 years |
||
Non-organ preservation versus organ preservation
Under this comparison, there was a total of 284 patients (non-organ preservation:140, organ preservation: 144) in two trials [20, 21]. Data pertaining to the primary objectives which could be extracted were overall survival [20, 21], loco-regional and distal recurrence [20, 21], disease-free survival [21], and local recurrence [21]. The pooled HR (Hazard Ratio) of death, distal recurrence and any recurrence did not show any statistically significant difference between the two modalities (overall survival: HR 0.87, 95% CI 0.49, 1.55; distal recurrence: HR 1.29, 95% CI 0.52, 3.20; any recurrence: HR 0.90, 95% CI 0.51, 1.57). There was also no statistically significant difference between the two interventions for local recurrence (HR 1.06, 95% CI 0.42, 2.72), locoregional recurrence (HR 0.69, 95% CI 0.37,1.28), and disease-free survival (HR 1.23, 95% CI 0.92, 1.66) based on the trial by Lefebvre et al [21].
Concurrent chemoradiotherapy versus sequential chemotherapy followed by radiotherapy
Only one trial was identified comparing these two interventions (71 patients; Concurrent chemoradiotherapy-37 versus Sequential chemoradiotherapy- 34) [22]. The primary outcomes available were overall survival, disease-free survival, loco-regional recurrence, and laryngectomy- free survival. No statistically significant difference was noted between the two treatment groups for the HR for overall mortality at maximum follow-up (HR 1.12, 95% CI 0.80, 1.56), disease-free survival (HR 0.97, 95% CI 0.74, 1.28), and loco-regional recurrence (HR 0.26, 95% CI 0.06, 1.18). Losing laryngeal functions was lower in concurrent chemoradiotherapy compared to sequential chemoradiotherapy (HR 0.28, 95% CI 0.13, 0.57).
Preoperative radiotherapy versus postoperative radiotherapy
The RCT by Vanderbrouck et al. published in 1977 was the only trial comparing these two interventions [23]. This study involved 47 patients (preoperative radiotherapy: 24, postoperative radiotherapy: 23) with a mean follow-up of 5 years. The overall mortality was higher in patients receiving pre-operative radiotherapy compared to post-operative radiotherapy (HR 2.44, 95% CI 1.18, 5.03). There was no evidence of differences in treatment-related toxicity between the preoperative radiotherapy versus postoperative radiotherapy (HR 1.72, 95% CI 0.97, 3.03). The pattern of recurrence could not be assessed as this data was not available.
Induction chemotherapy followed by concurrent chemoradiotherapy (IC-CRT) versus induction chemotherapy followed by radiotherapy (IC-RT)
We identified one trial by Yi et al. comparing these two interventions involving 113 patients (IC-CRT: 53, IC-RT: 60) with a mean follow-up of 3.4 years [24]. The primary outcomes available from this trial were overall survival, disease-free survival, and laryngectomy-free survival (LFS). There was no statistically significant differences in overall survival, laryngectomy-free survival and disease-free survival between the two treatment arms (overall survival: HR 0.98, 95% CI 0.72, 1.34; disease-free survival: HR 1.25, 95% CI 0.95, 1.64; LFS: HR 0.93, 95% CI 0.48, 1.82).
Treatment-related toxicity
Of the five studies identified, quantitative analysis could only be performed for preoperative radiotherapy versus postoperative radiotherapy (one study [23]: HR 1.72, 95% CI 0.97, 3.03). In the remaining comparisons, only a narrative summary was possible and has been provided in Table 2. In the organ preservation versus non-organ preservation subgroup, the trial by Lefebvre et al. reported the number of toxicities severe enough to cause treatment interruptions [21], while the trial by Beauvillain et al. provided toxicity data following neoadjuvant chemotherapy only [20]. Similarly, for the concurrent versus sequential chemoradiotherapy subgroup, Prades et al. did not provide complication details following surgery [22]. Though effect estimates could not be calculated for the IC-CRT versus IC-RT comparison due to insufficient data, the trial by Yi et al. demonstrated an increased incidence of toxicity following IC-CRT compared to IC-RT (40.78% vs 5.08%, p<0.001) [24].
Response-rates following neoadjuvant treatment
Descriptive analysis (Table 3) was performed for this outcome as none of the studies provided outcomes in the format that allowed quantitative analysis. In the non-organ preservation versus organ preservation comparison, response criteria were objectively defined by Lefebvre et al. while this information was unavailable in the trial by Beauvillain et al [20, 21]. Following 2-drug (cisplatin and 5-fluorouracil) neoadjuvant chemotherapy, Lefebvre et al. demonstrated 53.6% complete response rate [21]. However, Beauvillain et al. revealed a 14.4% complete response rate following induction chemotherapy [20].
Sample size estimation
For trials reporting mortality as a time-to-event outcome, prior data indicated that the median survival time for surgically treated patients was 25 months [9]. If the true median survival time for the non-surgically treated patients is 13 months, we will need to recruit 43 participants in each arm over an accrual interval of 36 months and an additional follow-up period of 36 months, to be able to reject the null hypothesis as stated above with a power of 0.8 and Type I error probability of 0.05.
The summary of findings table is available in S2 Table.
Discussion
Summary of results
We included 5 RCTs which recruited 515 participants with resectable hypopharyngeal cancer and followed them over a mean follow-up period of 3.4 to 10.5 years. The comparison between non-organ preservation versus organ preservation had the maximum number of participants in this meta-analysis (284 participants) from two RCTs [20, 21]. However, no statistically significant difference could be demonstrated between the two interventions for overall survival, disease-free survival, recurrence-free survival (any recurrence, local, loco-regional and distal) after a follow-up period of 7.7 to 10.5 years.
The rest of the comparisons involved single RCTs. For the comparison between concurrent and sequential chemoradiotherapy (n = 71, mean follow-up 2 years), the hazard ratio revealed the superiority of concurrent chemoradiotherapy over sequential chemoradiotherapy in terms of laryngectomy-free survival (HR 0.28, 95% CI 0.13, 0.57) [22]. There were no significant differences between the two groups in terms of overall survival, disease-free survival, and loco-regional recurrence.
The comparison between pre- and post-operative radiotherapy was the only analysis where a statistically significant difference in terms of overall survival could be demonstrated [23]. The hazard ratio for death favoured surgery followed by post-operative radiotherapy (HR of preoperative vs post-operative radiotherapy 2.24, 95% CI 1.18, 5.03). However, the certainty of evidence was very low. No statistically significant difference was seen between the two interventions in terms of treatment-related toxicity.
The only comparison which employed contemporary chemotherapy regime (3-drug neoadjuvant chemotherapy) was the comparison between IC-CRT (induction chemotherapy followed by concurrent chemoradiotherapy) and IC-RT (induction chemotherapy followed by radiotherapy) [24]. No statistically significant difference was noted between the two intervention groups for overall survival, disease-free survival and laryngectomy-free survival (very low certainty of evidence).
Applicability of the results
Current clinical practice for organ preservation techniques in hypopharyngeal cancers includes a 3-drug regime (taxane-based) and 3-dimensional conformal radiotherapy (intensity-modulated radiotherapy-IMRT). The 3-drug regime has been adopted into contemporary practice for hypopharyngeal cancer management based on trials conducted on laryngeal or other head and neck subsites with poor representation of hypopharyngeal cancers [25, 26]. Similarly, conformal radiotherapy is routinely employed in place of 2-dimensional planning without direct evidence from trials conducted on hypopharyngeal cancers [27]. All the studies included in this review were conducted in the pre-taxane and pre-IMRT era, except the trial by Yi et al. [24]. This highlights the need for future trials using current clinical practice, even if this current practice is not based on evidence from hypopharyngeal cancers.
The study by Yi et al. reported an increased incidence of toxicity following IC-CRT (induction chemotherapy followed by concurrent chemoradiotherapy) compared to IC-RT (induction chemotherapy followed by radiotherapy) (40.78% Vs 5.08%, p<0.001) [24]. These results reflect the outcomes of other landmark publications exploring the utility of IC-CRT for different head and neck subsites including a limited number of hypopharyngeal cancers (DECIDE and PARADIGM) [28, 29].
Though this study intended to identify the best treatment option for resectable hypopharyngeal cancers by meta-analytical methods, majority of the patients were categorized as T3 originating from the pyriform sinus (Table 1). These results should, therefore, not be extrapolated to T4 tumors and tumors originating from other hypopharyngeal subsites.
Certainty of evidence
The overall certainty of evidence was low or very-low for all the comparisons (S2 Table). Except for the Lefebvre trial, in all the other included trials the randomization procedure was unclear [21]. Further, the outcome assessment blinding was not performed in any of the trials. Though survival outcomes would not be affected by blinding, lack of blinding can bias the estimates of other outcomes [30]. The sample sizes in the trials were small with fewer than 300 events for all comparisons and outcomes. The confidence intervals were wide for most outcomes. As a result, there was imprecision. These reasons led to downgrading the certainty of evidence.
Strength and limitations
This is the first systematic review and meta-analysis on resectable hypopharyngeal squamous cell carcinoma to include evidence from randomised controlled trials only.
The search criteria did not include language restriction and were not restricted to published articles. We performed a thorough search for literature including a search of clinical trial registers. We used two independent researchers to select the studies and extract data to minimise the errors. We performed the analysis as per the Cochrane Handbook guidance and used the GRADE guidelines for risk of bias assessment.
Nevertheless, the evidence from the study is fraught with many limitations. As mentioned above, the certainty of evidence from our systematic review and meta-analysis is low or very low for all comparisons. We were unable to perform planned subgroup analyses because of paucity of data.
One of the objectives of this study was to assess the health-related quality of life and laryngectomy-free survival for various treatment options available for resectable hypopharyngeal cancers. None of the trials included in this meta-analysis included health-related quality of life metrics in their outcomes. There was also a paucity of data related to structured reporting of treatment-related toxicity in the trials included.
Despite the above limitations, this systematic review and meta-analysis on RCTs remains the best current evidence for the management of hypopharyngeal cancers.
Agreement and disagreement with other systematic reviews and meta-analysis
Meta-analysis of chemotherapy in head and neck cancer (MACH-NC) published an update in 2011 to assess the impact of chemotherapy on various head and neck subsites [31]. This study demonstrated an absolute benefit in terms of survival to be 4.5% at 5-years for all subsites with the addition of chemotherapy. This was found to be 6.5% when chemotherapy was administered in the concurrent setting. In the subsite analysis, 66 comparisons were found to have been conducted on hypopharyngeal subsites involving 2767 patients. Similar to the findings of our study, no significant differences could be identified with the sequence of chemotherapy administration for hypopharyngeal subsites for various survival outcomes. MACH-NC, however, was not restricted to resectable hypopharyngeal cancers, unlike this meta-analysis. The latest iteration of MACH-NC published in 2021 however revealed that survival benefit was demonstrated only with concurrent chemotherapy but not with chemotherapy used in induction or adjuvant setting [32]. This update was nonetheless for all head and neck subsites.
Our literature review identified two systematic reviews and meta-analyses exclusively on resectable locally advanced hypopharyngeal cancers and one network meta-analysis on locally advanced laryngeal and hypopharyngeal cancers [2, 13, 33]. The reviews by Habib et al. and Cui et al. included randomized controlled trials as well as retrospective studies [13, 33]. Habib et al. reported that there was no significant survival difference between organ preservation and non-organ preservation strategy in terms of overall survival which is in agreement with our results [13]. Similar outcomes related to overall survival were noted in the meta-analysis by Cui et al [33]. However, Cui et al reported that the disease-free survival showed better outcomes with surgery compared to non-surgical modalities (risk ratio 1.20, 95% CI 1.03, 1.37) [33]. However, this comparison included retrospective studies along with randomized trials, which could explain the differences in conclusions between their study and ours. Trial sequential analysis performed in this meta-analysis proved inconclusive, thereby implying the need for future trials addressing the query about the best treatment option for locally advanced resectable hypopharyngeal cancers [33]. The network meta-analysis by Chen et al. (larynx and hypopharyngeal subsites) revealed a greater surface under curve ranking area (SUCRA) for surgery followed by radiotherapy compared to other treatment modalities in terms of three and five-year disease-free survival and overall survival [2]. As with the other meta-analysis, this study included non-randomised studies, which could explain the differences in conclusions between their study and ours.
Future directions
There is a need for large, well-designed, multi-centric RCT with a low risk of bias in the future to support the best intervention for resectable hypopharyngeal cancers and to provide more credible guidelines. By improved patient selection, advances in delivering conformal radiotherapy, and newer chemotherapy drug combinations including targeted and immune-checkpoint inhibitors we will probably have different outcomes from those patients treated more than a decade ago. In a recent search on clinical trial registries, there are several randomized controlled trials (Table 4) focusing on combination therapies, which are underway and may provide future insights on the desired clinical outcomes. However, we were unable to identify trials focussing on health-related quality of life. Also, for any organ preservation trial in the larynx or hypopharynx, one must include laryngo-esophageal dysfunction-free survival as one of the main outcomes in the future [34].
Table 4. On-going randomized controlled trials evaluating treatment strategies for resectable locally advanced hypopharyngeal squamous cell carcinoma.
| Trial Registry Details | Population | Intervention | Comparison | Outcome |
|---|---|---|---|---|
| Jprn-Umin (2008). "Randomized phase II syudy of weekly docetaxel versus S-1 and concurrent radiotherapy for stage III and IV laryngeal, oropharyngeal, and hypopharyngeal cancer in elderly patients or patients with complications | 1) Histologically or cytologically confirmed squamous cell carcinoma 2) stage 3 or 4 with no evidence of distant metastases 3) resectable squamous cell carcinoma | Docetaxel with concurrent radiotherapy. A total radiotherapy dose of 70 Gy is planned with conventional fractionation (1.8–2 Gy/day). After a total dose of 40 Gy, patients with a 50% or greater decrease in the product of 2 perpendicular diameters of primary and neck tumors (responders) continued chemotherapy and completed radiotherapy. For non-responders with resectable tumor, definitive surgery was recommended. 4–6 weeks after the end of treatment | Administration of 2 courses (6 weeks) concurrent chemotherapy in which one course consists of S-1 65mg/m2 for 2 weeks administration followed by 1 week rest. A total radiotherapy dose of 70 Gy is planned with conventional fractionation (1.8-2Gy/day). After a total dose of 40 Gy, patients with a 50% or greater decrease in the product of 2 perpendicular diameters of primary and neck tumors (responders) continued chemotherapy and completed radiotherapy. For non-responders with resectable tumor, definitive surgery was recommended | Response rate, locoregional relapse free survival, survival with primary organ preservation, overall survival, treatment completion rate, incidence and severity of adverse events, economic analysis |
| ChiCtr (2018). "Clinical study of hypofractionated intensity-modulated radiotherapy for locally advanced hypopharyngeal carcinoma patients with no response to induction chemotherapy | Histologically proven malignant tumor of hypopharynx; stage III-IVb | Hypofractionated intensity-modulated radiotherapy | Conventional fractionated intensity-modulated radiotherapy | Local regional failure free survival, progression-free-survival, overall survival, toxicity |
| ChiCtr (2019). "Multicenter prospective clinical study for treatment options for partial release in patients with locally advanced laryngeal and hypopharyngeal cancer after TPF-induction chemotherapy." (TPF: docetaxel, cisplatin and fluorouracil) |
Patients with advanced or advanced throat cancer (local tumor T2-4, any N) who achieved partial response after induction chemotherapy in 2–3 cycles | Surgery+ postoperative adjuvant radiotherapy | Radical radiotherapy or concurrent chemoradiotherapy | Overall survival, progression free survival, laryngeal preservation survival |
| ChiCtr-Iir (2015). "Nimotuzumab (Taixinsheng) combined with radiotherapy and chemotherapy for protecting the laryngeal function of locally advanced hypopharyngeal and laryngeal cancer patients: a multi-center, single-blind, randomized, controlled, phase II study." | Patients have no previous malignancy and a histologically proven squamous cell carcinoma of the stage III-IV larynx or hypopharynx | Nimotuzumab (200mg) combined with radiotherapy and cisplatin | Nimotuzumab (200mg) combined with radiotherapy and docetaxel | Laryngeal preservation, safety, local control survival, disease-free survival, overall survival |
| ChiCtr-Inr (2016). "A prospective, randomized trial of precision Neo-adjuvant therapy in hypopharyngeal carcinoma patients." | Hypopharyngeal squamous cell carcinoma | Adjuvant chemotherapy, Surgery and radiotherapy | Surgery and radiotherapy | Disease free survival, objective response rate, rate of endoscopic surgery, pathological complete response, local control rate, overall survival rate |
| ChiCTR2000036734 (2020). A comparative study between surgery and concurrent radiotherapy and chemotherapy in PR patients with advanced pharyngeal and laryngeal cancer. (PR: partial response) | Locally advanced (stage III, IV) laryngeal and hypopharyngeal carcinoma | Concurrent chemotherapy and radiotherapy | Surgery | Disease-free survival, overall survival, progression-free survival, disease control, laryngeal preservation rate, incidence of adverse effect, quality of life |
| NCT04502641. A Randomized Phase III Comparing Sequential Therapy With Induction Chemotherapy/Chemoradiotherapy To Cisplatinum-Based Chemoradiotherapy in Locally Advanced Hypopharyngeal Carcinoma | Hypopharyngeal cancers | Patients receive induction chemotherapy with docetaxel-based, with or without cisplatin or fluorouracil. Treatment repeats every 21 days for 3 courses. Then, patients receive cisplatin on day 1 day 21, 3 weeks as one cycle and undergo concurrent radiotherapy once daily, 5 days a week, for 6 to 7 weeks | Patients receive cisplatin on day 1 day 21, 3 weeks as one cycle and undergo concurrent radiotherapy once daily, 5 days a week, for 6 to 7 weeks. | Progression-free survival, overall-survival, adverse events rate |
Abbreviations: T = tumor status; N = nodal status
Conclusion
Of the various treatment combinations for resectable hypopharyngeal cancer compared, this study demonstrated a difference in survival only for the comparison between preoperative radiotherapy and postoperative radiotherapy (postoperative radiotherapy results in better outcome). Concurrent chemoradiotherapy was found to provide a better chance of preservation of the larynx compared to sequential chemoradiotherapy. The result of this meta-analysis indicates a lacuna in the currently available literature in terms of the best treatment modality for hypopharyngeal cancers. There is an imminent need to embark on an adequately powered trial with surgical and non-surgical arms.
Differences between protocol and review
We originally planned to perform a network meta-analysis of the different interventions. However, because of the different types of participants included in different comparisons, the transitivity assumption was not met. Therefore, we performed only direct comparisons. The changes in methodology reflect these changes.
Supporting information
(DOCX)
(DOCX)
(TIF)
Data Availability
All the relevant data have been provided in the tables and supplementary files.
Funding Statement
The authors received no specific funding for this work.
References
- 1.5-Hypopharynx-fact-sheet.pdf [Internet]. [cited 2021 Mar 15]. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/5-Hypopharynx-fact-sheet.pdf
- 2.Che J, Wang Y, Zhang X, Chen J. Comparative efficacy of six therapies for Hypopharyngeal and laryngeal neoplasms: a network meta-analysis. BMC Cancer. 2019; 19:282. doi: 10.1186/s12885-019-5412-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Garden AS. Organ preservation for carcinoma of the larynx and hypopharynx. Hematol Oncol Clin North Am. 2001;15:243–260, v. doi: 10.1016/s0889-8588(05)70210-0 [DOI] [PubMed] [Google Scholar]
- 4.Lo WC, Wu CT, Wang CP, et al. Lymph Node Ratio Predicts Recurrence and Survival for Patients with Resectable Stage 4 Hypopharyngeal Cancer. Ann Surg Oncol. 2017;24:1707–1713. doi: 10.1245/s10434-017-5770-1 [DOI] [PubMed] [Google Scholar]
- 5.Thakar A, Bahadur S, Tandon DA, Ranganathan A, Rath GK. Laryngeal preservation by treatment with induction chemotherapy and radiotherapy protocol for stage III & IV carcinoma larynx—results of a pilot study. J Laryngol Otol. 1999; 113:433–438. [DOI] [PubMed] [Google Scholar]
- 6.Mura F, Bertino G, Occhini A, Benazzo M. Surgical treatment of hypopharyngeal cancer: a review of the literature and proposal for a decisional flow-chart. Acta Otorhinolaryngol Ital. 2013; 33:299–306. [PMC free article] [PubMed] [Google Scholar]
- 7.Department of Veterans Affairs Laryngeal Cancer Study Group, Wolf GT, Fisher SG, Hong WK, et al. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal cancer. N Engl J Med. 1991; 324:1685–1690. doi: 10.1056/NEJM199106133242402 [DOI] [PubMed] [Google Scholar]
- 8.Forastiere AA, Goepfert H, Maor M, et al. Concurrent Chemotherapy and Radiotherapy for Organ Preservation in Advanced Laryngeal Cancer. N Engl J Med. 2003;349:2091–2098. doi: 10.1056/NEJMoa031317 [DOI] [PubMed] [Google Scholar]
- 9.Lefebvre JL, Chevalier D, Luboinski B, Kirkpatrick A, Collette L, Sahmoud T. Larynx preservation in pyriform sinus cancer: preliminary results of a European Organization for Research and Treatment of Cancer phase III trial. EORTC Head and Neck Cancer Cooperative Group. J Natl Cancer Inst. 1996; 88:890–899. doi: 10.1093/jnci/88.13.890 [DOI] [PubMed] [Google Scholar]
- 10.National Comprehensive Cancer Network. Head and Neck Cancer (Version 1.2021). https://www.nccn.org/login?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf. Accessed August 10, 2021.
- 11.Garneau JC, Bakst RL, Miles BA. Hypopharyngeal cancer: A state of the art review. Oral Oncol. 2018;86:244–250. doi: 10.1016/j.oraloncology.2018.09.025 [DOI] [PubMed] [Google Scholar]
- 12.Dandekar M, D’Cruz A. Organ preservation strategies: Review of literature and their applicability in developing nations. South Asian J Cancer. 2014;3:147–150. doi: 10.4103/2278-330X.136764 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Habib A. Management of advanced hypopharyngeal carcinoma: systematic review of survival following surgical and non-surgical treatments. J Laryngol Otol. 2018;132:385–400. doi: 10.1017/S0022215118000555 [DOI] [PubMed] [Google Scholar]
- 14.Thakar A, Gurusamy K, Sharma A, Panda S, Sakthivel P. Interventions for managing hypopharyngeal cancer: a systematic review and network meta-analysis. PROSPERO 2019. CRD42019155613 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019155613 (accessed on 02 August 22) [Google Scholar]
- 15.Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. doi: 10.1136/bmj.b2700 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011; 343:d5928. doi: 10.1136/bmj.d5928 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.RevMan 5 download [Internet]. [cited 2021 Mar 16]. Available from: /online-learning/core-software-cochrane-reviews/revman/revman-5-download
- 18.Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–2834. doi: [DOI] [PubMed] [Google Scholar]
- 19.What is GRADE? | BMJ Best Practice [Internet]. [cited 2021 Mar 16]. Available from: https://bestpractice.bmj.com/info/toolkit/learn-ebm/what-is-grade/
- 20.Beauvillain C, Mahé M, Bourdin S, et al. Final results of a randomized trial comparing chemotherapy plus radiotherapy with chemotherapy plus surgery plus radiotherapy in locally advanced resectable hypopharyngeal carcinomas. The Laryngoscope. 1997;107:648–653. doi: 10.1097/00005537-199705000-00017 [DOI] [PubMed] [Google Scholar]
- 21.Lefebvre JL, Andry G, Chevalier D, et al. Laryngeal preservation with induction chemotherapy for hypopharyngeal squamous cell carcinoma: 10-year results of EORTC trial 24891. Ann Oncol. 2012;23:2708–2714. doi: 10.1093/annonc/mds065 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Prades JM, Lallemant B, Garrel R, et al. Randomized phase III trial comparing induction chemotherapy followed by radiotherapy to concomitant chemoradiotherapy for laryngeal preservation in T3M0 pyriform sinus carcinoma. Acta Otolaryngol. 2010;130:150–155. doi: 10.3109/00016480902914080 [DOI] [PubMed] [Google Scholar]
- 23.Vandenbrouck C, Sancho H, Le Fur R, Richard JM, Cachin Y. Results of a randomized clinical trial of preoperative irradiation versus postoperative in treatment of tumors of the hypopharynx. Cancer. 1977; 39:1445–1449. doi: [DOI] [PubMed] [Google Scholar]
- 24.Yi J, Luo X, Huang X, et al. Adding Induction Chemotherapy to Preoperative Concurrent Chemoradiotherapy Does Not Improve the Treatment Results in Locally Advanced Hypopharyngeal Carcinoma: A Randomized Phase II Trial. Int J Radiat Oncol Biol Phys. 2020; 108:S108. [Google Scholar]
- 25.Pointreau Y, Garaud P, Chapet S, et al. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J Natl Cancer Inst. 2009;101:498–506. doi: 10.1093/jnci/djp007 [DOI] [PubMed] [Google Scholar]
- 26.Vermorken JB, Remenar E, van Herpen C, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 2007; 357:1695–1704. doi: 10.1056/NEJMoa071028 [DOI] [PubMed] [Google Scholar]
- 27.Nutting CM, Morden JP, Harrington KJ, et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011;12:127–136. doi: 10.1016/S1470-2045(10)70290-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Cohen EEW, Karrison TG, Kocherginsky M, et al. Phase III randomized trial of induction chemotherapy in patients with N2 or N3 locally advanced head and neck cancer. J Clin Oncol. 2014;32:2735–2743. doi: 10.1200/JCO.2013.54.6309 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Haddad R O’Neill A, Rabinowits G, et al. Induction chemotherapy followed by concurrent chemoradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial. Lancet Oncol. 2013;14:257–264. doi: 10.1016/S1470-2045(13)70011-1 [DOI] [PubMed] [Google Scholar]
- 30.Wood L, Egger M, Gluud LL, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 2008;336:601–605. doi: 10.1136/bmj.39465.451748.AD [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Blanchard P, Baujat B, Holostenco V, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site. Radiother Oncol J. 2011;100:33–40. doi: 10.1016/j.radonc.2011.05.036 [DOI] [PubMed] [Google Scholar]
- 32.Lacas B, Carmel A, Landais C, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother Oncol J. 2021;156:281–293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Cui J, Wang L, Piao J, et al. Initial surgical versus non-surgical treatments for advanced hypopharyngeal cancer: A meta-analysis with trial sequential analysis. Int J Surg. 2020; 82:249–259. doi: 10.1016/j.ijsu.2020.04.059 [DOI] [PubMed] [Google Scholar]
- 34.Lefebvre JL, Ang KK, Larynx Preservation Consensus Panel. Larynx preservation clinical trial design: key issues and recommendations—a consensus panel summary. Head Neck. 2009;31:429–441. doi: 10.1002/hed.21081 [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
(DOCX)
(DOCX)
(TIF)
Data Availability Statement
All the relevant data have been provided in the tables and supplementary files.



