Skip to main content
Iranian Endodontic Journal logoLink to Iranian Endodontic Journal
. 2020 Summer;15(3):124–139. doi: 10.22037/iej.v15i3.28083

Structural Analysis of NiTi Endodontic Instruments: A Systematic Review

Igor Bastos Barbosa a, Fabiano Guerra Ferreira a, Pantaleo Scelza a, Caroline Adeodato a, Isleine Portal Caldas a, Fabiano Palmeira Gonçalves a, Daniele Masterson b, Miriam Zaccaro Scelza c,*
PMCID: PMC9709855  PMID: 36703804

Abstract

Introduction:

Irregularities and defects on NiTi endodontic instruments originating from the manufacturing process can lead to the structural collapse and fracture of these instruments during treatment. To assess the cause of instrument wear and fracture, as well as increasing fracture incidence, destructive and non-destructive methods have been used for the analysis of surfaces and internal structures of new and used NiTi instruments. The aim of this systematic review was to undertake a detailed analysis of the methods used to evaluate the surface and internal microstructure of endodontic instruments.

Methods and Materials:

The scientific literature was comprehensively and systematically searched in the MEDLINE (PubMed), Web of Science, Cochrane Library, Scopus, and LILACS/BBO databases for studies published up to June 9, 2019. The eligibility criteria was based on the PICO (Patient, Intervention, Comparison, and Outcome) strategy with the question “What is the best method for structural analysis of endodontic files?” Two aspects were considered for inclusion in this study: (i) endodontic instruments and (ii) methods for structural analysis of NiTi instruments. . The systematic review was performed according to the PRISMA statement.

Results:

Based on the inclusion criteria, 94 articles were selected. The results showed that although specific methods have been used for qualitative and/or quantitative structural analysis of NiTi instruments, no study addressed both the surface and internal structure of the instruments at the same time. According to this review, the need to compare the methodologies used in the selected articles has been identified; however, each type of method used has its own limitation on the analysis of both the surface and the internal structure of the instruments.

Conclusions:

The comparison between the different types of methodologies used in the studies revealed the reliability and the limitations of the methods employed for structural analysis of endodontic instruments; thus assisting us in determining their validity.

Key Words: Atomic Force Microscopy, MicroCT, NiTi Instrument, Optical Profilometery, Surface Properties

Introduction

With the purpose of effectively preparing the root canal while respecting its anatomy, the nickel-titanium (NiTi) alloy, instrument design, and manufacturing processes have been under study and constant development. The mechanical properties of NiTi, such as superelasticity and shape memory, provide flexibility and fatigue resistance to instruments [1, 2]. Root canal preparation with NiTi rotary or reciprocating instruments better maintain the appropriate canal centrality and provide more predictable outcomes than stainless steel files [3].

The fracture of instruments inside the root canal from torsional overload or flexural fatigue in the apical third of the canal can threaten the success of the treatment and be a major concern [4].

Approaches to increasing the effectiveness and safety of NiTi rotary files include enhancement in the manufacturing process and the use of new alloys that offer superior mechanical properties [5]. Recently, a series of thermo mechanical processes have been used to improve the microstructure of NiTi used in rotary files. For this purpose, alloys modified by phase transformation from an increase in their austenite transformation temperature have been developed, resulting in controlled memory (CM) instruments, which are extremely flexible while keeping the memory typical of other NiTi instruments [5, 6].

Besides the maintenance of the canal’s anatomy and having a small risk of fracture, endodontic files should be effective for dentin removal. Thus, parameters such as cross-sectional mass and design, helical and rake angle, number and depth of flutes, and tip design should also be considered. In addition, irregularities on the surface of instruments may result in fracture during clinical use [3] due to cracks that initiate from superficial defects [7]. Importantly, fractures can occur without any visible defect or previous deformation [8].

The concomitant evaluation of the surface and core of instruments (structural analysis) using existing methodologies [8-15] requires the sample to be destroyed [8, 10, 11]. Thus, a single instrument cannot be used and consequently, the risk of bias exists.

The aim of this study was to identify the methods employed for the structural analysis of endodontic instruments by a systematic review of the literature.

Material and Methods

This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, the recommendation of the Cochrane Collaboration and included studies in accordance with the “PICO” format [16], in which: Population (P) was “Endodontic instruments”, Intervention (I) was “Analysis methods [scanning electron microscopy (SEM), atomic force microscopy (AFM), optical imaging]”, Comparison (C) was “ability to analyze” and Outcome (O) was “Defects (surface properties, equipment failure)”.

Information sources and search strategy

A search was performed in the Cochrane Library, Medline/PubMed, VHL (Virtual Health Library-Lilacs and Brazilian Dentistry Library (BBO), and Web of Science databases up to June 9th, 2019 (Table 1). Adaptations were made to adopt the same terms on all search engines in combination with database-specific filters, when available. The grey literature was accessed via “the System for Information in the Grey Literature in Europe” (Open-Grey), Thesis and Dissertations, and Google databases. The reference lists of important primary studies were hand-searched for additional relevant publications. No restriction was placed on the publication date or languages. Specific search strategies were developed for each database with the guidance of a librarian (DM). A complementary search was done in the reference lists of included studies.

Table 1.

Eletronic data base and search strategy

PUBMED
((((Root Canal preparation [mesh] OR Root Canal treatment [Mesh] OR root canal* [tiab] OR canal* [tiab] or Endodontics [Mesh] or Endodontic* [Tiab] or Root Canal Therapy [Mesh Term]))) AND ((Microscopy Electron, Scanning[meSH terms] OR Scanning Microscopies Electron [tiab] OR SEM [tiab] OR Optical Imaging [meSH terms] OR Imaging Optical[tiab] OR Profilometry surface [tiab] OR Microscopy, Atomic Force[meSH terms] OR Microscopies Force[tiab] OR Force Microscopies Scanning [tiab] OR AFM[tiab] OR MICROSCOPIC IMAGES [tiab] OR Rotary Instrument* [tiab] OR Surface properties [meSH terms] OR Surface Property [tiab] OR Properties Surface [tiab] OR Surface Changes [tiab] OR Equipment Failure[meSH terms] OR Equipment Defect [tiab]))) AND ((Dental Instruments [meSH terms] OR Dental Instrument*[tiab] OR Dental Alloys [Mesh] OR Dental alloy[tiab] OR Alloy Dental [tiab] OR Nickel [meSH terms] or Nickel [Tiab] OR Nickel-Titanium[tiab] OR NiTi [tiab] OR Titanium [meSH term] or Titanium [Tiab] OR stainless steel [meSH term] OR stainless steel [Tiab]))
SCOPUS
(“Dental Instruments” OR “Dental alloy” OR nickel OR “Nickel-Titanium” OR “stainless steel”) AND (“Scanning Microscopies Electron” OR sem OR “Imaging Optical” OR “Profilometry surface” OR “Microscopies Force” OR “Force Microscopies Scanning” OR afm OR “Microscopic Image” OR “Rotary Instuments” OR “ Surface Property” OR “Surface Change” OR “Equipament Failure” OR “Equipament Defect”) AND (“root canal” OR canal* OR endodontic*)
WEB of SCIENCE
(("root canal" OR canal* OR endodontic*)) AND (("Scanning Microscopies Electron" OR sem OR "Imaging Optical" OR "Profilometry surface" OR "Microscopies Force" OR "Force Microscopies Scanning" OR afm OR "Microscopic Image" OR "Rotary Instruments" OR "Surface Property" OR "Surface Change" OR "Equipment Failure" OR "Equipment Defect")) AND (("Dental Instruments" OR "Dental alloy" OR nickel OR "Nickel-Titanium" OR niti OR titanium OR "stainless steel"))
LILACS and BBO
tw:(tw:(mh:"dental instruments" OR "dental instruments" OR "instrumentos dentários" OR "endodontics file" OR "limas endodônticas" OR mh:"Dental Alloys" OR "Dental alloy" OR "ligas dentárias" OR mh: "Nickel" OR "Nickel" OR "Nickel-Titanium" OR "NiTi" OR mh: "titanium" OR "titanium" OR mh: "stainless steel" OR" stainless steel") AND tw: (mh:"Microscopy Electron, Scanning" OR "Scanning Microscopies Electron" OR "microscópio eletrônico" OR "SEM" OR mh:"Optical Imaging" OR "Imaging Optical" OR "Profilometry surface" OR "Perfilometria optica" OR mh: "Microscopy, Atomic Force" OR "Microscopies Force " OR "Force Microscopies Scanning " OR "AFM" OR "MICROSCOPIC IMAGES" OR "microscópio de força atômica") OR (mh: "Surface properties" OR "mudanças superficiais" OR "Properties Surface" OR "Surface Changes" OR mh: "Equipment failure" OR "Equipment defect") AND tw:(mh: "Root Canal preparation "OR "Root Canal preparation" OR "Instrumentação do canal" OR mh: "Root Canal treatment" OR "Root Canal treatment" OR mh: "Root Canal Therapy" OR "Tratamento Endodôntico" OR "Root canal" OR "canal" OR mh: "Endodontics" OR "Endodontic" OR "Endodontia")) AND (instance:"regional") AND (db: ("LILACS" OR "BBO" OR "IBECS") AND type:("article"))
COCHRANE LIBRARY
#1 MeSH descriptor: [Dental Instruments] explode all trees #2"Dental Instruments" #3 (#1 or #2) #4 "Endodontic files" or "Endodontics file" or "Endodontic file" #5 MeSH descriptor: [Dental Alloys] explode all trees #6 "Dental alloy" or "Alloy Dental" #7 (#5 or #6) #8 MeSH descriptor: [Nickel] explode all trees #9 "nickel" #10 (#8 or #9) #11 MeSH descriptor: [Titanium] explode all trees #12 Titanium #13 (#11 or #12) #14 MeSH descriptor: [Stainless Steel] explode all trees #15 "stainless steel" #16 (#14 or #15) #17 (#3 or #4 or #7 or #10 or #13 or #16) #18 MeSH descriptor: [Microscopy, Electron, Scanning] explode all trees #19 "Scanning Microscopies Electron" or SEM #20 (#18 or #19) #21 MeSH descriptor: [Optical Imaging] explode all trees #22 "Imaging Optical" or "Profilometry surface" #23 (#21 or #22) #24 MeSH descriptor: [Microscopy, Atomic Force] explode all trees #25 "Microscopies Force" or "Force Microscopies Scanning" or AFM or "Microscopic images” #26 (#24 or #25) #27 MeSH descriptor: [Surface Properties] explode all trees #28 "Surface Property" or "Properties Surface" or "surface changes" #29 (#27 or #28) #30 MeSH descriptor: [Equipment Failure] explode all trees #31 "Equipment Defect" #32 (#30 or #31) #33 (#20 or #23 or #26 or #29 or #32) #34 MeSH descriptor: [Root Canal Preparation] explode all trees #35 "root canal" or "canal" #36 MeSH descriptor: [Endodontics] explode all trees #37 "Endodontic" or "Endodontics" #38 (#36 or #37) #39 MeSH descriptor: [Root Canal Therapy] explode all trees #40 (#34 or #35 or #38 or #39) #41 (#17 and #33 and #40)

Study selection

The studies were selected according to the eligibility criteria based on the PICO strategy. Two aspects were considered for study inclusion: (i) endodontic instruments and (ii) analysis methods. The exclusion criteria were clinical studies, case reports, review articles, retrospective articles, editorials, opinions, surveys, guidelines, conferences, commentary articles, and in vivo animal studies. Articles that did not evaluate surface characteristics were also excluded.

All titles and abstracts initially retrieved in the search were analyzed and selected by the eligibility criteria. The identified records were imported into EndNote Web Software and the duplicate articles were excluded. The titles and abstracts were read independently by two reviewers (M.Z.S and I.B.B.), and the articles that were compatible with the inclusion criteria were selected for full-text reading to confirm their eligibility. Any disagreement on the eligibility of studies was solved through discussion and consensus, and in case of disagreement, a third reviewer (P.S.) decided whether the article should be included.

Data extraction and quality assessment

Data were extracted, tabulated, and reviewed with Microsoft Office Excel 2013 by two reviewers, independently. The data extracted included the year of publication and author(s), brand and lot number of endodontic instruments, analysis methods, area assessed (internal and/or external), time assessed, (before and/or after use), fracture analysis (yes and/or no), and study

outcomes. The quality assessment was performed using a modified CONSORT checklist of items for reporting in vitro studies of dental materials [180]. In case of disagreement, a third reviewer (P.S.) decided whether the article should be included. The items presents in this checklist enabling assessment of the standard of reporting in the different sections of a paper.

Results

Search results

A wide search was carried out and the selection of studies was judicious in order to include only those that demonstrated assessments of the integrity of the instruments before, after or before and after use.[13, 15, 109, 113, 132]. The electronic screening yielded 3771 entries and 269 studies were evaluated for eligibility, after which 174 non-eligible articles were excluded for the reasons indicated in the flow diagram [16] (Figure 1). Based on the inclusion criteria, 95 articles were selected.

Figure 1.

Figure 1.

Flow diagram of the screening and selection process, according to the PRISMA Statement with studies included in qualitative assessment is shown

Study characteristics

Table 2 shows the 95 selected studies and their characteristics such as the batch number (12 out of 95 studies) and brand of instruments, methodology, and evaluated surface. The studies are listed by alphabetical order of authors’ names.

Table 2.

Main characteristics of the selected articles

Reference File brand name and manufacturer Methodology used Evaluated surfaces Time of evaluation Fracture analysis Lot ID Structural analysis
Al Jabbari et al . [ 17 ] Flex-Master Ni-Ti files (VDW; Munich, Germany) Micro-CT Internal
External
Before use No Yes Yes
Al Jabbari et al. [18] EasyShape system (Komet Dental, Gebr. Brasseler GmbH & Co. KG, Lemgo, Germany) SEM Internal
External
Before use Yes Yes Yes
Alapati et al . (2003) [ 19 ] Profile (Dentsply- Maillefer , Ballaigues Switzerland); Lightspeed (Kerr Corporation Brea, CA,USA)  SEM External Before and ater use No No Yes
Alapati et al. [ 20 ] ProFile GT instruments (Dentsply-Maillefer, Ballaigues, Switzerland) SEM Internal Before and after use Yes No Yes
Alexandrou et al . [ 21 ] Profile (Densply/Maillefer, Ballaigues, Switzerland); Flexmaster (Endodontic Synergy, VDW, Munich, Germany SEM External Before and after use No No Yes
Alexandrou et al. [ 22 ] Mani NRT 30/0.4 (MANI Inc, Toshigi-Ken, Japan) SEM External
Internal
Before and after use Yes No Yes
Al-Sudani D [ 23 ] Hyflex CM (Coltene-Whaledent, Allstetten, Switzerland) Micro-CT External Before and after use No No Yes
Ametrano et al . [ 24 ] Protaper NiTi Rotary (Dentsply Maillefer, Ballaigues, Switzerland) AFM External Before and after use No No Yes
Aminsobhani M. [ 25 ] Race (FKG Dentaire, La-Chaux-de Fonds, Switzerland); Twisted File (SybronEndo, Orange, CA, USA); Mtwo (VDW, Munich, Germany); Protaper Next x2 (Dentsply Maillefer, Ballaigues,Switzerland) SEM Internal After Yes No Yes
Barbosa et al. [ 26 ] K3 (SDS Kerr, Glendora, CA) SEM Internal After use Yes No Yes
Barbosa et al . [ 27 ] K3 (SDS Kerr, Glendora, CA) SEM External Before Use No No Yes
Barbosa et al . [ 28 ] WaveOne (Dentsply Maillefer, Ballaigues,Switzerland), Reciproc (VDW, Munich, Germany) 3D NonContact Opt. Profilometry External Before and after use No No Yes
Barbosa et al . [ 15 ] WaveOne (Dentsply Maillefer, Ballaigues,Switzerland), Reciproc (VDW, Munich, Germany) MicroCT External
Internal
Before and after use Yes No Yes
Bennett et al . [ 29 ] ProTaper Universal (Dentsply Maillefer, Ballaigues,Switzerland) and ProTaper Next (Dentsply Maillefer, Ballaigues,Switzerland) SEM External
Internal
Before and after use Yes No Yes
Biz et al. [ 30 ] ProFile .04 (Dentsply Maillefer, Ballaigues,Switzerland); Pow R .02 (Moyco Union Broach, York, USA ); Quantec Series 2000 (Analytic Endodontic, Glendora, USA) SEM Internal Before use Yes No Yes
Boessler et al . [ 31 ] Protaper (Dentsply Maillefer, Ballaigues, Switzerland) SEM External Before use No No Yes
Bonaccorso et al. [ 32 ] RaCe (FKG Dentaire, La-Chaux-de Fonds, Switzerland) SEM External Before and after use No No Yes
Bonaccorso et al . [ 33 ] RaCe (FKG Dentaire, La-Chaux-de Fonds, Switzerland) SEM External Before and after use No No Yes
Bui et al . [ 34 ] Profile (Dentsply Maillefer, Ballaigues, Switzerland) SEM External Before and after use Yes No Yes
Buono VT et al . [ 35 ] Pro Taper Universal (Dentsply Maillefer, Ballaigues, Switzerland), SEM External
Internal
After use Yes No Yes
Chakka, MK et al . [ 36 ] ProTaper for hand use (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Rotary files (Dentsply Maillefer, Ballaigues, Switzerland); Endowave rotary files (J. Morita Europe GmbH Dietzenbach Germany Stereomicroscope External After use No No Yes
Chang et al . [ 37 ] K3 NiTi Rotary ((SybronEndo, Orange, CA)) SEM External After use No No Yes
Cheung et al . [ 38 ] HERO Shaper size 25; (MicroMega, Besanc¸ France) SEM Internal After use Yes No Yes
Cheung et al. [ 39 ] ProFile Rotary (Dentsply Maillefer, Ballaigues, Switzerland) SEM Internal After use Yes No Yes
Cheung et al. [ 40 ] ProTaper system (Dentsply Maillefer Ballaigues, Switzerland)) SEM External
Internal
After use Yes No Yes
Cheung et al . [ 41 ] ProTaper S1(Dentsply Maillefer, Ballaigues, Switzerland) SEM Internal After use Yes No Yes
Chi et al . [ 42 ] ProTaper Universal F2 files (Dentsply Maillefer, Ballaigues, Switzerland) SEM External
Internal
After use Yes No Yes
Condorelli GG et al . [ 43 ] RaCe NiTi instruments (FKG, La Chaux de Fonds Switzerland) SEM External
Internal
After use Yes No Yes
Ferreira et al . (2017) [ 44 ] WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) Reciproc (VDW, Munich, Germany) 3D NonContact Opt. Profilometry External Before and after use No No Yes
Ferreira et al . [ 45 ] WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) Reciproc (VDW, Munich, Germany) 3D Optical Profilometry External Before and after use No No Yes
Gambarini et al . [ 46 ] TFA SM (Kerr Endodontics, Glendora, Orange, CA, USA) Stereomicroscope
SEM
External
Internal
After use Yes No Yes
Grande et al . [ 47 ] Ni–Ti endodontic instrument systems were tested: ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) and Mtwo (Sweden & Martina, Due Carrare, Italy). SEM
Micro-CT
External
Internal
After use Yes No Yes
Gu Y et al. [ 48 ] Twisted Files (R-phase) (SybronEndo, Orange, CA, USA), WaveOne (M-wire) (Dentsply Maillefer, Ballaigues, Switzerland), Hyflex CM, or V Taper 2H (CM-wire) with the same apical size and taper (25/0.08) Micro-CT
SEM
External
Internal
After use No No Yes
Hanan et al. [ 49 ] A non-random convenience sample of reciprocating files of WaveOne (Dentsply/Maillefer, Ballaigues, Switzerland) and Reciproc (VDW GmbH, Munich, Germany) SEM External Before and after use No No Yes
Herold et al [ 50 ] EndoSequence Profile (Brassler USA, Savannah, GA) SEM External Before and after use No No Yes
Huang et al . [ 51 ] ProFile (Dentsply/Maillefer, Ballaigues, Switzerland) Twisted file ((SybronEndo, Orange, CA, USA) SEM Internal After use Yes No Yes
Iacono et al . [ 52 ] HyFlex EDM (Coltene-Whaledent, Allstetten, Switzerland) SEM External Before and after use No No Yes
Inan U et al. [ 53 ] ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) AFM External Before and after use No No Yes
Inan U, Aydin C. [ 54 ] ProTaper D3(Dentsply Maillefer, Ballaigues, Switzerland), R-Endo R3 (Micromega, Beçancon, France), and Mtwo R (VDW, Munich, Germany) SEM Internal After use Yes No Yes
Inan U, Gonulol N [ 55 ] Mtwo (VDW, Munich, Germany) SEM Internal After use Yes No Yes
Kaul R. et al. [ 56 ] ProFile, (Dentsply Maillefer, Ballaigues, Switzerland) RaCe (FKG, La Chaux de Fonds Switzerland) and Twisted File (SybronEndo, Orange, CA, USA) SEM External Before and after use No No Yes
Kim et al. [ 57 ] TF 25/0.06 (SybronEndo, Orange, CA, USA), RaCe 25/0.06 (FKG, La Chaux de Fonds Switzerland), ProTaper F1 (Dentsply Maillefer, Ballaigues, Switzerland), and Helix #25/0.06 (DiaDent, Chongju, Korea). SEM External
Internal
Before and after use Yes No Yes
Kim et al. [ 58 ] #10 K hand files; the PathFile System (Dentsply Maillefer, Ballaigues, Switzerland) 3D Optical Profilometry External After use No No Yes
Kottoor J et al. [59] ProTaper, (Dentsply Maillefer, Ballaigues, Switzerland) Twisted File (SybronEndo, Orange, CA, USA) SEM External
Internal
Before and after use Yes No Yes
Kum et al. [ 60 ] K3 (SybronEndo, Orange, CA) SEM External
Internal
Before and after use Yes No Yes
Liu,JF et al. [ 61 ] Profile (Dentsply Maillefer, Ballaigues, Switzerland) SEM External Before use No No Yes
Lopes,H et al. [ 62 ] Bio Race (FKG, La Chaux de Fonds Switzerland) SEM External
Internal
Before and after use Yes No Yes
Lopes,HP et al. [ 63 ] Bio Race (FKG, La Chaux de Fonds Switzerland) SEM 3D Optical Profilometry External Before and after use No No Yes
Luzi et al. [ 64 ] ProTaper rotary NiT (Dentsply Maillefer, Ballaigues, Switzerland) SEM External Before and after use No No Yes
Magalhaes et al. [ 65 ] Reciproc (RC/R25) and WaveOne (WO/Primary) (Dentsply Maillefer, Ballaigues, Switzerland) both types size 25, 0.08 taper. SEM External Before and after use No No Yes
Marending M et al. [66] Lightspeed instruments (Kerr Corporation Brea, CA, USA) SEM External Before and after use No No Yes
Martins RC et al. [ 67 ] ProFile NiTi Rotary 20/04, 25/04, 20/06 (Dentsply Maillefer, Ballaigues, Switzerland) SEM External Before and after use No No Yes
Melo et al. [ 68 ] K3 rotary (SybronEndo, Orange, CA) SEM Internal After use Yes No Yes
Nair et al. [ 69 ] M Two (VDW) and ProTaper F1 file ((Dentsply Maillefer, Ballaigues, Switzerland)). AFM External Before and after sterelization No No Yes
Novoa et al. [ 70 ] ProTaper S1(Dentsply Maillefer, Ballaigues, Switzerland) SEM External After immersion in NaOcl No No Yes
O’hoy et al. [ 71 ] Profile 20/04 (Dentsply Maillefer, Ballaigues, Switzerland) GT (Dentsply Tulsa Dental, Tulsa, OK.), Quantec (Analytic Endodontic, Glendora, USA), Lightseep (Kerr Corporation Brea, CA, USA) SEM External After the cleaning cycle Yes No Yes
Patel, D. et al. [72] RaCe (FKG, La Chaux de Fonds Switzerland), HyFlex rotary instruments, Mechanical GP (Coltene-Whaledent, Allstetten, Switzerland) SEM External Before and after use No No Yes
Peng, B. et al. [ 73 ] ProTaper files (Dentsply Maillefer, Ballaigues, Switzerland) SEM External
Internal
Before and after use Yes No Yes
Pereira ESJ et al. [74] ProTaper Universal F2 (PTU - SE) (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper Next X2 (PTN -MW) (Dentsply Maillefer, Ballaigues, Switzerland) Typhoon (TYP) (Clinician’s Choice Dental Products, New Milford, CT, USA), Hyflex (HF) (Coltene-Whaledent, Allstetten, Switzerland) and Vortex Blue (VB) SEM External Before and after use No No Yes
Pirani C. et al. [ 75 ] HyFlex EDM (Coltene-Whaledent, Allstetten, Switzerland) SEM External Before and after use No No Yes
Pirani C. et al. [76] WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and Reciproc R25 (VDW, Munich, Germany). SEM
AFM
External
Internal
Before and after use Yes No Yes
Pirani, C. et al. [77] WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Tulsa Dental, Tulsa, OK.) SEM External
Internal
Before and after use Yes No Yes
Rapisarda E. et al. [ 78 ] ProFile Files (Dentsply Maillefer, Ballaigues, Switzerland) SEM External
Internal
Before and after use Yes No Yes
Rapisarda E. et al. [79] ProFile .04 taper #25(Dentsply Maillefer, Ballaigues, Switzerland) instruments were subjected to ionic implantation with were subjected to ionic implantation with bands SEM External Before and after use No No Yes
Saghiri, M. A. et al. [80] ProTaper1 F1 NiTi instruments (Maillefer-Dentsply, Baillagues, Switzerland) SEM External
Internal
After use Yes No Yes
Saǧlam, B. C. et al. [ 81 ] ProTaper rotary NiTi files (Dentsply Maillefer, Ballaigues, Switzerland) SEM
AFM
External Before and after use No No Yes
Sağlam, B. C., & Görgül, G. [ 82 ] ProTaper Retreatment files (Dentsply Maillefer, Ballaigues, Switzerland), R-endo files (MicroMega, Beçancon¸ France), and Mtwo retreatment files (VDW, Munich, Germany) SEM
AFM
External Before and after use No No Yes
Sattapan B et al. [83] Quantec Series 2000 (Analytic Endodontic, Glendora, USA) SEM External Before and after use Yes No Yes
Shen Y. et al. [84] ProFile Vortex (Dentsply Maillefer, Ballaigues, Switzerland) and Vortex Blue instruments (Dentsply Maillefer, Ballaigues, Switzerland) SEM External
Internal
After use Yes No Yes
Shen, SM et al. [85] G-PACKS (SybronEndo, West Collins, Orange, CA, USA) SEM External Before and after use Yes No Yes
Shen, Y. et al. [86] ProFile and ProTaper (both of Dentsply Tulsa Dental) SEM External Before and after use Yes No Yes
Shen, Y. et al. [87] ProTaper (Dentsply Maillefer, Ballaigues, Switzerland), ProTaper for Hand Use (Dentsply Maillefer, Ballaigues, Switzerland), and K3 (SybronEndo, Orange, CA) SEM Internal After use Yes No Yes
Shen, Y. et al. [88] ProFile (Dentsply Tulsa Dental, Johnson City, TN) SEM Internal After use Yes No Yes
Shen, Y. et al. [89] (ProFile series 29 (Dentsply Tulsa Dental Products, Tulsa, OK), ProFile (Dentsply Tulsa Dental Products), and ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) SEM Internal After use Yes No Yes
Shen, Y. et al. [90] RaCe (FKG, La Chaux de Fonds Switzerland) SEM External Before and after use Yes No Yes
Shen, Y. et al. [91] EndoSequence (ES), ProFile (PF) (Dentsply Maillefer, Ballaigues, Switzerland), ProFile Vortex (Vortex) (Dentsply Maillefer, Ballaigues, Switzerland), Twisted Files (TF) (SybronEndo, Orange CA, USA), Typhoon (TYP) (Clinician’s Choice Dental Products, New Milford, CT, USA) and TyphoonCM (TYP CM) (Clinician’s Choice Dental Products, New Milford, CT, USA) SEM External Before use No Yes Yes
Shen, Y. et al. [92] ProFile Vortex instruments (Dentsply Maillefer, Ballaigues, Switzerland) SEM External
Interna
After use Yes No Yes
Spanaki-Voreadi AP et al. [93] ProTaper instruments (Dentsply Maillefer, Ballaigues, Switzerland) SEM External
Interna
Before and after use Yes No Yes
Stefanescu, T. et al. [94] Bio-RaCe (FKG, Le Chaux-of-Fonds, Switzerland) SEM External After use Yes No Yes
Stefanescu, T. et al. [ 95 ] A BioRace® (FKG, Le Chaux-of-Fonds, Switzerland) SEM External After use Yes No Yes
Subha, N., & Sikri, V. K. [ 96 ] ProFile, ProTaper Rotary, ProTaper Hand (Dentsply Maillefer, Ballaigues, Switzerland) and K3 Endo (SybronEndo, Orange, CA) SEM External After use No No Yes
Svec, T. A., & Powers, J. M. [ 97 ] ProFile® (Dentsply, International, Inc., Tulsa, OK) 0.04 taper rotary files, 25 mm long in ISO size 20 (lot 082799840), SEM External Before and after use No Yes Yes
Topuz, O et al. [98] RaCe (FKG, La Chaux de Fonds Switzerland) AFM External Before and after immersion in NaOcl No No Yes
Tripi, TR et al. [8] GT Rotary instruments (Dentsply Tulsa Dental, Tulsa, OK.) before and after SEM External Before and after use No No Yes
Troian, C. H. et al. [ 99 ] RaCe (FKG, La Chaux de Fonds Switzerland) and K3 NiTi rotary systems K3 (SybronEndo, Orange, CA) SEM External Before and after use Yes No Yes
Uslu, G., Özyürek, T., & Yılmaz, K. [ 100 ] HyFlex CM and HyFlex EDM (Coltene-Whaledent, Allstetten, Switzerland) 3D Optical Profilometry. External Before and after use No Yes Yes
Valois CR et al. [101] K-file Dentsply (K-Dentsply): Dentsply Maillefer Instruments SA, Ballaigues, Switzerland. K-file Moyco (K-Moyco): Moyco, Union Broach, York, USA. K-file Nitiflex (Nitiflex): Dentsply Maillefer Instruments SA, Ballaigues, Switzerland. Greater Taper (GT-hand) (Dentsply Tulsa Dental, Tulsa, OK). Quantec (Analytic Endodontic, Glendora, USA) AFM external Before use No Yes Yes
Valois CR , Silva LP , Azevedo RB [ 102 ] Greater Taper (Dentsply Tulsa Dental, Tulsa, OK.) ProFile (Dentsply Maillefer, Ballaigues, Switzerland), AFM External Before and after use No Yes Yes
Vieira EP et al. [103] Pro Taper Universal (Dentsply Maillefer, Ballaigues, Switzerland), SEM External Before and after use No No Yes
Vieira EP et al. [104] Pro Taper Universal (Dentsply Maillefer, Ballaigues, Switzerland), SEM External After No No Yes
Wei X et al. [ 105 ] Pro Taper Universal (Dentsply Maillefer, Ballaigues, Switzerland), SEM
Stereomicroscope
Internal After Yes No Yes
Yamazaki-Arasaki A et al. [106] Protaper Universal (Dentsply Maillefer, Ballaigues, Switzerland)-K3 (SybronEndo, Orange, CA)-Twisted Files (SybronEndo, Orange, CA, USA)-Biorace (FKG, La Chaux de Fonds Switzerland) AFM External Before and after use No No Yes
Yamazaki-Arasaki AK et al. [107] Protaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) K3 (SybronEndo, Orange, CA) Twisted Files (SybronEndo, Orange, CA, USA) Biorace (FKG, La Chaux de Fonds Switzerland) SEM External Before and after use No No Yes
Ye J Gao Y . [ 108 ] No, only m-wire SEM External Before and after use No No Yes

The selected studies have in common the presence of structural analysis of the instruments with previously determined methodologies, published in qualified journals that corroborate the quality of the studies within their respective areas. Among the eligible articles, 55 evaluated the external structure of instruments, and the methodologies employed did not destroy samples. On the other hand, 14 articles evaluated only the internal structure of instruments and 26 evaluated external and internal surfaces. Of the 40 papers that evaluated the internal surface, 4 studies [11, 15, 133, 134] used a micro-CT, which does not cause sample loss.

Quality Assessment

In Table 3, the eligible articles were submitted to an assessment of quality using a modified CONSORT checklist of items for reporting in vitro studies of dental materials [180]. It was observed that of the 95 selected articles, 7 did not have a structured summary of trial design, 6 studies did not present an introduction with specific objectives and hypotheses, 76 studies did not clarify how sample size was determined, only 19 studies explained or the method used to generate a random allocation sequence, 41 did not clearly present statistical methods used to compare groups for primary and secondary outcomes, 33 articles did not present the results in detail and 17 present a structured discussion, with trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses.

Table 3.

Quality assessment of the selected articles according to the modified CONSORT checklist of items for reporting in vitro studies of dental materials

Reference Abstract Introduction
Background
Introduction
Objectives
Methods
Intervention
Methods
Outcomes
Methods
Sample Size
Methods
Randomization
Methods
Allocation
Methods
Implementation
Methods
Blinding
Methods
Statistical methods
Results Discussion Other Information
Funding
Other Information
Protocol
Al Jabbari et al. [ 11 ] Yes Yes Yes Yes Yes No No No No No Yes Yes Yes Yes No
Al Jabbari et al. [109] No Yes Yes Yes Yes No No No No No No No Yes Yes No
Alapati et al. [ 7 ] No Yes Yes Yes Yes No No No No No No No No No No
Alapati et al. [ 3 ] No Yes Yes Yes Yes No No No No No Yes No Yes No No
Alexandrou et al. [ 110 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Alexandrou et al. [ 111 ] No Yes Yes Yes Yes No No No No No Yes Yes No No No
Al-Sudani D [ 112 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Ametrano et al. [ 113 ] No Yes Yes Yes Yes No No No No No Yes Yes Yes No No
Aminsobhani M. [ 114 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Barbosa et al. [ 115 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No Yes No
Barbosa et al. [ 116 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No Yes No
Barbosa et al. [ 14 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Barbosa et al. [ 15 ] Yes Yes Yes Yes Yes No No No No No No No Yes No No
Bennett et al. [ 117 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Biz et al. [ 118 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Boessler et al. [ 119 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Bonaccorso et al. [ 120 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Bonaccorso et al. [ 121 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Bui et al. [ 122 ] Yes Yes Yes Yes Yes No No No No No No Yes Yes Yes No
Buono VT et al. [ 123 ] Yes Yes Yes Yes Yes No No No No No No Yes Yes Yes No
Chakka MK et al. [ 124 ] Yes Yes No Yes Yes No No No No No Yes Yes No No No
Chang et al. [ 125 ] Yes Yes Yes Yes Yes No No No No No No Yes No No No
Cheung et al. [ 126 ] Yes Yes Yes Yes Yes No No No No No No Yes No No No
Cheung et al. [ 127 ] Yes Yes Yes Yes Yes No No No No No No Yes No No No
Cheung et al. [ 128 ] Yes Yes Yes Yes Yes No No No No No No Yes Yes No No
Cheung et al. [ 129 ] Yes Yes Yes Yes Yes No No No No No No Yes No No No
Chi et al. [ 130 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Condorelli GG et al. [ 131 ] Yes Yes Yes No Yes Yes No No No No No No No No No
Ferreira et al. [ 13 ] Yes Yes Yes Yes Yes No Yes Yes No No Yes Yes Yes No No
Ferreira et al. [ 132 ] Yes Yes Yes Yes Yes No Yes Yes No No Yes Yes Yes No No
Gambarini et al. [ 2 ] Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes No No
Grande et al. [ 133 ] Yes Yes Yes Yes Yes Yes No No No No Yes Yes Yes No No
Gu Y et al. [ 134 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes Yes No No
Hanan et al. [ 1 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Herold et al. [ 135 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Huang et al. [ 136 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Iacono et al. [ 137 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Inan et al. [ 138 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Inan, Aydin [ 139 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Inan et al. [ 140 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Kaul et al. [ 141 ] Yes Yes Yes Yes No Yes Yes No No Yes Yes Yes Yes No No
Kim et al. [ 142 ] Yes Yes Yes Yes No Yes Yes Yes No No Yes Yes No No No
Kim et al. [ 143 ] Yes Yes Yes Yes No Yes Yes Yes No No Yes Yes No No No
Kottoor et al. [ 144 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Kum et al. [ 145 ] Yes Yes Yes Yes No Yes Yes Yes No No Yes Yes No No No
Liu et al. [ 61 ] Yes Yes Yes Yes No Yes Yes Yes No No Yes Yes No No No
Lopes et al. [ 146 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Lopes et al. [ 147 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Luzi et al. [ 148 ] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No No
Magalhaes et al. [ 149 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No Yes No
Marending et al. [ 150 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Martins [ 151 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Melo et al. [ 152 ] Yes Yes Yes Yes Yes No No No No No Yes No No Yes No
Nair et al. [153] Yes Yes Yes Yes Yes No No No No No No No No No No
Novoa et al. [ 154 ] Yes Yes Yes Yes Yes No No No No No No No No No No
O’hoy et al. [ 155 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No Yes No
Patel et al. [ 156 ] Yes Yes Yes Yes Yes No No No No No Yes Yes Yes No No
Peng et al. [ 157 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Pereira et al. [ 158 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No Yes No
Pirani et al. [ 159 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Pirani et al. [ 76 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Pirani et al. [ 77 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Rapisarda et al. [ 160 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Rapisarda et al. [ 161 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Saghiri et al. [ 80 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Saǧlam et al. [ 162 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Sağlam & Görgül [ 163 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Sattapan et al. [ 4 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Shen et al. [ 164 ] Yes Yes Yes Yes Yes No No No No No No Yes No No No
Shen et al. [ 5 ] Yes Yes Yes Yes No No No No No No No No No No No
Shen et al. [ 165 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Shen et al. [ 166 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Shen et al. [ 167 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No Yes No
Shen et al. [ 168 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Shen et al. [ 169 ] Yes Yes Yes Yes No No No No No No No No No No No
Shen et al. [ 170 ] Yes Yes Yes Yes Yes No No No No No No No No Yes No
Shen et al. [ 171 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Spanaki et al. [ 172 ] Yes Yes Yes Yes No No No No No No No No No No No
Stefanescu et al. [ 94 ] No No No Yes No No No No No No No No No No No
Stefanescu et al. [ 95 ] No Yes No Yes Yes No No No No No No No No No No
Subha & Sikri [ 10 ] Yes Yes Yes Yes Yes No No Yes Yes No Yes Yes Yes No No
Svec, & Powers [ 97 ] Yes No Yes Yes Yes No No No No No No No No No No
Topuz et al. [9] Yes Yes No No No No No No No No No No No No No
Tripi et al. [ 8 ] Yes No Yes Yes Yes No No No No No No No No No No
Troian et al. [ 173 ] Yes Yes Yes Yes No No Yes Yes Yes No No Yes No No No
Uslu et al. [12] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Valois et al. [ 101 ] Yes Yes Yes Yes No No No No No No No No No No No
Valois et al. [ 174 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No
Vieira et al. [ 175 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Vieira et al. [ 176 ] Yes Yes Yes Yes Yes No No No No No No Yes No No No
Wei et al. [ 177 ] Yes Yes Yes Yes Yes No No No No No No No No No No
Yamazaki-Arasaki et al. [178] Yes Yes No Yes Yes No No No No No Yes Yes No No No
Yamazaki-Arasaki et al. [ 179 ] Yes Yes No Yes Yes No No No No No Yes Yes No No No
Ye , Gao [ 6 ] Yes Yes Yes Yes Yes No No No No No Yes Yes No No No

Discussion

This study focused on the investigation of methodologies described in the literature to evaluate NiTi endodontic instruments. The methodologies used to evaluate NiTi endodontic instruments indicate that the fracture of instruments inside the root canal is due to defects that are not visible [10]. The surface properties of NiTi files are essential for mechanical performance. Consequently, it is relevant to investigate the surface properties of new and used NiTi files to avoid unexpected file fractures [12].

The preventive disposal of instruments before reaching the limit of their service life can avoid accidents. However, the exact service life of instruments is not well defined yet. Therefore, study methodologies that allow both a quantitative and qualitative definition of the service life of endodontic instruments are required.

Surface characteristics of NiTi instruments exposed to cyclic fatigue tests have been evaluated by SEM or AFM [1, 163]. As SEM disadvantages, the risk of damaging the samples during their preparation and the impossibility of a quantitative analysis of instruments surface should be considered [1]. On the other hand, AFM produces high-resolution images, providing quantitative and qualitative data. However, the samples require an ultra-flat and rigid surface and, consequently, the scanning probe does not cause deformation on the surface [174].

The non-contact optical profilometery analysis is a non-destructive method used to evaluate surfaces quantitatively and qualitatively and it does not require sample preparation. Despite the advantages of the method, the area evaluated is very restricted and cannot be used to evaluate internal structures [12-14, 132].

The above methods, although efficient for the proposed objectives, are not capable of evaluating the samples on the external surface and internally at the same time. Therefore, non-destructive methodologies that can be used to evaluate the sample in its entirety should be considered. Thus, the computerized micro-tomography (micro-CT) can be a useful method. However, when assessing the quality of the selected studies, methodological deficiencies were observed, making it impossible to obtain a reliable result from the method.

The advantage of micro-CT in relation to SEM, AFM, and non-contact optical profilometery analysis is its ability to evaluate the core of an object at the various time-points of the test before the fracture of the object [15, 133, 134].

Conclusions

This study identified the need to compare the methodologies in the selected articles to achieve a coherent conclusion. The comparison would indicate the reliability of the methods employed for structural analysis of endodontic instruments, thus determining the validity of the studies.

Conflict of Interest:

‘None declared’.

References

  • 1.Hanan ARA, de Meireles DA, Sponchiado Júnior EC, Hanan S, Kuga MC, Filho IB. Surface characteristics of reciprocating instruments before and after use - A SEM analysis. Braz Oral Res. 2015;26(2):121–7. doi: 10.1590/0103-6440201300208. [DOI] [PubMed] [Google Scholar]
  • 2.Gambarini G, Piasecki L, Di Nardo D, Miccoli G, Di Giorgio G, Carneiro E, Al-Sudani D, Testarelli L. Incidence of Deformation and Fracture of Twisted File Adaptive Instruments after Repeated Clinical Use. J Oral Maxillofac Res. 2016;7(4) doi: 10.5037/jomr.2016.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Alapati S, Brantley W, Nusstein J, Daehn G, Svec T, Powers J, Johnston W, Guo W. Vickers Hardness Investigation of Work-Hardening in Used NiTi Rotary Instruments. J Endod. 2006;32(12):1191–3. doi: 10.1016/j.joen.2006.07.007. [DOI] [PubMed] [Google Scholar]
  • 4.Sattapan B, Nervo G, Palamara J, Messer H. Defects in Rotary Nickel-Titanium Files After Clinical Use. J Endod. 2000;26(3):161–5. doi: 10.1097/00004770-200003000-00008. [DOI] [PubMed] [Google Scholar]
  • 5.Shen SM, Deng M, Wang PP, Chen XM, Zheng LW, Li HL. Deformation and fracture of K3 rotary nickel–titanium endodontic instruments after clinical use. Int Endod J. 2016;49(11):1088–94. doi: 10.1111/iej.12561. [DOI] [PubMed] [Google Scholar]
  • 6.Ye J, Gao Y. Metallurgical Characterization of M-Wire Nickel-Titanium Shape Memory Alloy Used for Endodontic Rotary Instruments during Low-cycle Fatigue. J Endod. 2012;38(1):105–7. doi: 10.1016/j.joen.2011.09.028. [DOI] [PubMed] [Google Scholar]
  • 7.Alapati S, Brantley W, Svec T, Powers J, Mitchell J. Scanning Electron Microscope Observations of New and Used Nickel-Titanium Rotary Files. J Endod. 2003;29(10):667–9. doi: 10.1097/00004770-200310000-00014. [DOI] [PubMed] [Google Scholar]
  • 8.Tripi TR, Bonaccorso A, Tripi V, Condorelli G, Rapisarda E. Defects in GT Rotary Instruments After Use: An SEM Study. 2001 doi: 10.1097/00004770-200112000-00018. [DOI] [PubMed] [Google Scholar]
  • 9.Topuz O, Aydin C, Uzun O, Inan U, Alacam T, Tunca YM. Structural effects of sodium hypochlorite solution on RaCe rotary nickel-titanium instruments: an atomic force microscopy study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(5):661–5. doi: 10.1016/j.tripleo.2007.11.006. [DOI] [PubMed] [Google Scholar]
  • 10.Subha N, Sikri VK. Comparative evaluation of surface changes in four Ni-Ti instruments with successive uses - An SEM study. J Conserv Dent. 2011;14(3):282–6. doi: 10.4103/0972-0707.85817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Al Jabbari YS, Tsakiridis P, Eliades G, Al-Hadlaq SM, Zinelis S. Assessment of geometrical characteristics of dental endodontic micro-instruments utilizing X-ray micro computed tomography. J Appl Oral Sci. 2012;20(6):655–60. doi: 10.1590/S1678-77572012000600011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Uslu G, Özyürek T, Yılmaz K. Comparison of Alterations in the Surface Topographies of HyFlex CM and HyFlex EDM Nickel-titanium Files after Root Canal Preparation: A Three-dimensional Optical Profilometry Study. J Endod. 2018;44(1):115–9. doi: 10.1016/j.joen.2017.05.023. [DOI] [PubMed] [Google Scholar]
  • 13.Ferreira F, Barbosa I, Scelza P, Russano D, Neff J, Montagnana M, Zaccaro Scelza M. A new method for the assessment of the surface topography of NiTi rotary instruments. Int Endod J. 2017;50(9):902–9. doi: 10.1111/iej.12707. [DOI] [PubMed] [Google Scholar]
  • 14.Barbosa I, Ferreira F, Scelza P, Neff J, Russano D, Montagnana M, Zaccaro Scelza M. Defect propagation in NiTi rotary instruments: a noncontact optical profilometry analysis. Int Endod J. 2018;51(11):1271–8. doi: 10.1111/iej.12936. [DOI] [PubMed] [Google Scholar]
  • 15.Barbosa IB, Scelza P, Pereira AMB, Ferreira FG, Bagueira R, Adeodato CSR, Zaccaro Scelza M. Progressive structural deterioration of an endodontic instrument – A preliminary micro-computed tomography study. Engineering Failure Analysis. 2019;104( 2018):105–11. [Google Scholar]
  • 16.Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int J Surg. 2010;8(5):336–41. doi: 10.1016/j.ijsu.2010.02.007. [DOI] [PubMed] [Google Scholar]
  • 17.Al Jabbari YS, Tsakiridis P, Eliades G, Al-Hadlaq SM, Zinelis S. Assessment of geometrical characteristics of dental endodontic micro-instruments utilizing X-ray micro computed tomography. J Appl Oral Sci. 2012;20(6):655–60. doi: 10.1590/S1678-77572012000600011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Al Jabbari YS, Koutsoukis T, Al Hadlaq S, Berzins DW, Zinelis S. Surface and cross-sectional characterization of titanium-nitride coated nickel–titanium endodontic files. J Den Sci. 2016;11(1):48–53. doi: 10.1016/j.jds.2015.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Alapati S, Brantley W, Svec T, Powers J, Mitchell J. Scanning Electron Microscope Observations of New and Used Nickel-Titanium Rotary Files. J Endod. 2003;29(10):667–9. doi: 10.1097/00004770-200310000-00014. [DOI] [PubMed] [Google Scholar]
  • 20.Alapati S, Brantley W, Nusstein J, Daehn G, Svec T, Powers J, Johnston W, Guo W. Vickers Hardness Investigation of Work-Hardening in Used NiTi Rotary Instruments. J Endod. 2006;32(12):1191–3. doi: 10.1016/j.joen.2006.07.007. [DOI] [PubMed] [Google Scholar]
  • 21.Alexandrou GB, Chrissafis K, Vasiliadis LP, Pavlidou E, Polychroniadis EK. SEM Observations and Differential Scanning Calorimetric Studies of New and Sterilized Nickel-Titanium Rotary Endodontic Instruments. J Endod. 2006;32(7):675–9. doi: 10.1016/j.joen.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 22.Alexandrou G, Chrissafis K, Vasiliadis L, Pavlidou E, Polychroniadis EK. Effect of heat sterilization on surface characteristics and microstructure of Mani NRT rotary nickel?titanium instruments. Int Endod J. 2006;39(10):770–8. doi: 10.1111/j.1365-2591.2006.01147.x. [DOI] [PubMed] [Google Scholar]
  • 23.Al-Sudani D. Topographic Analysis of HyFlex(®) Controlled Memory Nickel-Titanium Files. J Int Oral Health. 2011;6(6):1–4. [PMC free article] [PubMed] [Google Scholar]
  • 24.Ametrano G, D'Antò V, Di Caprio MP, Simeone M, Rengo S, Spagnuolo G. Effects of sodium hypochlorite and ethylenediaminetetraacetic acid on rotary nickel-titanium instruments evaluated using atomic force microscopy. Int Endod J. 2011;44(3):203–9. doi: 10.1111/j.1365-2591.2010.01799.x. [DOI] [PubMed] [Google Scholar]
  • 25.Aminsobhani M, Khalatbari MS, Meraji N, Ghorbanzadeh A, Sadri E. Evaluation of the Fractured Surface of Five Endodontic Rotary Instruments: A Metallurgical Study. Iran Endod J. 2016;11(4):286–92. doi: 10.22037/iej.2016.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Barbosa FOG, Ponciano Gomes JAdC, de Araújo MCP. Fractographic Analysis of K3 Nickel-Titanium Rotary Instruments Submitted to Different Modes of Mechanical Loading. J Endod. 2008;34(8):994–8. doi: 10.1016/j.joen.2008.05.013. [DOI] [PubMed] [Google Scholar]
  • 27.Barbosa FOG, Gomes JAdCP, de Araújo MCP. Influence of Electrochemical Polishing on the Mechanical Properties of K3 Nickel-Titanium Rotary Instruments. J Endod. 2008;34(12):1533–6. doi: 10.1016/j.joen.2008.08.023. [DOI] [PubMed] [Google Scholar]
  • 28.Barbosa I, Ferreira F, Scelza P, Neff J, Russano D, Montagnana M, Zaccaro Scelza M. Defect propagation in NiTi rotary instruments: a noncontact optical profilometry analysis. Int Endod J. 2018;51(11):1271–8. doi: 10.1111/iej.12936. [DOI] [PubMed] [Google Scholar]
  • 29.Bennett J, Chung KH, Fong H, Johnson J, Paranjpe A. Analysis of surface characteristics of protaper universal and protaper next instruments by scanning electron microscopy. J Clin Exp Dent. 2017;9(7):e879–e85. doi: 10.4317/jced.54049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Biz MT, Figueiredo JAP. Morphometric analysis of shank-to-flute ratio in rotary nickel-titanium files. Int End J. 2004;37(6):353–8. doi: 10.1111/j.1365-2591.2004.00755.x. [DOI] [PubMed] [Google Scholar]
  • 31.Boessler C, Paque F, Peters OA. The Effect of Electropolishing on Torque and Force During Simulated Root Canal Preparation with ProTaper Shaping Files. J Endod. 2009;35(1):102–6. doi: 10.1016/j.joen.2008.09.008. [DOI] [PubMed] [Google Scholar]
  • 32.Bonaccorso A, Schäfer E, Condorelli GG, Cantatore G, Tripi TR. Chemical Analysis of Nickel-Titanium Rotary Instruments with and without Electropolishing after Cleaning Procedures with Sodium Hypochlorite. J Endod. 2008;34(11):1391–5. doi: 10.1016/j.joen.2008.08.004. [DOI] [PubMed] [Google Scholar]
  • 33.Bonaccorso A, Tripi TR, Rondelli G, Condorelli GG, Cantatore G, Schäfer E. Pitting Corrosion Resistance of Nickel-Titanium Rotary Instruments with Different Surface Treatments in Seventeen Percent Ethylenediaminetetraacetic Acid and Sodium Chloride Solutions. J Endod. 2008;34(2):208–11. doi: 10.1016/j.joen.2007.11.012. [DOI] [PubMed] [Google Scholar]
  • 34.Bui TB, Mitchell JC, Baumgartner JC. Effect of Electropolishing ProFile Nickel–Titanium Rotary Instruments on Cyclic Fatigue Resistance, Torsional Resistance, and Cutting Efficiency. J Endod. 2008;34(2):190–3. doi: 10.1016/j.joen.2007.10.007. [DOI] [PubMed] [Google Scholar]
  • 35.Buono VTL, Vieira EP, França EC, Martins RC, Bahia MGA. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments. Int Endod J. 2008;41(2):163–72. doi: 10.1111/j.1365-2591.2007.01336.x. [DOI] [PubMed] [Google Scholar]
  • 36.Murali Krishna Chakka NV, Ratnakar P, Das S, Bagchi A, Kumar S, Anumula L. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use. J Contemp Dent Pract. 2012;13(6):867–72. doi: 10.5005/jp-journals-10024-1243. [DOI] [PubMed] [Google Scholar]
  • 37.Chang SW, Kim YC, Chang H, Jee KK, Zhu Q, Safavi K, Shon WJ, Bae KS, Spangberg LS, Kum KY. Effect of heat treatment on cyclic fatigue resistance, thermal behavior and microstructures of K3 NiTi rotary instruments. Acta Odontol Scand. 2013;71(6):1656–62. doi: 10.3109/00016357.2013.797101. [DOI] [PubMed] [Google Scholar]
  • 38.Cheung GSP, Shen Y, Darvell BW. Does Electropolishing Improve the Low-cycle Fatigue Behavior of a Nickel-Titanium Rotary Instrument in Hypochlorite? J Endod. 2007;33(10):1217–21. doi: 10.1016/j.joen.2007.07.022. [DOI] [PubMed] [Google Scholar]
  • 39.Cheung GSP, Darvell BW. Fatigue testing of a NiTi rotary instrument Part 2: Fractographic analysis. Int Endod J. 2007;40(8):619–25. doi: 10.1111/j.1365-2591.2007.01256.x. [DOI] [PubMed] [Google Scholar]
  • 40.Cheung GSP, Bian Z, Shen Y, Peng B, Darvell BW. Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use. Int Endod J. 2007;40(3):169–78. doi: 10.1111/j.1365-2591.2006.01200.x. [DOI] [PubMed] [Google Scholar]
  • 41.Cheung GSP, Peng B, Bian Z, Shen Y, Darvell BW. Defects in ProTaper S1 instruments after clinical use : fractographic examination. Introduction The introduction of nickel-titanium (NiTi) endodontic instruments has transformed root canal preparation. 2005;38:802–9. doi: 10.1111/j.1365-2591.2005.01020.x. [DOI] [PubMed] [Google Scholar]
  • 42.Chi CW, Deng YL, Lee JW, Lin CP. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating. J Formos Med Assoc. 2017;116(5):373–9. doi: 10.1016/j.jfma.2016.07.003. [DOI] [PubMed] [Google Scholar]
  • 43.Condorelli GG, Bonaccorso A, Smecca E, Schäfer E, Cantatore G, Tripi TR. Improvement of the fatigue resistance of NiTi endodontic files by surface and bulk modifications. Int Endod J. 2010;43(10):866–73. doi: 10.1111/j.1365-2591.2010.01759.x. [DOI] [PubMed] [Google Scholar]
  • 44.Ferreira F, Barbosa I, Scelza P, Russano D, Neff J, Montagnana M, Zaccaro Scelza M. A new method for the assessment of the surface topography of NiTi rotary instruments. Int Endod J. 2017;50(9):902–9. doi: 10.1111/iej.12707. [DOI] [PubMed] [Google Scholar]
  • 45.Ferreira FG, Barbosa IB, Scelza P, Montagnana MB, Russano D, Neff J, Scelza MZ. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments. Braz Oral Res. 2017:31. doi: 10.1590/1807-3107BOR-2017.vol31.0074. [DOI] [PubMed] [Google Scholar]
  • 46.Gambarini G, Piasecki L, Di Nardo D, Miccoli G, Di Giorgio G, Carneiro E, Al-Sudani D, Testarelli L. Incidence of Deformation and Fracture of Twisted File Adaptive Instruments after Repeated Clinical Use. J Oral Maxillofac Res. 2016;7:4. doi: 10.5037/jomr.2016.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel?titanium rotary systems. Int Endod J. 2006;39(10):755–63. doi: 10.1111/j.1365-2591.2006.01143.x. [DOI] [PubMed] [Google Scholar]
  • 48.Gu Y, Kum KY, Perinpanayagam H, Kim C, Kum DJ, Lim SM, Chang SW, Baek SH, Zhu Q, Yoo YJ. Various heat-treated nickel–titanium rotary instruments evaluated in S-shaped simulated resin canals. J Dent Sci. 2017;12(1):14–20. doi: 10.1016/j.jds.2016.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hanan ARA, de Meireles DA, Sponchiado Júnior EC, Hanan S, Kuga MC, Filho IB. Surface characteristics of reciprocating instruments before and after use - A SEM analysis. Braz Dent J. 2015;26(2):121–7. doi: 10.1590/0103-6440201300208. [DOI] [PubMed] [Google Scholar]
  • 50.Herold KS, Johnson BR, Wenckus CS. A Scanning Electron Microscopy Evaluation of Microfractures, Deformation and Separation in EndoSequence and Profile Nickel-Titanium Rotary Files Using an Extracted Molar Tooth Model. J Endod. 2007;33(6):712–4. doi: 10.1016/j.joen.2007.03.014. [DOI] [PubMed] [Google Scholar]
  • 51.Huang HM, Chang WJ, Teng NC, Lin HL, Hsieh SC. Structural analysis of cyclic-loaded nickel-titanium rotary instruments by using resonance frequency as a parameter. J Endod. 2011;37(7):993–6. doi: 10.1016/j.joen.2011.03.022. [DOI] [PubMed] [Google Scholar]
  • 52.Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, Gandolfi MG, Giorgini L, Prati C. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017;50(3):303–13. doi: 10.1111/iej.12620. [DOI] [PubMed] [Google Scholar]
  • 53.Inan U, Aydin C, Uzun O, Topuz O, Alacam T. Evaluation of the Surface Characteristics of Used and New ProTaper Instruments: An Atomic Force Microscopy Study. J Endod. 2007;33(11):1334–7. doi: 10.1016/j.joen.2007.07.014. [DOI] [PubMed] [Google Scholar]
  • 54.Inan U, Aydin C. Comparison of cyclic fatigue resistance of three different rotary nickel-titanium instruments designed for retreatment. J Endod. 2012;38(1):108–11. doi: 10.1016/j.joen.2011.09.010. [DOI] [PubMed] [Google Scholar]
  • 55.Inan U, Gonulol N. Deformation and Fracture of Mtwo Rotary Nickel-Titanium Instruments After Clinical Use. J Endod. 2009;35(10):1396–9. doi: 10.1016/j.joen.2009.06.014. [DOI] [PubMed] [Google Scholar]
  • 56.Kaul R, Farooq R, Kaul V, Khateeb SU, Purra AR, Mahajan R. Comparative evaluation of physical surface changes and incidence of separation in rotary nickel-titanium instruments: An in vitro SEM study. Iran Endod J. 2014;9(3):204–9. [PMC free article] [PubMed] [Google Scholar]
  • 57.Kim HC, Yum J, Hur B, Cheung GSP. Cyclic Fatigue and Fracture Characteristics of Ground and Twisted Nickel-Titanium Rotary Files. J Endod. 2010;36(1):147–52. doi: 10.1016/j.joen.2009.09.037. [DOI] [PubMed] [Google Scholar]
  • 58.Kim Y, Love R, George R. Surface Changes of PathFile after Glide Path Preparation: An Ex Vivo and In Vivo Study. J Endod. 2017;43(10):1674–8. doi: 10.1016/j.joen.2017.04.008. [DOI] [PubMed] [Google Scholar]
  • 59.Kottoor J, Velmurugan N, Gopikrishna V, Krithikadatta J. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems. Indian J Dent Res. 2013;24(1):42. doi: 10.4103/0970-9290.114942. [DOI] [PubMed] [Google Scholar]
  • 60.Kum K-Y, Chang SW. The Effect of Hydrofluoric Acid Surface Treatment on the Cyclic Fatigue Resistance of K3 NiTi Instruments. Bioinorg Chem Appl. 2017;2017:1–6. doi: 10.1155/2017/3189729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Liu JF, Lin MC, Hsu ML, Li UM, Lin CP, Tsai WF, Ai CF, Chen LK, Huang HH. Effect of nitriding surface treatment on the corrosion resistance of dental nickel-titanium files in 5 25% sodium hypochlorite solution. J Alloys Compd. 2009;475(1-2):789–93. [Google Scholar]
  • 62.Lopes HP, Elias CN, Vieira VTL, Moreira EJL, Marques RVL, MacHado De Oliveira JC, Debelian G, Siqueira JF. Effects of electropolishing surface treatment on the cyclic fatigue resistance of biorace nickel-titanium rotary instruments. J Endod. 2010;36(10):1653–7. doi: 10.1016/j.joen.2010.06.026. [DOI] [PubMed] [Google Scholar]
  • 63.Lopes HP, Elias CN, Vieira MVB, Vieira VTL, De Souza LC, Dos Santos AL. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments. J Endod. 2016;42(6):965–8. doi: 10.1016/j.joen.2016.03.001. [DOI] [PubMed] [Google Scholar]
  • 64.Luzi A, Forner L, Almenar A, Llena C. Microestructure alterations of rotary files after multiple simulated operative procedures. Med Oral Patol Oral Cir Bucal. 2010;15:4. doi: 10.4317/medoral.15.e658. [DOI] [PubMed] [Google Scholar]
  • 65.MagalhÃEs RRSd, Braga LCM, Pereira ÉSJ, Peixoto IFdC, Buono VTL, Bahia MGdA. The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments. J Appl Oral Sci. 2016;24(4):310–6. doi: 10.1590/1678-775720150596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Marending M, Lutz F, Barbakow F. Scanning electron microscope appearances of Lightspeed instruments used clinically: A pilot study. Int End J. 1998;31(1):57–62. [PubMed] [Google Scholar]
  • 67.Martins RC. Surface analysis of ProFile instruments by scanning electron microscopy and X-ray energy-dispersive spectroscopy: a preliminary study. Int Endod J. 2002;35:848–53. doi: 10.1046/j.1365-2591.2002.00583.x. [DOI] [PubMed] [Google Scholar]
  • 68.Melo MCC, Pereira ESJ, Viana ACD, Fonseca AMA, Buono VTL, Bahia MGA. Dimensional characterization and mechanical behaviour of K3 rotary instruments. Int Endod J. 2008;41(4):329–38. doi: 10.1111/j.1365-2591.2007.01368.x. [DOI] [PubMed] [Google Scholar]
  • 69.Nair AS, Tilakchand M, Naik BD. The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation. J Conserv Dent. 2015;18(3):218–22. doi: 10.4103/0972-0707.157256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Nóvoa XR, Martin-Biedma B, Varela-Patiño P, Collazo A, Macías-Luaces A, Cantatore G, Pérez MC, Magán-Muñoz F. The corrosion of nickel-titanium rotary endodontic instruments in sodium hypochlorite. Int Endod J. 2007;40(1):36–44. doi: 10.1111/j.1365-2591.2006.01178.x. [DOI] [PubMed] [Google Scholar]
  • 71.O'Hoy PYZ, Messer HH, Palamara JEA. The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J. 2003;36(11):724–32. doi: 10.1046/j.1365-2591.2003.00709.x. [DOI] [PubMed] [Google Scholar]
  • 72.Patel D, Bashetty K, Srirekha A, Archana S, Savitha B, Vijay R. Scanning electron microscopic evaluation of the influence of manual and mechanical glide path on the surface of nickel-titanium rotary instruments in moderately curved root canals: An in-vivo study. J Conserv Dent. 2016;19(6):549. doi: 10.4103/0972-0707.194035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Peng B, Shen Y, Cheung GSP, Xia TJ. Defects in ProTaper S1 instruments after clinical use: longitudinal examination. Int Endod J. 2005;38(8):550–7. doi: 10.1111/j.1365-2591.2005.00991.x. [DOI] [PubMed] [Google Scholar]
  • 74.Pereira ESJ, Amaral CCF, Gomes JACP, Peters OA, Buono VTL, Bahia MGA. Influence of clinical use on physical-structural surface properties and electrochemical potential of NiTi endodontic instruments. Int Endod J. 2018;51(5):515–21. doi: 10.1111/iej.12768. [DOI] [PubMed] [Google Scholar]
  • 75.Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, Gandolfi MG, Prati C. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Inte Endod J. 2016;49(5):483–93. doi: 10.1111/iej.12470. [DOI] [PubMed] [Google Scholar]
  • 76.Pirani C, Paolucci A, Ruggeri O, Bossù M, Polimeni A, Gatto MRA, Gandolfi MG, Prati C. Wear and metallographic analysis of WaveOne and reciproc NiTi instruments before and after three uses in root canals. Scanning. 2014;36(5):517–25. doi: 10.1002/sca.21150. [DOI] [PubMed] [Google Scholar]
  • 77.Pirani C, Ruggeri O, Cirulli PP, Pelliccioni GA, Gandolfi MG, Prati C. Metallurgical analysis and fatigue resistance of WaveOne and ProTaper Nickel–Titanium instruments. Odontology. 2014;102(2):211–6. doi: 10.1007/s10266-013-0113-6. [DOI] [PubMed] [Google Scholar]
  • 78.Rapisarda E, Tripi T, Bonaccorso A. SEM (Scanning Electron Microscopy) study of the deterioration of ProFile 04 and 06. Minerva Stomatol. 1998;47(11):597–603. [PubMed] [Google Scholar]
  • 79.Rapisarda E, Bonaccorso A, Tripi T, Condorelli G, Torrisi L. Wear of Nickel-Titanium Endodontic Instruments Evaluated by Scanning Electron Microscopy: Effect of Ion Implantation. J Endod. 2001;27(9):588–92. doi: 10.1097/00004770-200109000-00009. [DOI] [PubMed] [Google Scholar]
  • 80.Saghiri MA, Asatourian A, Garcia-Godoy F, Gutmann JL, Lotfi M, Sheibani N. The effect of electrical treatment on cyclic fatigue of NiTi instruments. Scanning. 2014;36(5):507–11. doi: 10.1002/sca.21146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Saǧlam BC, Koçak S, Koçak MM, Topuz Ö. Effects of irrigation solutions on the surface of protaper instruments: A microscopy study. Microsc Res Tech. 2012;75(11):1534–8. doi: 10.1002/jemt.22097. [DOI] [PubMed] [Google Scholar]
  • 82.Can Sağlam B, Görgül G. Evaluation of surface alterations in different retreatment nickel-titanium files: AFM and SEM study. Microsc Res Tech. 2015;78(5):356–62. doi: 10.1002/jemt.22481. [DOI] [PubMed] [Google Scholar]
  • 83.Sattapan B, Nervo G, Palamara J, Messer H. Defects in Rotary Nickel-Titanium Files After Clinical Use. J Endod. 2000;26(3):161–5. doi: 10.1097/00004770-200003000-00008. [DOI] [PubMed] [Google Scholar]
  • 84.Shen Y, Zhou H, Coil JM, Aljazaeri B, Buttar R, Wang Z, Zheng Y-f, Haapasalo M. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use. J Endod. 2015;41(6):937–42. doi: 10.1016/j.joen.2015.02.003. [DOI] [PubMed] [Google Scholar]
  • 85.Shen SM, Deng M, Wang PP, Chen XM, Zheng LW, Li HL. Deformation and fracture of K3 rotary nickel–titanium endodontic instruments after clinical use. Int Endod J. 2016;49(11):1088–94. doi: 10.1111/iej.12561. [DOI] [PubMed] [Google Scholar]
  • 86.Shen Y, Cheung GSP, Bian Z, Peng B. Comparison of defects in ProFile and ProTaper systems after clinical use. J Endod. 2006;32(1):61–5. doi: 10.1016/j.joen.2005.10.017. [DOI] [PubMed] [Google Scholar]
  • 87.Shen Y, Cheung GSp, Peng B, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 2: Fractographic Analysis of Fractured Surface in a Cohort Study. J Endod. 2009;35(1):133–6. doi: 10.1016/j.joen.2008.10.013. [DOI] [PubMed] [Google Scholar]
  • 88.Shen Y, Coil JM, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 3: A 4-Year Retrospective Study from an Undergraduate Clinic. J Endod. 2009;35(2):193–6. doi: 10.1016/j.joen.2008.11.003. [DOI] [PubMed] [Google Scholar]
  • 89.Shen Y, Coil JM, McLean AGR, Hemerling DL, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 5: Single Use From Endodontic Specialty Practices. J Endod. 2009;35(10):1363–7. doi: 10.1016/j.joen.2009.07.004. [DOI] [PubMed] [Google Scholar]
  • 90.Shen Y, Winestock E, Cheung GSp, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 4: An Electropolished Instrument. J Endod. 2009;35(2):197–201. doi: 10.1016/j.joen.2008.11.012. [DOI] [PubMed] [Google Scholar]
  • 91.Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011;37(11):1566–71. doi: 10.1016/j.joen.2011.08.005. [DOI] [PubMed] [Google Scholar]
  • 92.Shen Y, Coil JM, Zhou HM, Tam E, Zheng YF, Haapasalo M. Profile vortex instruments after clinical use: A metallurgical properties study. J Endod. 2012;38(12):1613–7. doi: 10.1016/j.joen.2012.09.018. [DOI] [PubMed] [Google Scholar]
  • 93.Spanaki-Voreadi AP, Kerezoudis NP, Zinelis S. Failure mechanism of ProTaper Ni-Ti rotary instruments during clinical use: fractographic analysis. Int Endod J. 2006;39(3):171–8. doi: 10.1111/j.1365-2591.2006.01065.x. [DOI] [PubMed] [Google Scholar]
  • 94.Stefanescu T, Antoniac IV, Popovici RA, Galuscan A, Tirca T. Ni-Ti Rotary Instrument Fracture Analysis after Clinical Use Structure Changes in Used Instruments. Environmental Engineering and Management J. 2016;15(5):981–8. [Google Scholar]
  • 95.Stefanescu T, Galuscan A, Tudoran LB, Monea MD, Jumanca D. Environmental Effects on Ni-Ti Rotary Files: Steam Sterilization and Corrosion A SEM study. Revista De Chimie. 2016;67(10):2114–8. [Google Scholar]
  • 96.Subha N, Sikri VK. Comparative evaluation of surface changes in four Ni-Ti instruments with successive uses - An SEM study. J Conserv Dent. 2011;14(3):282–6. doi: 10.4103/0972-0707.85817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Svec TA, Powers JM. 2002-105_Deterioration of Rotary Nickel-Titanium Files under Controlled Conditions. 2002;28(2):1–3. doi: 10.1097/00004770-200202000-00014. [DOI] [PubMed] [Google Scholar]
  • 98.Topuz O, Aydin C, Uzun O, Inan U, Alacam T, Tunca YM. Structural effects of sodium hypochlorite solution on RaCe rotary nickel-titanium instruments: an atomic force microscopy study. Oral Surgery, Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(5):661–5. doi: 10.1016/j.tripleo.2007.11.006. [DOI] [PubMed] [Google Scholar]
  • 99.Troian CH, Só MVR, Figueiredo JAP, Oliveira EPM. Deformation and fracture of RaCe and K3 endodontic instruments according to the number of uses. Int Endod J. 2006;39(8):616–25. doi: 10.1111/j.1365-2591.2006.01119.x. [DOI] [PubMed] [Google Scholar]
  • 100.Uslu G, Özyürek T, Yılmaz K. Comparison of Alterations in the Surface Topographies of HyFlex CM and HyFlex EDM Nickel-titanium Files after Root Canal Preparation: A Three-dimensional Optical Profilometry Study. J Endod. 2018;44(1):115–9. doi: 10.1016/j.joen.2017.05.023. [DOI] [PubMed] [Google Scholar]
  • 101.Valois CRA, Silva LP, Azevedo RB. Atomic Force Microscopy Study of Stainless-Steel and Nickel-Titanium Files. 2005 doi: 10.1097/01.don.0000164132.27285.2c. [DOI] [PubMed] [Google Scholar]
  • 102.Valois C, Silva L, Azevedo R. Multiple Autoclave Cycles Affect the Surface of Rotary Nickel-Titanium Files: An Atomic Force Microscopy Study. J Endod. 2008;34(7):859–62. doi: 10.1016/j.joen.2008.02.028. [DOI] [PubMed] [Google Scholar]
  • 103.Vieira EP, Nakagawa RKL, Buono VTL, Bahia MGA. Torsional behaviour of rotary NiTi ProTaper Universal instruments after multiple clinical use. Int Endod J. 2009;42(10):947–53. doi: 10.1111/j.1365-2591.2009.01602.x. [DOI] [PubMed] [Google Scholar]
  • 104.Vieira EP, Buono VTL, De Azevedo Bahia MG. Effect of lateral pressure motion on the torsional behavior of rotary ProTaper universal instruments. J Endod. 2011;37(8):1124–7. doi: 10.1016/j.joen.2011.05.010. [DOI] [PubMed] [Google Scholar]
  • 105.Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of Failure of ProTaper Nickel–Titanium Rotary Instruments after Clinical Use. J Endod. 2007;33(3):276–9. doi: 10.1016/j.joen.2006.10.012. [DOI] [PubMed] [Google Scholar]
  • 106.Yamazaki-Arasaki A, Cabrales R, Santos MD, Kleine B, Prokopowitsch I. Topography of four different endodontic rotary systems, before and after being used for the 12th time. Microsc Res Tech. 2012;75(1):97–102. doi: 10.1002/jemt.21021. [DOI] [PubMed] [Google Scholar]
  • 107.Yamazaki-Arasaki AK, Cabrales RJS, Kleine BM, Araki ÂT, Dos Santos M, Prokopowitsch I. Qualitative analysis of files of four different rotary systems, before and after being used for the twelfth time. Microsc Res Tech. 2013;76(1):79–85. doi: 10.1002/jemt.22139. [DOI] [PubMed] [Google Scholar]
  • 108.Ye J, Gao Y. Metallurgical Characterization of M-Wire Nickel-Titanium Shape Memory Alloy Used for Endodontic Rotary Instruments during Low-cycle Fatigue. J Endod. 2012;38(1):105–7. doi: 10.1016/j.joen.2011.09.028. [DOI] [PubMed] [Google Scholar]
  • 109.Al Jabbari YS, Koutsoukis T, Al Hadlaq S, Berzins DW, Zinelis S. Surface and cross-sectional characterization of titanium-nitride coated nickel–titanium endodontic files. J Dent Sci. 2016;11(1):48–53. doi: 10.1016/j.jds.2015.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Alexandrou GB, Chrissafis K, Vasiliadis LP, Pavlidou E, Polychroniadis EK. SEM Observations and Differential Scanning Calorimetric Studies of New and Sterilized Nickel-Titanium Rotary Endodontic Instruments. J Endod. 2006;32(7):675–9. doi: 10.1016/j.joen.2006.01.003. [DOI] [PubMed] [Google Scholar]
  • 111.Alexandrou G, Chrissafis K, Vasiliadis L, Pavlidou E, Polychroniadis EK. Effect of heat sterilization on surface characteristics and microstructure of Mani NRT rotary nickel?titanium instruments. Int Endod J. 2006;39(10):770–8. doi: 10.1111/j.1365-2591.2006.01147.x. [DOI] [PubMed] [Google Scholar]
  • 112.Al-Sudani D. Topographic Analysis of HyFlex(®) Controlled Memory Nickel-Titanium Files. J Int Oral Health. 2011;6(6):1–4. [PMC free article] [PubMed] [Google Scholar]
  • 113.Ametrano G, D'Antò V, Di Caprio MP, Simeone M, Rengo S, Spagnuolo G. Effects of sodium hypochlorite and ethylenediaminetetraacetic acid on rotary nickel-titanium instruments evaluated using atomic force microscopy. Int Endod J. 2011;44(3):203–9. doi: 10.1111/j.1365-2591.2010.01799.x. [DOI] [PubMed] [Google Scholar]
  • 114.Aminsobhani M, Khalatbari MS, Meraji N, Ghorbanzadeh A, Sadri E. Evaluation of the Fractured Surface of Five Endodontic Rotary Instruments: A Metallurgical Study. Iran Endod J. 2016;11(4):286–92. doi: 10.22037/iej.2016.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Barbosa FOG, Ponciano Gomes JAdC, de Araújo MCP. Fractographic Analysis of K3 Nickel-Titanium Rotary Instruments Submitted to Different Modes of Mechanical Loading. J Endod. 2008;34(8):994–8. doi: 10.1016/j.joen.2008.05.013. [DOI] [PubMed] [Google Scholar]
  • 116.Barbosa FOG, Gomes JAdCP, de Araújo MCP. Influence of Electrochemical Polishing on the Mechanical Properties of K3 Nickel-Titanium Rotary Instruments. J Endod. 2008;34(12):1533–6. doi: 10.1016/j.joen.2008.08.023. [DOI] [PubMed] [Google Scholar]
  • 117.Bennett J, Chung KH, Fong H, Johnson J, Paranjpe A. Analysis of surface characteristics of protaper universal and protaper next instruments by scanning electron microscopy. J Clin Exp Dent. 2017;9(7):e879–e85. doi: 10.4317/jced.54049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Biz MT, Figueiredo JAP. Morphometric analysis of shank-to-flute ratio in rotary nickel-titanium files. Int Endod J. 2004;37(6):353–8. doi: 10.1111/j.1365-2591.2004.00755.x. [DOI] [PubMed] [Google Scholar]
  • 119.Boessler C, Paque F, Peters OA. The Effect of Electropolishing on Torque and Force During Simulated Root Canal Preparation with ProTaper Shaping Files. J Endod. 2009;35(1):102–6. doi: 10.1016/j.joen.2008.09.008. [DOI] [PubMed] [Google Scholar]
  • 120.Bonaccorso A, Schäfer E, Condorelli GG, Cantatore G, Tripi TR. Chemical Analysis of Nickel-Titanium Rotary Instruments with and without Electropolishing after Cleaning Procedures with Sodium Hypochlorite. J Endod. 2008;34(11):1391–5. doi: 10.1016/j.joen.2008.08.004. [DOI] [PubMed] [Google Scholar]
  • 121.Bonaccorso A, Tripi TR, Rondelli G, Condorelli GG, Cantatore G, Schäfer E. Pitting Corrosion Resistance of Nickel-Titanium Rotary Instruments with Different Surface Treatments in Seventeen Percent Ethylenediaminetetraacetic Acid and Sodium Chloride Solutions. J Endod. 2008;34(2):208–11. doi: 10.1016/j.joen.2007.11.012. [DOI] [PubMed] [Google Scholar]
  • 122.Bui TB, Mitchell JC, Baumgartner JC. Effect of Electropolishing ProFile Nickel–Titanium Rotary Instruments on Cyclic Fatigue Resistance, Torsional Resistance, and Cutting Efficiency. J Endod. 2008;34(2):190–3. doi: 10.1016/j.joen.2007.10.007. [DOI] [PubMed] [Google Scholar]
  • 123.Buono VTL, Vieira EP, França EC, Martins RC, Bahia MGA. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments. Int Endod J. 2008;41(2):163–72. doi: 10.1111/j.1365-2591.2007.01336.x. [DOI] [PubMed] [Google Scholar]
  • 124.Murali Krishna Chakka NV, Ratnakar P, Das S, Bagchi A, Kumar S, Anumula L. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use. J Contemp Dent Pract. 2012;13(6):867–72. doi: 10.5005/jp-journals-10024-1243. [DOI] [PubMed] [Google Scholar]
  • 125.Chang SW, Kim YC, Chang H, Jee KK, Zhu Q, Safavi K, Shon WJ, Bae KS, Spangberg LS, Kum KY. Effect of heat treatment on cyclic fatigue resistance, thermal behavior and microstructures of K3 NiTi rotary instruments. Acta Odontol Scand. 2013;71(6):1656–62. doi: 10.3109/00016357.2013.797101. [DOI] [PubMed] [Google Scholar]
  • 126.Cheung GSP, Shen Y, Darvell BW. Does Electropolishing Improve the Low-cycle Fatigue Behavior of a Nickel-Titanium Rotary Instrument in Hypochlorite? J Endod. 2007;33(10):1217–21. doi: 10.1016/j.joen.2007.07.022. [DOI] [PubMed] [Google Scholar]
  • 127.Cheung GSP, Darvell BW. Fatigue testing of a NiTi rotary instrument Part 2: Fractographic analysis. Int Endod J. 2007;40(8):619–25. doi: 10.1111/j.1365-2591.2007.01256.x. [DOI] [PubMed] [Google Scholar]
  • 128.Cheung GSP, Bian Z, Shen Y, Peng B, Darvell BW. Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use. Int Endod J. 2007;40(3):169–78. doi: 10.1111/j.1365-2591.2006.01200.x. [DOI] [PubMed] [Google Scholar]
  • 129.Cheung GSP, Peng B, Bian Z, Shen Y, Darvell BW. Defects in ProTaper S1 instruments after clinical use : fractographic examination. Int Endod J. 2005;38:802–9. doi: 10.1111/j.1365-2591.2005.01020.x. [DOI] [PubMed] [Google Scholar]
  • 130.Chi CW, Deng YL, Lee JW, Lin CP. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating. J Formos Med Assoc. 2017;116(5):373–9. doi: 10.1016/j.jfma.2016.07.003. [DOI] [PubMed] [Google Scholar]
  • 131.Condorelli GG, Bonaccorso A, Smecca E, Schäfer E, Cantatore G, Tripi TR. Improvement of the fatigue resistance of NiTi endodontic files by surface and bulk modifications. Int Endod J. 2010;43(10):866–73. doi: 10.1111/j.1365-2591.2010.01759.x. [DOI] [PubMed] [Google Scholar]
  • 132.Ferreira FG, Barbosa IB, Scelza P, Montagnana MB, Russano D, Neff J, Scelza MZ. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments. Braz Oral Res. 2017:31. doi: 10.1590/1807-3107BOR-2017.vol31.0074. [DOI] [PubMed] [Google Scholar]
  • 133.Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel?titanium rotary systems. Int Endod J. 2006;39(10):755–63. doi: 10.1111/j.1365-2591.2006.01143.x. [DOI] [PubMed] [Google Scholar]
  • 134.Gu Y, Kum KY, Perinpanayagam H, Kim C, Kum DJ, Lim SM, Chang SW, Baek SH, Zhu Q, Yoo YJ. Various heat-treated nickel–titanium rotary instruments evaluated in S-shaped simulated resin canals. J Dent Sci. 2017;12(1):14–20. doi: 10.1016/j.jds.2016.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Herold KS, Johnson BR, Wenckus CS. A Scanning Electron Microscopy Evaluation of Microfractures, Deformation and Separation in EndoSequence and Profile Nickel-Titanium Rotary Files Using an Extracted Molar Tooth Model. J Endod. 2007;33(6):712–4. doi: 10.1016/j.joen.2007.03.014. [DOI] [PubMed] [Google Scholar]
  • 136.Huang HM, Chang WJ, Teng NC, Lin HL, Hsieh SC. Structural analysis of cyclic-loaded nickel-titanium rotary instruments by using resonance frequency as a parameter. J Endod. 2011;37(7):993–6. doi: 10.1016/j.joen.2011.03.022. [DOI] [PubMed] [Google Scholar]
  • 137.Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, Gandolfi MG, Giorgini L, Prati C. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017;50(3):303–13. doi: 10.1111/iej.12620. [DOI] [PubMed] [Google Scholar]
  • 138.Inan U, Aydin C, Uzun O, Topuz O, Alacam T. Evaluation of the Surface Characteristics of Used and New ProTaper Instruments: An Atomic Force Microscopy Study. J Endod. 2007;33(11):1334–7. doi: 10.1016/j.joen.2007.07.014. [DOI] [PubMed] [Google Scholar]
  • 139.Inan U, Aydin C. Comparison of cyclic fatigue resistance of three different rotary nickel-titanium instruments designed for retreatment. J Endod. 2012;38(1):108–11. doi: 10.1016/j.joen.2011.09.010. [DOI] [PubMed] [Google Scholar]
  • 140.Inan U, Gonulol N. Deformation and Fracture of Mtwo Rotary Nickel-Titanium Instruments After Clinical Use. J Endod. 2009;35(10):1396–9. doi: 10.1016/j.joen.2009.06.014. [DOI] [PubMed] [Google Scholar]
  • 141.Kaul R, Farooq R, Kaul V, Khateeb SU, Purra AR, Mahajan R. Comparative evaluation of physical surface changes and incidence of separation in rotary nickel-titanium instruments: An in vitro SEM study. Iran Endod J. 2014;9(3):204–9. [PMC free article] [PubMed] [Google Scholar]
  • 142.Kim HC, Yum J, Hur B, Cheung GSP. Cyclic Fatigue and Fracture Characteristics of Ground and Twisted Nickel-Titanium Rotary Files. J Endod. 2010;36(1):147–52. doi: 10.1016/j.joen.2009.09.037. [DOI] [PubMed] [Google Scholar]
  • 143.Kim Y, Love R, George R. Surface Changes of PathFile after Glide Path Preparation: An Ex Vivo and In Vivo Study. J Endod. 2017;43(10):1674–8. doi: 10.1016/j.joen.2017.04.008. [DOI] [PubMed] [Google Scholar]
  • 144.Kottoor J, Velmurugan N, Gopikrishna V, Krithikadatta J. Effects of multiple root canal usage on the surface topography and fracture of two different Ni-Ti rotary file systems. Indian J Dent Res. 2013;24(1):42. doi: 10.4103/0970-9290.114942. [DOI] [PubMed] [Google Scholar]
  • 145.Kum K-Y, Chang SW. The Effect of Hydrofluoric Acid Surface Treatment on the Cyclic Fatigue Resistance of K3 NiTi Instruments. Bioinorg Chem Appl. 2017;2017:1–6. doi: 10.1155/2017/3189729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Lopes HP, Elias CN, Vieira VTL, Moreira EJL, Marques RVL, MacHado De Oliveira JC, Debelian G, Siqueira JF. Effects of electropolishing surface treatment on the cyclic fatigue resistance of biorace nickel-titanium rotary instruments. J Endod. 2010;36(10):1653–7. doi: 10.1016/j.joen.2010.06.026. [DOI] [PubMed] [Google Scholar]
  • 147.Lopes HP, Elias CN, Vieira MVB, Vieira VTL, De Souza LC, Dos Santos AL. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments. J Endod. 2016;42(6):965–8. doi: 10.1016/j.joen.2016.03.001. [DOI] [PubMed] [Google Scholar]
  • 148.Luzi A, Forner L, Almenar A, Llena C. Microestructure alterations of rotary files after multiple simulated operative procedures. Med Oral Patol Oral Cir Bucal. 2010;15:4. doi: 10.4317/medoral.15.e658. [DOI] [PubMed] [Google Scholar]
  • 149.MagalhÃEs RRSd, Braga LCM, Pereira ÉSJ, Peixoto IFdC, Buono VTL, Bahia MGdA. The impact of clinical use on the torsional behavior of Reciproc and WaveOne instruments. J Appl Oral Sci. 2016;24(4):310–6. doi: 10.1590/1678-775720150596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Marending M, Lutz F, Barbakow F. Scanning electron microscope appearances of Lightspeed instruments used clinically: A pilot study. Int Endod J. 1998;31(1):57–62. [PubMed] [Google Scholar]
  • 151.Martins RC. Surface analysis of ProFile instruments by scanning electron microscopy and X-ray energy-dispersive spectroscopy: a preliminary study. Int Endod J. 2002;35:848–53. doi: 10.1046/j.1365-2591.2002.00583.x. [DOI] [PubMed] [Google Scholar]
  • 152.Melo MCC, Pereira ESJ, Viana ACD, Fonseca AMA, Buono VTL, Bahia MGA. Dimensional characterization and mechanical behaviour of K3 rotary instruments. Int Endod J. 2008;41(4):329–38. doi: 10.1111/j.1365-2591.2007.01368.x. [DOI] [PubMed] [Google Scholar]
  • 153.Nair AS, Tilakchand M, Naik BD. The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation. J Conserv Dent. 2015;18(3):218–22. doi: 10.4103/0972-0707.157256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Nóvoa XR, Martin-Biedma B, Varela-Patiño P, Collazo A, Macías-Luaces A, Cantatore G, Pérez MC, Magán-Muñoz F. The corrosion of nickel-titanium rotary endodontic instruments in sodium hypochlorite. Int Endod J. 2007;40(1):36–44. doi: 10.1111/j.1365-2591.2006.01178.x. [DOI] [PubMed] [Google Scholar]
  • 155.O'Hoy PYZ, Messer HH, Palamara JEA. The effect of cleaning procedures on fracture properties and corrosion of NiTi files. Int Endod J. 2003;36(11):724–32. doi: 10.1046/j.1365-2591.2003.00709.x. [DOI] [PubMed] [Google Scholar]
  • 156.Patel D, Bashetty K, Srirekha A, Archana S, Savitha B, Vijay R. Scanning electron microscopic evaluation of the influence of manual and mechanical glide path on the surface of nickel-titanium rotary instruments in moderately curved root canals: An in-vivo study. J Conserv Dent. 2016;19(6):549. doi: 10.4103/0972-0707.194035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Peng B, Shen Y, Cheung GSP, Xia TJ. Defects in ProTaper S1 instruments after clinical use: longitudinal examination. Int Endod J. 2005;38(8):550–7. doi: 10.1111/j.1365-2591.2005.00991.x. [DOI] [PubMed] [Google Scholar]
  • 158.Pereira ESJ, Amaral CCF, Gomes JACP, Peters OA, Buono VTL, Bahia MGA. Influence of clinical use on physical-structural surface properties and electrochemical potential of NiTi endodontic instruments. Int Endod J. 2018;51(5):515–21. doi: 10.1111/iej.12768. [DOI] [PubMed] [Google Scholar]
  • 159.Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, Gandolfi MG, Prati C. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J. 2016;49(5):483–93. doi: 10.1111/iej.12470. [DOI] [PubMed] [Google Scholar]
  • 160.Rapisarda E, Tripi T, Bonaccorso A. [SEM (Scanning Electron Microscopy) study of the deterioration of ProFile 04 and ] Minerva Stomatol. 1998;47(11):597–603. [PubMed] [Google Scholar]
  • 161.Rapisarda E, Bonaccorso A, Tripi T, Condorelli G, Torrisi L. Wear of Nickel-Titanium Endodontic Instruments Evaluated by Scanning Electron Microscopy: Effect of Ion Implantation. J Endod. 2001;27(9):588–92. doi: 10.1097/00004770-200109000-00009. [DOI] [PubMed] [Google Scholar]
  • 162.Saǧlam BC, Koçak S, Koçak MM, Topuz Ö. Effects of irrigation solutions on the surface of protaper instruments: A microscopy study. Microsc Res Tech. 2012;75(11):1534–8. doi: 10.1002/jemt.22097. [DOI] [PubMed] [Google Scholar]
  • 163.Can Sağlam B, Görgül G. Evaluation of surface alterations in different retreatment nickel-titanium files: AFM and SEM study. Microsc Res Tech. 2015;78(5):356–62. doi: 10.1002/jemt.22481. [DOI] [PubMed] [Google Scholar]
  • 164.Shen Y, Zhou H, Coil JM, Aljazaeri B, Buttar R, Wang Z, Zheng Y-f, Haapasalo M. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use. J Endod. 2015;41(6):937–42. doi: 10.1016/j.joen.2015.02.003. [DOI] [PubMed] [Google Scholar]
  • 165.Shen Y, Cheung GSP, Bian Z, Peng B. Comparison of defects in ProFile and ProTaper systems after clinical use. J Endod. 2006;32(1):61–5. doi: 10.1016/j.joen.2005.10.017. [DOI] [PubMed] [Google Scholar]
  • 166.Shen Y, Cheung GSp, Peng B, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 2: Fractographic Analysis of Fractured Surface in a Cohort Study. J Endod. 2009;35(1):133–6. doi: 10.1016/j.joen.2008.10.013. [DOI] [PubMed] [Google Scholar]
  • 167.Shen Y, Coil JM, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 3: A 4-Year Retrospective Study from an Undergraduate Clinic. J Endod. 2009;35(2):193–6. doi: 10.1016/j.joen.2008.11.003. [DOI] [PubMed] [Google Scholar]
  • 168.Shen Y, Coil JM, McLean AGR, Hemerling DL, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 5: Single Use From Endodontic Specialty Practices. J Endod. 2009;35(10):1363–7. doi: 10.1016/j.joen.2009.07.004. [DOI] [PubMed] [Google Scholar]
  • 169.Shen Y, Winestock E, Cheung GSp, Haapasalo M. Defects in Nickel-Titanium Instruments after Clinical Use Part 4: An Electropolished Instrument. J Endod. 2009;35(2):197–201. doi: 10.1016/j.joen.2008.11.012. [DOI] [PubMed] [Google Scholar]
  • 170.Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011;37(11):1566–71. doi: 10.1016/j.joen.2011.08.005. [DOI] [PubMed] [Google Scholar]
  • 171.Shen Y, Coil JM, Zhou HM, Tam E, Zheng YF, Haapasalo M. Profile vortex instruments after clinical use: A metallurgical properties study. J Endod. 2012;38(12):1613–7. doi: 10.1016/j.joen.2012.09.018. [DOI] [PubMed] [Google Scholar]
  • 172.Spanaki-Voreadi AP, Kerezoudis NP, Zinelis S. Failure mechanism of ProTaper Ni-Ti rotary instruments during clinical use: fractographic analysis. Inte Endod J. 2006;39(3):171–8. doi: 10.1111/j.1365-2591.2006.01065.x. [DOI] [PubMed] [Google Scholar]
  • 173.Troian CH, Só MVR, Figueiredo JAP, Oliveira EPM. Deformation and fracture of RaCe and K3 endodontic instruments according to the number of uses. Int Endod J. 2006;39(8):616–25. doi: 10.1111/j.1365-2591.2006.01119.x. [DOI] [PubMed] [Google Scholar]
  • 174.Valois C, Silva L, Azevedo R. Multiple Autoclave Cycles Affect the Surface of Rotary Nickel-Titanium Files: An Atomic Force Microscopy Study. J Endod. 2008;34(7):859–62. doi: 10.1016/j.joen.2008.02.028. [DOI] [PubMed] [Google Scholar]
  • 175.Vieira EP, Nakagawa RKL, Buono VTL, Bahia MGA. Torsional behaviour of rotary NiTi ProTaper Universal instruments after multiple clinical use. Inte Endod J. 2009;42(10):947–53. doi: 10.1111/j.1365-2591.2009.01602.x. [DOI] [PubMed] [Google Scholar]
  • 176.Vieira EP, Buono VTL, De Azevedo Bahia MG. Effect of lateral pressure motion on the torsional behavior of rotary ProTaper universal instruments. J Endod. 2011;37(8):1124–7. doi: 10.1016/j.joen.2011.05.010. [DOI] [PubMed] [Google Scholar]
  • 177.Wei X, Ling J, Jiang J, Huang X, Liu L. Modes of Failure of ProTaper Nickel–Titanium Rotary Instruments after Clinical Use. J Endod. 2007;33(3):276–9. doi: 10.1016/j.joen.2006.10.012. [DOI] [PubMed] [Google Scholar]
  • 178.Yamazaki-Arasaki A, Cabrales R, Santos MD, Kleine B, Prokopowitsch I. Topography of four different endodontic rotary systems, before and after being used for the 12th time. Microsc Res Tech. 2012;75(1):97–102. doi: 10.1002/jemt.21021. [DOI] [PubMed] [Google Scholar]
  • 179.Yamazaki-Arasaki AK, Cabrales RJS, Kleine BM, Araki ÂT, Dos Santos M, Prokopowitsch I. Qualitative analysis of files of four different rotary systems, before and after being used for the twelfth time. Microsc Res Tech. 2013;76(1):79–85. doi: 10.1002/jemt.22139. [DOI] [PubMed] [Google Scholar]
  • 180.Faggion CM. Guidelines for Reporting Pre-clinical In Vitro Studies on Dental Materials. J Evid Based Dent Pract. 2012;12(4):182–9. doi: 10.1016/j.jebdp.2012.10.001. [DOI] [PubMed] [Google Scholar]

Articles from Iranian Endodontic Journal are provided here courtesy of Iranian Center for Endodontic Research

RESOURCES