Skip to main content
Scientific Data logoLink to Scientific Data
. 2022 Nov 30;9:734. doi: 10.1038/s41597-022-01847-9

Data on medication adherence in adults with neurological disorders: The NeuroGerAd study

Tino Prell 1,2,, Aline Schönenberg 1,2, Sarah Mendorf 1, Hannah M Mühlhammer 1, Julian Grosskreutz 1, Ulrike Teschner 1
PMCID: PMC9709359  PMID: 36450760

Abstract

Nonadherence to medication is a common issue that goes along with increased morbidity and mortality and immense health care costs. To improve medication adherence and outcome in ill people, their reasons of not taking their prescribed medication must be known. Here a dataset is presented based on the longitudinal observational NeuroGerAd study in adults with neurological disorders (N = 910). The dataset contains demographic background variables as well as measures of adherence, medication changes after hospital discharge, comprehensive geriatric assessments, personality, patient-physician relationship, and health-related quality of life. As such, the dataset offers unique opportunities to enable a plethora of analyses on personal, social, and institutional factors influencing medication adherence.

Subject terms: Outcomes research, Neurological disorders, Health services


Measurement(s) adherence
Technology Type(s) questionnaires
Factor Type(s) personal factors
Sample Characteristic - Organism Homo sapiens
Sample Characteristic - Environment inpatient and outpatient setting
Sample Characteristic - Location Germany

Background & Summary

Adherence is described as the extent to which patients are able or willing to follow agreed recommendations with the medical staff. This includes recommendations on medication, diet, and/or lifestyle changes1,2. Adherence plays a particularly important role in chronic illnesses because medication is necessary to be taken continuously as recommended. Its relevance increases for people in older age, as they often have complex therapy regimens due to different diseases3. In addition, the relevance of this age group is increasing, as the number of people in older age is rising due to demographic changes4. However, many people cannot or do not want to take medications as prescribed2. This medication nonadherence leads to adverse drug events, increased length of stay and hospitals readmissions, lower quality of life (QoL), higher costs, and general poorer health outcomes1,57. Causes for nonadherence are manifold8. Furthermore, causes and predictors of nonadherence have been analyzed more frequently for internal diseases such as chronic obstructive pulmonary disease, bronchial asthma, arterial hypertension, etc., and less information are available for neurological diseases in elderly patients9.

This paper presents a new dataset that provides unique opportunities to investigate adherence in elderly people with neurological disorders derived from the NeuroGerAd study10. The study included a comprehensive geriatric assessment at baseline during hospital stay and two follow-up telephone interviews at 1 and 12 months after hospital discharge. The comprehensive clinical characterization at baseline allowed the determination of patterns and mechanisms of nonadherence. Two follow-up interviews were performed to explore prevalence and reasons of medication changes in the year after hospital discharge. The dataset can be reused for several health-service-research topics, e.g., patterns of depression, mobility, and nonadherence in elderly hospitalized people, or gap between inpatient and outpatient care in Germany.

Methods

In this observational longitudinal study, data were collected from people who were treated as inpatient at the Department of Neurology, Jena University Hospital, Jena, Germany between February 2019 and March 2020. Procedures included a comprehensive baseline assessment during hospital stay and 2 follow-up interviews at 1 and 12 months after hospital discharge. Baseline assessments included demographical data, clinical data, self-report adherence, prescribed medication, mobility, depression, cognition, health care utilization, communication, personality, and health-related QoL. Follow-up interviews asked for changes of medication after discharge, reasons thereof, specific kind of change, and health-related QoL.

Setting and participants

This observational and cohort study was registered in the German Clinical Trials Register DRKS00016774 (registered February 19, 2019), and the study protocol was published prior10. The study was approved by the local ethics committee (approval number 5290-10/17) of Jena University Hospital. All patients provided written informed consent. Hospitalized elderly patients with neurological disorders received baseline assessment between February 19, 2019 and March 13, 2020; the first telephone follow-up took place between March 19, 2019 and April 13, 2020; and the second telephone follow-up took place between February 19, 2020 and March 14, 2020.

A total of 2,021 patients aged 60 years and older were admitted to the Department of Neurology during the baseline data collection phase; however, 113 were missed for timely reasons, thus, assessments were impossible before their discharge. Of the remaining 1,908 patients that were screened for initial eligibility, 997 were excluded because of a score of <19 points in The Montreal Cognitive Assessment (MoCa) (n = 623) or delirium (n = 27), and because they declined to participate (n = 44), or were hindered to participate due to other medical reasons, such as inability to speak, unconsciousness, or severe dyspnea (n = 259). With the onset of corona virus disease-2019 (COVID-19) pandemic and decreased in the number of patients hospitalized for non-COVID-19-related reasons in January 2021, 136 patients aged between 55 and 60 were included when multimorbidity was present. This was done to gain higher sample size. In total, 995 patients were deemed eligible, of whom 910 patients completed the baseline study. In the first follow-up, 727 (79.9%) participants were interviewed by telephone (8 declined to participate and 175 were unreachable). In the second follow-up after 12 months from 910 participants, 673 (74%) participants were interviewed (27 declined and 210 were unreachable).

Outcome: The primary outcome was nonadherence according to the Stendal Adherence with Medication Score (SAMS). This study aimed to determine the predictors of nonadherence in patients with neurological disorders taking personal, environmental, and procedural factors into consideration.

Assessments

Several variables were obtained via medical records, self-report, and face-to-face investigation by trained study staff. Questionnaires and assessments are detailed in the Table 1. The full survey form can be found in the dataset repository. Cognition testing was done using the MoCa after explaining the study and obtaining written informed consent from all participants.

Table 1.

Assessments and questionnaires.

Score Rating
Depression: Beck-Depression-Inventory II (BDI II)23,24 The BDI-II is scored by summing the highest ratings for each of the 21 symptoms. Each symptom is rated for the past two weeks including the present day on a four-point rating scale (0–3). Sum scores range from 0 to 63. Scores between 0 and 13 indicate minimal, between 14 and 19 mild, between 20 and 28 moderate, and between 29 and 63 severe depression.
Cognition: Montreal Cognitive Assessment (MoCA)25,26 The MoCA is a common cognitive screening with high sensitivity for differentiation between normal aging and mild cognitive impairment (www.mocatest.org). It is scored out of 30 points, with higher scores reflecting better performance. Different cutoffs are proposed to differentiate normal cognitive function from cognitive impairments.
Mobility: Timed up and Go Test (TUG-test)27 The TUG-test assesses mobility and locomotor performance. Subjects were observed and timed from the instant they rose from an armchair, walked 3 metres, and returned to a fully seated position in the chair. Subjects wore their regular footwear and were allowed to use the arms of the chair to get up.
Personality: Big Five Inventory 10 (BFI-10)28,29 The BFI-10 has five subscales with two bidirectional items for each of the big-five personality factors. The items are rated on a five-point Likert scale. Scale scores are then calculated as the participant’s mean response.
Autonomy support: Health Care Climate Questionnaire (HCCQ)30,31 The HCCQ is made up of 15 items using a Likert scale, with item 13 being coded in reverse. The HCCQ analyses patients’ perception of support for autonomy, competence, and relatedness. The score is calculated as a mean score, with higher scores indicating a higher level of autonomy support.
Health- related quality of life: Short Form Health Survey (SF-36)32 The SF-36 is a generic health-related quality questionnaire covering the last 4 weeks prior to testing. The SF-36 comprises eight concepts of health: physical functioning, role limitations due to physical problems, pain, general health perceptions, energy/vitality, social functioning, role limitations due to emotional problems, and mental health. Single dimension scores were calculated according to the predefined standardized scoring algorithms by following the instructions given by RAND Health Care (https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form/scoring.html). Scoring was used in which items from each scale are summed and rescaled with a standard range from 0 to 100, where a score of 100 denotes the best health.
Short Form Health Survey (SF-12)33,34 The SF-12 is a short version of the SF-36. It encompasses 8 different domains in 12 items, including problems regarding both physical and social activity due to health, limitations in daily life due to physical or emotional problems, pain, mental health, vitality, and general health perception. Each domain is analyzed as the weighted sum of the corresponding items, with lower scores indicating less disability. According to Wirtz et al. (2018) a 2- and 3-factor solution can be calculated.
Adherence: Stendal Adherence to Medication Score (SAMS)10,21 The questionnaire comprises 18 items adding up to a cumulative adherence scale, with 0 indicating complete adherence and 72 complete non-adherence. Each item is answered on a 5-point Likert scale ranging from 0 to 4, with higher scores indicating lower adherence/higher nonadherence. Different aspects of adherence are covered, such as intentional modification of medication (items 4, 7, 8, 9, 10, 11, 12, 13, 17), lack of knowledge (items 1, 2, 3, 5) and forgetting to take the medication (items 6, 14, 15, 16, 18). The additional 5 items (19–23) that can be included in the SAMS to measure adherence to procedures in a stationary hospital context were not included in this dataset, as the focus lies strictly on medication adherence

The following variables were recorded from medical records: age, gender, main neurological diagnosis, and medication regime at admission and discharge.

The following variables were recorded via self-report in the first survey: marital status (single, divorced/widowed/living apart, and married), living condition (alone and not alone), educational level (high: German abitur or university; medium: German Realschule or general certificate of secondary education; and low: German Hauptschule or did not enter school), employment status, and number of medications per day (in the morning, noon, and evening), medical diagnoses, use of walking aids, use of visual aids, use of other aids, regular physiotherapy (yes/no), regular occupational therapy (yes/no), regular speech therapy (yes/no), frequency of consultation of neurologist (or general physician if neurologist is not available), SAMS, Beck Depression Inventory II (BDI), Big Five Inventory (BFI), Health Care Climate Questionnaire (HCCQ), and Short Form Health Survey (SF-36) (detailed in Table 1).

The following variables were recorded via face-to-face interview and assessment by trained study staff: changes of medication in the last 6 months before hospital admission (yes/no/unknown, if yes what kind of change and who did the medication change), timed-up-and-go-test, and MoCa.

The follow-up interviews were performed via telephone. Three attempts were made to reach the participants. The collected data included a semi-structured interview about medication changes from discharge (prevalence, reasons, and kind of change), selected questions from the SAMS (to address knowledge about medication, intentional modification of medication, and forgetting of medication), and SF-12.

Ethical approval

The research protocol for this study was approved by the local ethics committee (5290-10/17). All procedures performed in the study were in accordance with the ethical standards set by the European Union under Horizon 2020 (EU General Data Protection Regulation and FAIR Data Management). Participants were advised of their voluntary participation and anonymous outcomes. Written informed consent was obtained from all participants involved in the study.

Data Records

The dataset resulting from the study comes in an Excel spreadsheet format and is available to registered users from the ReShare data collection of the UK Data Service (https://reshare.ukdataservice.ac.uk/856032/)11 after permission from the research team.

Missing values are indicated with blanks. Each row represents one respondent and each column represents a variable (i.e., one column for each survey question for each phenomenon and one column for each socio-demographic variable). Detailed information on variable specifications is included in the data file and the legend document. Survey forms are stored in the English translation.

The full dataset contains potentially identifiable information regarding the participants. Therefore, the following steps were performed to avoid deanonymization:

  1. Date of assessments was not reported

  2. Qualitative answers from the interview were not reported.

  3. While the original age is included, for ease of use, age was additionally grouped into ranges of 5 years.

  4. In addition to each individual diagnosis, neurological main diagnoses were grouped into the following: cerebrovascular disorders, neuromuscular disorders, epilepsy, movement disorders, others. Rare diagnoses are not reported to avoid deanonymization

  5. Timed-up-and-go test time was grouped into <20 s, 20–30 s, >30 s, and inability to perform the test due to medical reasons.

  6. The use of physical, occupational, or speech therapy was combined into one variable: use of non-medical treatments (yes/no).

  7. From the follow-up interviews, the following items were reported: change of medication since discharge (yes/no) and if the medication was changed, then who performed these changes (answers were classified into patient, physician, or others). No detailed information on physicians or treatments post-discharge are reported.

  8. Survival of participants at follow-up was not reported as only two participants died during study period.

Technical Validation

Baseline characteristics of included patients

A total of 910 adults participated in the study, consisting of 389 female and 521 male patients aged 70.1 (SD 8.6) years. Most patients were married, pensioned, lived together with family members, and had a high or middle educational level (Table 2). The main neurological diagnoses derived from the patients’ medical records were movement disorders (n = 303; 33.3%), cerebrovascular disorders (n = 233; 25.6%), neuromuscular and peripheral neurological disorders (n = 168; 18.5%), epilepsy (n = 48; 5.3%), and miscellaneous diagnoses (n = 158; 17.4%) (Table 3). An overview of the SAMS items is given in Table 4.

Table 2.

Clinical and demographical characteristics (N = 910).

Baseline data
Metric parameters M SD Range CI 95% Missing
Age 70.1 8.6 96.0 – 55.0 69.6; 70.7 0
Number of pills/day 5.6 3.7 20.0 - 0 5.4; 5.9 67
SAMS 6.3 7.9 72.0 - 0 5.8; 6.9 155
BDI 9.9 7.5 49.0 - 0 9.4; 10.4 1
HCCQ-D 5.6 1.1 7.0 – 0.9 5.5; 5.6 79
MoCA 23.6 2.7 30.0 – 19.0 23.4; 23.8 0
Timed Up & Go (sec) 10.5 4.3 37.0 – 5.0 10.1; 10.8 325*
Categorical parameters n % Missing
Sex female 389 42.7 0
male 521 57.3
Marital status single 55 6.1 12
widowed/divorced 222 24.7
married 621 69.2
Living situation alone 204 24.1 65
not alone 641 75.9
Education high 321 35.3 14
middle 313 34.4
low 262 28.8
Occupation status no work 756 84.0 10
working 144 16.0
Diagnosis group movement disorder 303 33.3 0
cerebrovascular disorder 233 25.6
epilepsy 48 5.3
neuromuscular 168 18.5
others 158 17.4
Preparation of medication independent 706 77.6 31
needs help from others 141 15.5
Regular use of
walking aids Yes 297 32.6 66
visual aids Yes 596 65.5 67
physiotherapy Yes 422 46.6 0
occupational therapy Yes 134 14.7 0
speech therapy Yes 59 6.5 0
Follow up 1 month after discharge n % Missing
Medication change since discharge Yes 204 28.3 188
No 518 71.7
Follow up 12 months after discharge n % Missing
Medication change since discharge Yes 322 48.5 246
No 342 51.5

Note: *Timed-up-and go not performed in 325 subjects for medical reasons. Stendal Adherence with medication score (SAMS), Beck Depression Inventory II (BDI), Health Care Climate Questionnaire (HCCQ), Montreal Cognitive Assessments (MoCA).

Table 3.

Specification of neurological diagnoses.

Movement disorders n %
Parkinson’s disease 215 23.6
Atypical/Secondary Parkinson syndromes 45 4.9
Tremor, Dystonia, Other 43 4.7
Cerebrovascular disorders
Acute neurovascular disorder (transient ischemic attack, minor stroke) 173 19.0
Chronic neurovascular disorder (arterial stenosis) 60 6.6
Epilepsy 0.0
Idiopathic epilepsy 4 0.4
Structural, secondary epilepsy 44 4.8
Neuromuscular disorders
Motor neuron diseases 21 2.3
Other neuromuscular disease 24 2.6
Peripheral neuropathy 123 13.5
Others
Obstructive sleep apnea (OSA) 30 3.3
Spinal disorders 18 2.0
Other 110 12.1
Total 910

Table 4.

Stendal Adherence to Medication Score (SAMS) scores.

SAMS Items Mean SD Floor % Ceiling % Missing
Sum Score 6.31 7.63 21.1 0.2 0
Item 1 0.45 0.95 75.1 2.5 5
Item 2 0.53 1.13 76.5 6.0 6
Item 3 0.28 0.81 84.2 2.5 9
Item 4 0.24 0.71 85.3 2.0 5
Item 5 0.51 1.07 74.5 4.1 11
Item 6 0.63 0.75 49.8 0.5 6
Item 7 0.80 1.30 62.7 10.2 83
Item 8 0.33 0.87 82.4 3.0 13
Item 9 0.30 0.80 82.2 2.2 11
Item 10 0.05 0.40 96.9 0.8 9
Item 11 0.29 0.82 84.2 2.7 8
Item 12 0.28 0.80 84.3 2.6 13
Item 13 0.19 0.66 88.1 1.6 16
Item 14 0.32 0.77 74.6 2.1 46
Item 15 0.35 0.78 70.0 1.5 84
Item 16 0.47 0.83 64.9 2.0 45
Item 17 0.17 0.64 88.8 1.8 20
Item 18 0.25 0.65 76.9 1.0 65

Note: For individual items, floor effects indicate answer levels of 0, equalling adherence, ceiling effects indicate answer levels of 4, signalling nonadherence.

Consistency and validity of health-related QoL

The essential data concerning distribution, missing, and internal consistency of the SF-36 are given in Table 5. Internal consistency of the SF-36 subscales was evaluated using the Cronbach’s coefficient α. Internal consistency was considered adequate if Cronbach’s coefficient α values were >0.7012. Floor and ceiling effects were defined as the proportion of respondents scoring the highest (ceiling) or lowest (floor) possible score across any given domain. Floor and ceiling effects considered present if at least 15% of respondents reached the lowest or the highest possible score, respectively12.

Table 5.

Short Form Health Survey (SF-36) Scores and internal consistency.

SF-36 subscales Mean SD Floor % Ceiling % Missing % Cronbach α
Physical Functioning 47.9 30.7 7.2 3.2 0.8 0.941
Social Functioning 71.0 27.3 2.2 30.7 0.3 0.803*
Role Limitations Due To Physical Problems 30.2 39.8 56.4 18.5 4.0 0.893
Role Limitations Due To Emotional Problems 61.9 45.2 31.0 55.0 3.8 0.925
Emotional Well-Being 65.1 19.2 0 1.7 1.2 0.809
Vitality 48.5 20.0 0.9 0.7 1.2 0.776
Pain 54.7 31.1 4.2 19.7 0.3 0.868*
General Health 44.4 16.7 0.2 0 1.5 0.496

Note: *Spearman Brown Coefficient. Short Form Health Survey (SF-36).

Convergent validity was measured by calculating the Spearman correlation coefficient of all SF-36 subscale scores with BDI. Results were in line with earlier studies in other cohorts13,14. Missing data rates were low (≤5%) for all subscales. Cronbach’s coefficients α, and were greater than 0.70 for all except subscales. Ceiling effect was present for SF-36 subscales of Social Functioning, Role Limitations Due To Physical Problems, Role Limitations Due To Emotional Problems, and Pain. Floor effect was present for SF-36 subscales Role Limitations Due To Physical Problems and Role Limitations Due To Emotional Problems. As in previous studies, SF-36 Physical component summary scores correlated stronger with SF-36 subscales pertaining to physical health relative to SF-36 subscales pertaining to emotional health (Table 6)13. The SF-36 Mental component summary score correlated stronger with SF-36 subscales pertaining to emotional health than with SF-36 subscales pertaining to physical health. According to previous studies, the BDI II total scores correlated strongest with the Mental component summary score and the SF-36 subscales of mental health vitality and social functioning13,14.

Table 6.

Convergent validity of the Short Form Health Survey (SF-36) questionnaire.

SF-36 subscales BDI SF-36 PCS SF-36 MCS
Physical Functioning −0.331* 0.838* 0.106*
Social Functioning −0.517* 0.348* 0.642*
Role Limitations Due To Physical Problems −0.338* 0.678* 0.284*
Role Limitations Due To Emotional Problems −0.439* 0.163* 0.771*
Mental Health −0.627* 0.224* 0.812*
Vitality −0.532* 0.477* 0.585*
Pain −0.323* 0.721* 0.230*
General Health −0.370* 0.545* 0.289*
Physical component summary −0.270* −0.026
Mental component summary −0.591* −0.026

Note: Spearman rank-order correlation. Beck Depression Inventory II (BDI), Short Form Health Survey (SF-36), Physical component scale (PCS), Mental component scale (MCS). *p-values <0.01.

The advantage of our study is the inclusion of people with and without cognitive deficits. Given that cognitive deficits are highly prevalent in elderly adults, our approach enhances generalizability of results. Self-reports are valid even in patients with dementia; however, a general risk is observed in obtaining less valid results on self-reported outcome measures in people with dementia. We therefore analyzed the validity of the SF-36 again with regard to cognitive state and divided the cohort into patients with MoCa of ≥26 (n = 222, 24.4%) and patients with MoCa of <26 (n = 688, 75.6%). Here, no differences were found with regard to internal consistency and convergent validity (Tables 7,8). Therefore, we conclude that the self-report of 910 participants are valid and sound.

Table 7.

Short Form Health Survey (SF-36) scores and internal consistency in people with and without cognitive deficits.

SF-36 subscales MoCA <26 MoCA ≥26
M SD Floor % Ceiling % Missing % M SD Floor % Ceiling % Missing %
Physical Functioning 47.42 30.65 7.9 3.1 0.6 49.59 30.98 5 3.7 1.4
Social Functioning 70.61 27.43 2.5 29.7 0.3 72.29 26.80 1.4 33.3 0.5
Role Limitations Due To Physical Problems 29.88 39.98 57.0 18.9 3.9 31.22 39.37 54.5 17.4 4.1
Role Limitations Due To Emotional Problems 59.72 45.97 33.5 53.2 3.8 68.86 42.28 23.0 60.6 4.1
Emotional Well-Being 64.48 19.15 0 1.6 1.2 67.18 19.23 0.5 1.8 1.4
Vitality 48.24 20.10 1.2 0.9 1.2 49.38 19.58 0.9 0 1.4
Pain 54.03 31.16 4.6 19.0 0.3 56.91 31.01 3.2 22.2 0.5
General Health 44.23 16.11 0.1 0 1.5 44.84 18.41 0.5 0 1.8

Note: Montreal Cognitive Assessment (MoCA), Short Form Health Survey (SF-36).

Table 8.

Convergent validity of the Short Form Health Survey (SF-36) questionnaire in people with and without cognitive deficits.

SF-36 subscales MoCA <26 MoCA ≥26
BDI SF-36 PCS SF-36 MCS BDI SF-36 PCS SF-36 MCS
Physical Functioning −0.344* 0.832* 0.133* −0.286* 0.852* 0.016
Social Functioning −0.506* 0.337* 0.659* −0.549* 0.385* 0.586*
Role Limitations Due To Physical Problems −0.334* 0.672* 0.323* −0.349* 0.695* 0.168*
Role Limitations Due To Emotional Problems −0.436* 0.170* 0.771* −0.449* 0.138* 0.769*
Mental Health −0.609* 0.241* 0.805* −0.685* 0.162* 0.825*
Vitality −0.497* 0.506* 0.553* −0.636* 0.384* 0.680*
Pain −0.313* 0.731* 0.234* −0.354* 0.694* 0.195*
General Health −0.349* 0.548* 0.256* −0.437* 0.540* 0.380*
Physical component summary −0.266* 1.000 −0.006 −0.279* 1.000 −0.090
Mental component summary −0.580* −0.006 1.000 −0.628* −0.090 1.000

Note: Spearman rank-order correlation. Montreal Cognitive Assessment (MoCA), Beck Depression Inventory II (BDI), Short Form Health Survey (SF-36), Physical component scale (PCS), Mental component scale (MCS). *p-values <0.01.

Measurement of adherence (SAMS)

It is important to mention that adherence was measured using a single-source approach with a self-report questionnaire, as the key focus of the present dataset lies on understanding patient-related barriers and difficulties concerning medication adherence that is not possible to understand with administrative data or objective adherence measures. Due to its subjectiveness and complexity, no gold standard for measuring adherence is agreed upon15, but research shows that self-reports are comparable to objective measures and can provide valid information on adherence that is clinically useful, especially when the items are derived from a strong theoretical model and are validated, as is the case with the SAMS1618. Both self-reports and electronic monitoring have been shown to over- and underestimate adherence18,19. Additionally, objective reports such as electronic pill counts are not always feasible, especially in daily clinical practise or older adults in an inpatient setting19,20. Additionally our dataset provides information on other measures such as quality of life, depression, cognition and relevant sociodemographic information, which are all strongly linked to adherence7.

In addition to providing the responses to each SAMS item, the current dataset also presents SAMS sum scores. Sum scores are left blank in case of missings in one of the SAMS items. However, it is important to point out that while omitting these sum scores does not affect the overall mean SAMS score, it leads to an even lower number of patients with higher SAMS scores. Therefore, we encourage each researcher to make an educated decision on whether or not they want to include sum scores despite missing values, depending on their respective research question and the data needed to approach it. The SAMS manual21 describes several possibilities for calculating adherence, suggesting that only a total score of 0 defines adherence, whereas higher values indicate different degrees of nonadherence. Thus, a deviation of 1 or 2 points due to missings is unlikely to change an individual’s overall classification into adherent vs. nonadherent according to the SAMS. Additionally, it is possible to calculate subscores of adherence elucidating the roles of forgetting, modification and missing knowledge of medication21,22. Likewise, missing items should not alter the classification of patients into these subgroups, and by providing information on all items we encourage researchers to utilize the dataset in a way that best suits their interests.

Usage Notes

This dataset provides a plethora of opportunities to explore multiple facets related to adherence, social, or psychological aspects of hospitalized older adults. It also provides insights into patient´s concerns during the transition from inpatient to outpatient care.

Following are a non-exhaustive list of scientific questions that can be addressed with the help of this dataset:

  • What are the patterns of depression and cognitive ability in hospitalized older adults with neurological disorders? What is their relationship with other health-related and psychosocial measures?

  • What determines patient-physician relationship using the HCCQ?

  • What is the relationship between adherence and health-related QoL? At which adherence thresholds can an effect of nonadherence on health-related QoL observed?

Acknowledgements

This research has received funding by a Federal Ministry of Education and Research (BMBF) grant to Tino Prell (01GY1804). The funder did not interfere in the research design, data collection and analysis, and preparation of the manuscript. We thank Dorothea Berges, Verena Buchholz, Maria Dumler, Marieke Jäger, and Lena Sand for their assistance with data acquisition and preparation.

Author contributions

T.P.: funding acquisition, conceptualization, methodology, project administration, supervision, validation, and writing (original draft). A.S.: data collection, formal analysis, and writing (review & editing). S.M.: formal analysis and writing (review & editing). H.M.Z.: data collection, formal analysis, and writing (review & editing). J.G.: data curation. U.T.: project coordination and data collection.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Code availability

The data directly describe the patients’ answers given in a numerical format and no analyses were performed, therefore no custom code was necessary to generate or process the data.

Competing interests

Authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Haynes, R. B. et al. Interventions to enhance medication adherence. Cochrane Database Syst. Rev. Cd000011, 10.1002/14651858.CD000011.pub2 (2005). [DOI] [PubMed]
  • 2.Sabaté, E. Adherence to long-term therapies: evidence for action. World Health Organization (2003). [PubMed]
  • 3.Noël PH, et al. The challenges of multimorbidity from the patient perspective. Journal of general internal medicine. 2007;22(Suppl 3):419–424. doi: 10.1007/s11606-007-0308-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kram, D. Geriatrie ist ein Muss - bald ist jeder Dritte über 65. Deutsche Apotheker Zeitung40, (2011).
  • 5.DiMatteo MR, Giordani PJ, Lepper HS, Croghan TW. Patient adherence and medical treatment outcomes: a meta-analysis. Med. Care. 2002;40:794–811. doi: 10.1097/00005650-200209000-00009. [DOI] [PubMed] [Google Scholar]
  • 6.Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. The New England journal of medicine. 2011;365:2002–2012. doi: 10.1056/NEJMsa1103053. [DOI] [PubMed] [Google Scholar]
  • 7.Yap AF, Thirumoorthy T, Kwan YH. Systematic review of the barriers affecting medication adherence in older adults. Geriatr. Gerontol. Int. 2016;16:1093–1101. doi: 10.1111/ggi.12616. [DOI] [PubMed] [Google Scholar]
  • 8.Brown M, Bussell J. Medication Adherence: WHO Cares? Mayo Clinic Proceedings. 2011;86:304–314. doi: 10.4065/mcp.2010.0575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Conn VS, Ruppar TM, Enriquez M, Cooper PS. Patient-Centered Outcomes of Medication Adherence Interventions: Systematic Review and Meta-Analysis. Value Health. 2016;19:277–285. doi: 10.1016/j.jval.2015.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Prell T. Adherence to medication in neurogeriatric patients: an observational cross-sectional study. BMC Public Health. 2019;19:1012. doi: 10.1186/s12889-019-7353-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Prell T, Schönenberg A, Mühlhammer HM, Teschner U. 2022. Data on Medication Adherence in Adults with Neurological Disorders: The NeuroGerAd Study. UK Data Service. [DOI] [PMC free article] [PubMed]
  • 12.Terwee CB, et al. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 2007;60:34–42. doi: 10.1016/j.jclinepi.2006.03.012. [DOI] [PubMed] [Google Scholar]
  • 13.Bunevicius A. Reliability and validity of the SF-36 Health Survey Questionnaire in patients with brain tumors: a cross-sectional study. Health and Quality of Life Outcomes. 2017;15:92. doi: 10.1186/s12955-017-0665-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Pekmezovic T, Popovic A, Tepavcevic DK, Gazibara T, Paunic M. Factors associated with health-related quality of life among Belgrade University students. Qual. Life Res. 2011;20:391–397. doi: 10.1007/s11136-010-9754-x. [DOI] [PubMed] [Google Scholar]
  • 15.Vermeire E, Hearnshaw H, Van Royen P, Denekens J. Patient adherence to treatment: three decades of research. A comprehensive review. Journal of clinical pharmacy and therapeutics. 2001;26:331–342. doi: 10.1046/j.1365-2710.2001.00363.x. [DOI] [PubMed] [Google Scholar]
  • 16.Stirratt MJ, et al. Self-report measures of medication adherence behavior: recommendations on optimal use. Translational behavioral medicine. 2015;5:470–482. doi: 10.1007/s13142-015-0315-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Elm JJ, et al. Self-reported adherence versus pill count in Parkinson’s disease: The NET-PD experience. Movement Disorders. 2007;22:822–827. doi: 10.1002/mds.21409. [DOI] [PubMed] [Google Scholar]
  • 18.Grymonpre RE, Didur CD, Montgomery PR, Sitar DS. Pill count, self-report, and pharmacy claims data to measure medication adherence in the elderly. Ann. Pharmacother. 1998;32:749–754. doi: 10.1345/aph.17423. [DOI] [PubMed] [Google Scholar]
  • 19.MacLaughlin EJ, et al. Assessing medication adherence in the elderly: which tools to use in clinical practice. Drugs & aging. 2005;22:231–255. doi: 10.2165/00002512-200522030-00005. [DOI] [PubMed] [Google Scholar]
  • 20.Garfield S, Clifford S, Eliasson L, Barber N, Willson A. Suitability of measures of self-reported medication adherence for routine clinical use: a systematic review. BMC Med. Res. Methodol. 2011;11:149. doi: 10.1186/1471-2288-11-149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Franke, G., Nentzl, J. & Jagla-Franke, M. SAMS - Stendal Adherence with Medication Score: deutsches Manual (Psychometrikon, 2020).
  • 22.Prell T, et al. Clusters of non-adherence to medication in neurological patients. Research in social & administrative pharmacy. 2019;15:1419–1424. doi: 10.1016/j.sapharm.2019.01.001. [DOI] [PubMed] [Google Scholar]
  • 23.Beck, A., Steer, R. & Brown, G. Beck depression inventory—second edition: manual (San Antonio: The Psychological Corporation 1996).
  • 24.Hautzinger, M., Keller, F. & Kühner, C. Beck-Depressions-Inventar: Revision. (Harcourt test services, 2006).
  • 25.Nasreddine ZS, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x. [DOI] [PubMed] [Google Scholar]
  • 26.Carson N, Leach L, Murphy KJ. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. International Journal of Geriatric Psychiatry. 2018;33:379–388. doi: 10.1002/gps.4756. [DOI] [PubMed] [Google Scholar]
  • 27.Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x. [DOI] [PubMed] [Google Scholar]
  • 28.John, O. P., Donahue, E. M. & Kentle, R. L. The Big Five Inventory–Versions 4a and 54. (University of California, Berkeley, Institute of Personality and Social Research, 1991).
  • 29.Rammstedt B. The 10-item Big Five Inventory: Norm values and investigation of sociodemographic effects based on a German population representative sample. European Journal of Psychological Assessment. 2007;23:193–201. doi: 10.1027/1015-5759.23.3.193. [DOI] [Google Scholar]
  • 30.Schmidt K, et al. Autonomy support in primary care—validation of the German version of the Health Care Climate Questionnaire. Journal of Clinical Epidemiology. 2012;65:206–211. doi: 10.1016/j.jclinepi.2011.06.003. [DOI] [PubMed] [Google Scholar]
  • 31.Gremigni P. Validation of the Health Care Communication Questionnaire (HCCQ) to measure patients evaluation of hospital personnel communication skills. Patient Education and Counseling. 2008;71:57–64. doi: 10.1016/j.pec.2007.12.008. [DOI] [PubMed] [Google Scholar]
  • 32.Ware JE, Jr., Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care. 1992;30:473–483. doi: 10.1097/00005650-199206000-00002. [DOI] [PubMed] [Google Scholar]
  • 33.Ware J, Jr., Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med. Care. 1996;34:220–233. doi: 10.1097/00005650-199603000-00003. [DOI] [PubMed] [Google Scholar]
  • 34.Wirtz MA, Morfeld M, Glaesmer H, Brähler E. Konfirmatorische Prüfung der Skalenstruktur des SF-12 Version 2.0 in einer deutschen bevölkerungs-repräsentativen Stichprobe. Diagnostica. 2018;64:84–96. doi: 10.1026/0012-1924/a000194. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Citations

  1. Prell T, Schönenberg A, Mühlhammer HM, Teschner U. 2022. Data on Medication Adherence in Adults with Neurological Disorders: The NeuroGerAd Study. UK Data Service. [DOI] [PMC free article] [PubMed]

Data Availability Statement

The data directly describe the patients’ answers given in a numerical format and no analyses were performed, therefore no custom code was necessary to generate or process the data.


Articles from Scientific Data are provided here courtesy of Nature Publishing Group

RESOURCES