Skip to main content
Journal of Musculoskeletal & Neuronal Interactions logoLink to Journal of Musculoskeletal & Neuronal Interactions
. 2022;22(4):431–454.

Mechanography in children: pediatric references in postural control

Franziska Pilz 1,*,, Katharina Vill 2,*, Rainer Rawer 3, Michaela Bonfert 2, Moritz Tacke 2, Nicole Heussinger 4, Wolfgang Müller-Felber 2, Astrid Blaschek 2
PMCID: PMC9716303  PMID: 36458382

Abstract

Objective:

To establish pediatric age- and sex-specific references for measuring postural control with a mechanography plate in a single centre, prospective, normative data study.

Methods:

739 children and adolescents (396 male/343 female) aged 4 to 17 years were studied. Each participant completed the following test sequence three times: Romberg, semi-tandem, tandem, each with eyes open and closed, and a one-leg stand with eyes open, and a single two-legged jump. Normal ranges were determined based on percentile calculations using the LMS method. Results from the two-legged jump were compared to a reference population the single two-legged jump (s2LJ) assessment in 2013.

Results:

38 different equilibrium parameters calculated were analysed. Of all parameters Path Length, vCoFmean, Equilibrium Score and Sway Angle showed a low variation within the same age group but high dependency on age and were thus chosen for automated balance assessment.

Conclusion:

Standard values of postural control in healthy children derived from automated balance testing using a mechanography plate were successfully acquired and a subset of parameters for automated balance assessment identified.

Keywords: Balance, Mechanography, Outcome Measures, Postural, Reference Values


Katharina Vill has received speaker fees from Biogen and RG Ärztefortbildung Gesellschaft für Information und Organisation and received travel expenses from Biogen and Santhera. Rainer Rawer is an employee of Novotec Medical GmbH. Michaela Bonfert has received a Leonardo mechanograph as a loan to set up a study protocol to investigate postural control in children who sustained traumatic brain injury (Novotec Medical). Wolfgang Müller-Felber has served as a member of a scientific advisory board for Biogen, Avexis, PTC, Sanofi-Aventis, Roche, Sarepta and Cytokinetics and received travel expenses and speaker fees from Biogen, Avexis, PTC, Sarepta and Sanofi-Aventis. Astrid Blaschek received speaker fees from Roche, Avexis, Sanofi Genzyme, Admedicum and RG Ärztefortbildung Gesellschaft for Information und Organisation. Astrid Blasch also received honoraria for advisory board (Novartis) outside the submitted work. Franziska Pilz and Moritz Tacke have nothing to disclose.

Introduction

Neurological and neuromuscular disorders can affect muscular strength and coordination. Quantification of both entities has been largely based on assessing motor performance with standardized evaluator-based clinical tests.

With increasing availability of targeted therapies, methods to quantify the trajectory of disorders and changes during therapy are essential. Aspects such as balance can currently only be measured using semi-quantitative scales as in the Balance Error Scoring System (BESS) or the pediatric balance scale in children with cerebral palsy[1,2]. Mechanography allows the automatic assessment of physical performance as well as postural control. A ground reaction force plate (GRFP) is used to record variation of ground reaction forces enabling quantification of function and movements relevant to everyday life. Mechanography is an easy, safe and reliable tool to measure lower limb muscle function[3-6].

Paediatric reference values regarding force measurements have been assessed in several cohorts of more than 300 children and adolescents for grip force, one-leg whole body stiffness and multiple one-leg hopping and for counter movement jumps and chair rising tests[7,8]. The use of force measurements in sports medicine is well established, the same parameters have been used for children with neuromuscular disorders[9,10]. Mechanography is also capable of assessing balance by measuring variation of ground reaction forces to calculate a variation in the Centre of Force (CoF). In adult neurology and sports medicine, instrumental assessment of postural control using a force plate is already a widely used diagnostic approach to provide a more precise analysis of body sway than clinical examination[11]. Preliminary studies in children with mild traumatic brain injury show a correlation with conventional scales such as the BESS[1], Bonfert et al., submitted. However, no reference values to examine balance have been published to date in the paediatric population, for whom motor performance is highly age-dependent.

The purpose of this study was to generate reference values for postural control in children and adolescents.

Methods

Study Population

A total cohort of 739 children (396 male, 343 female) took part in the study (Table 1).

Table 1.

Age and sex distribution of the study population.

Age (years) Males Females
4 16 21
5 25 24
6 22 23
7 23 37
8 29 28
9 27 32
10 53 44
11 55 22
12 32 26
13 36 28
14 22 25
15 24 19
16 19 8
17 13 6
Sum 396 343

The children were pre-schoolers, students from kindergarten and regular schools in the city of Munich with its surrounding area. In total six kindergarten sites, three elementary schools and three high schools participated. Only children with attendance in regular (school-) sports activities with written informed parental consent were included.

The over-all physical performance of this cohort was compared to the cohort from 2013 used as normative data built-into in the Leonardo Mechanography v4.4 software. Jumping Mechanography assessments, the SD-Scores (SDS) of the Esslinger Fitness Index (EFI, power output per body mass in relation to age and gender, a performance parameter) as well as the Force Efficiency (FE, force invested for the generated power output, a movement quality parameter) were compared between these two cohorts.

Testing Protocol

The test series were conducted in the setting of regular school sports classes. Precise instruction was given to perform each test, but no training was done before. Each child first performed a single two-leg jump (s2LJ, countermovement jump without restrictions) for comparison to already published reference data, and then the balance test battery with specific test in the following order:

Romberg test eyes open (Rom EO), Romberg test eyes closed (Rom EC), Semi-Tandem test eyes open (SemTan EO), Semi-Tandem test eyes closed (SemTan EC), Tandem test eyes open (Tan EO), Tandem test eyes closed (Tan EC) and One-Leg stand test eyes open (1LS EO). For all tests arms were hanging extended along the body. The dominant foot was determined as the foot that is used preferentially to climb stairs and the one that is more stable in a one-leg stand.

The duration of each test was ten seconds, the total duration of measurements was about five to ten minutes, depending on age and comprehension of the task.

For the Romberg test, the children were asked to stand on the plate with closed, parallel feet for a maximum of ten seconds, with the knees extended. For the Semi-tandem test, the dominant foot was placed forward by half a foot length, with feet closed. For the tandem test, the two feet (the dominant one in front) were placed one behind the other in a straight line. For the one-leg standing test, children were asked to stand on their dominant foot for as long as possible. For jumping, the patients were advised to jump as high as possible trying to land on their forefeet. Every patient performed the test items three times in a row, in exceptional cases with difficult understanding or technical difficulties more often. Individual measurements in which a foot was set down or the position was left were excluded from the statistical calculation. The result, included in the reference data calculation, is the mean of all valid measurements of the test person (occasionally one (1.6%) and four (15.1%) measurements, usually three (77.0%) measurements).

Instrumentation

Mechanography was assessed using the Leonardo Mechanograph® GRFP (Novotec Medical GmbH, Pforzheim, Germany). This device measures ground reaction forces, allowing evaluation of dynamic forces over time as well as calculation of the variation of the Centre of Force (CoF, in literature also referenced as centre of pressure, CoP). The sampling rate of the system is 800 measurements per second per force sensor. The software for data acquisition, storage, calculation, basic statistics, and automated data transfer to the statistics package R was Leonardo Mechanography v4.4, also provided by Novotec Medical GmbH. The principle of Mechanography measurements was published in detail in 2013[7].

Mechanography CoF Calculation

Like standard stabilography and posturography, mechanography measures the displacement of the Centre for Force (CoF) to estimate variation of the Centre of Gravity (CoG). The CoF is defined as the vertical reaction vector on the surface of a force platform. Due to the inverted Definition of the Equilibrium Score for this parameter larger values (in terms of variation) are considered better.

The Leonardo Mechanograph™ uses one vertical force sensor in each of the four corners of each force plate. Based on the force distribution between those four sensors the effective CoF is calculated for each sample point. In general, Leonardo Mechanography down-samples measurement data to 100 Hz before calculating CoF analysis data, as described in[12-14].

Parameter Selection

The variation (trajectory) of the CoF is then analysed and 38 different characteristic parameters (See supplement Table S1 for a complete list) are extracted which encompass mean velocity, mean distance/path length, mean frequency, sway area, anterior-posterior (AP) and medio-lateral (ML) displacement of the CoF.

For clinical application, it is important to identify parameters that show a low variation within a given age and sex group but shows a great variation with increasing age. The coefficient of variation (cv, variation expressed as percentage of the mean value) was estimated using the 2*CV the parameter 2CVe=100*(C75-C25)/C50. It was proposed that a high effect of age on the C50 value and at the same time a low 2CVe of the parameters would be most promising for future differentiation between healthy controls and different patient populations.

To identify the most promising parameters four simple quality parameters were defined:

  • • QP1: Average over all test variants of C75-C25 range divided by average C50 value. This parameter is an estimate of the variability of the specific parameter over all age groups; a small value is preferrable.

  • • QP2: Variation of the average C50 value of each test variant over all test variants.

    This parameter is an estimation of the dependency of the parameter on the task difficulty; a large value is preferrable.

  • • QP3: Average of the difference of the C50 data of age groups 4 and 5 compared to age groups 16 and 17 over all test variants in relation to the mean value.

    This parameter is an estimation for the age dependency of the individual parameter; a large value is preferrable.

  • • QP4: Identical to OP3 but instead of analysing the mean values the difference between the Min and the Max is analysed.

This parameter is an estimation for the age dependency of the individual parameter; a large value is preferrable.

Six parameters discriminating age-dependant changes most reliable were selected for the final reference database.

Statistical analysis

Percentiles for age groups in 0.5-year steps between 4 and 17 years (percentile lines for 3% (C3), 10% (C10), 25% (C25), 50% (C50), 75% (C75), 90% (C90) and 97% (C97)) where calculated using R v4.1.0 with the GAMLSS package. A detailed description of the methods used can be found elsewhere[11].

To eliminate outliers, a two-step iteration approach was used. In a first step percentile data were calculated and then all measurements below the 0.5% and above the 99,5% threshold were eliminated and the percentile data was recalculated identically. For the parameter Std. Ellipse Area this automatic approach did not converge therefore, manual elimination of outliers was needed. This was done by analysing standard deviations per age group assuming a Gausian distribution per age group.

We were able to use the GAMLSS BCPE method in all analyses with the following parameters: Mu=2.0, Sigma=1.0 or 0.5, Nu=0.5. For all calculations 9 subgroups for z-score statistics error estimation were used.

For each gender and age group LMS parameters were calculated, allowing to calculate an accurate z-score based on the reference data for a given combination of gender, age, and individual measurement result (y) according to the following formulas[11]:

((y/M)L-1)/S*L for L≠0

1/S*ln(y/M) for L=0

Formula 1

When applying this formula, one should notice that the supplied reference data is per age group data. However, most data shows a significant change per year. Especially for (more frequent) longitudinal measurements exact age (including fraction of years) should be used instead. In this case, a factor of 0.5 years needs to be added to the reference values, since mathematically rounding to 5 includes values from 4.5 to 5.5 but age groups include values from 5 to 6 years.

For quality estimation two additional plots generated by the GAMLSS package were used: curve fitting errors for each of the age groups and deviation vs. unit normal quantile plot giving a more detailed view of curve-fitting errors.

Results

Testing protocol and comparison to normative data from 2013

The tests were performed over all ages without problems. No participant dropped out of the study due to difficulties performing the tests. Results of the single two-leg jump (s2LJ), were within +/- 0.5 SD of the reference cohort, with only females above 15 years of age showing a slight decrease at greater than -1 SD. The male subjects showed a mean of 0.002 SD for the Esslinger Fitness Index (EFI) and 0.25 for Force Efficiency (FE); female subjects showed a mean -0.375 SD for EFI and -0.29 for FE (Figure 1). For both parameters, the cohort showed similar distribution of 0.87 SD for EFI and 1.14 SD (in the SDS plot, a mean of 0 SD means that the mean is identical to our reference cohort, and a standard deviation of 1 SD means that the group has an identical distribution to our reference cohort.

Figure 1.

Figure 1

EFI and FE scores compared to 2013 reference data. Comparison of SD values in relation to 2013 reference data, a value of 0 SD depicts identical values. Left: EFI SD-Scores (EFI: power output per body mass in relation to age and gender, a performance parameter) Right: Force Efficiency SD-Scores (FE, force invested for the generated power output, a movement quality parameter). Male: solid lines; female: dashed line.

Parameters identified by the quality criteria

According to the prespecified quality criteria 6/38 criteria were selected (Figure 2). In general, velocity histogram parameters were superior to frequency parameters, which showed a moderate variability but very low influence of task difficulty and age. CoF variation data showed high variability and small to moderate influence of task difficulty and age. Subsequently they were not chosen as reference parameters to measure balance.

Figure 2.

Figure 2

Quality parameters QP1 to QP 4 for each of the 38 analysis parameters. Parameters are grouped according to the primary outcome, selected parameters marked. Note that std. ellipse area (well-established parameter in posturography) and one-legged Stance (SD) have been selected as well. Parameter details can be found in supplemental table S1. Mean velocity (vmean, Path length/time); vCoFrange, 95% (derived from velocity histogram).

According to this analysis fs10 parameters (analysis based on data down-sampled to 10Hz) was not considered to be superior to the equivalent data without down-sampling[14].

All parameters selected are shown in figures 3- 6. Reference values and LMS parameter tables to calculate z-scores can be found in the supplemental material (Tables S2-S7):

Figure 3.

Figure 3

Mean velocity (vmean, Path length/time). Listed are all tests that were performed, in each case the mean value from all valid tests per person. Left: C50 lines of vmean [cm/s] vs. age for all measurement variants: from bottom plots to top: Rom EO, Rom EC, SemTan EO, SemTan EC, Tan EO, Tan EC, 1LS EO) Right: 2CVe plots: C75-C25 in percent of C50 value vs. age. male: solid lines, female: dashed lines.

Figure 6.

Figure 6

Standard deviation of the variation of the sway angle, calculated according to 15 based on an estimated height of the CoG at 0.5527*body height. (a) Sway angle AP SD [°] Left: C50 lines Right: 2CVe plots: C75-C25 in percent of C50 value vs. age (b) Sway Angle ML SD [°] Left: C50 lines of vs. age Right: 2CVe plots: C75-C25 in percent of C50 value vs. age. male: solid lines, female: dashed lines.

  • Av. Velocity: Pathlength (total length of the CoF trajectory in mm) divided by test duration in s.

  • vCoFmean: Velocity histogram parameter, the distance of the CoF position between two sample points can be used to calculate the velocity of the movement between two consecutive sample points. The velocity histogram shows how often each velocity value was present during the measurement. V mean is the mean value of all velocities in the velocity histogram.

  • EQ ML and AP: Equilibrium Score Anterior-Posterior in % (AP or y-axis in the area plot) and Medial Lateral in % (ML or x-axis in the area plot) separately, calculated from the AP or ML projection of the 90% Standard Ellipse and estimated height of CoG (see[15] for detailed description).

  • Sway Angle ML and AP: calculated from the average of the last 0.7s of the CoF variation and the height of the CoG estimated to be at 0.5527 * Body Height (see[15] for detailed description).

Females and males show a linear decrease in mean velocity and vCoFrange, 95% score until age 9, where the curve significantly flattens, with a lower velocity indicating a superior balance (Figures 3 and 4 left), This effect is most pronounced for the One-Leg stand (1LS) as the most difficult one of the test battery. In all test variants females show on average slightly smaller and therefore a superior balance performance as compared to males, particularly pronounced in the 1LS.

Figure 4.

Figure 4

vCoFrange 95%. Listed are all tests that were performed, in each case the mean value from all valid tests per person. Left: C50 lines of vCoFrange 95 [cm/s] vs. age for all measurement variants: from bottom plots to top: Rom EO, Rom EC, SemTan EO, SemTan EC, Tan EO, Tan EC, 1LS EO). Right: 2CVe plots: C75-C25 in percent of C50 value vs. age. male: solid lines, female: dashed lines.

Equilibrium Score

Again, girls and boys show a linear increase until the age of 9 years, at which time the curve flattens (Figure 5). In the anterior-posterior movement, the compensatory movements in the tandem test are more pronounced in younger children than in the single-leg stand. Interestingly, the EQ-Score has an extremely low variance in its raw values with, large age variability, which also makes it a promising parameter for quantifying balance.

Figure 5.

Figure 5

EQ-Score. Listed are all tests that were performed, in each case the mean value from all valid tests per person. (a)EQsScore AP: Left: C50 lines of EQ-Score AP [%] vs. age for all measurement variants: from bottom plots to top: Rom EO, Rom EC, SemTan EO, SemTan EC, Tan EO, Tan EC, 1LS EO). Right: 2CVe plots: C75-C25 in percent of C50 value vs. age. (b) EQ-Score ML : Left: C50 lines of EQ-Score ML [%] vs. age for all measurement variants: from bottom plots to top: Rom EO, Rom EC, SemTan EO, SemTan EC, Tan EO, Tan EC, 1LS EO). Right: 2CVe plots: C75-C25 in percent of C50 value vs. age. male: solid lines, female: dashed lines

Sway Angle

The lower the sway angle, the more stable the patient stands. Girls and boys show a linear decrease until the age of 9 years, at which time the curve flattens (Figure 6). In the medial-lateral movement, the compensatory movements in the Tandem and Semi-Tandem test are more pronounced in younger children than in the Single-Leg stand. The Sway Angle SD parameter has an average variance, but the least age variability of all analysed analysis parameters, which nevertheless qualifies it as a parameter for measuring balance.

Discussion

With this study, we provide normative values that incorporate balance performance from a large cohort of 739 healthy children attending public schools in Munich, Germany.

To ensure that the present study cohort does not differ from normative data established in 2013[7,8], physical performance measurements were compared using EFI and FE resulting in similar results(+/-0.5 SD) . The current cohort reflects an average pediatric population, as children visiting all regular school types took part. Since overall physical performance has an impact on balance skills, we propose to include EFI as well as FE data for future mechanography studies to characterize the study population[16].

Balance Parameters

We have identified four variables Vmean (path length/time), a parameter of the velocity histogram (vCoFmean), the Equilibrium Score (ML and AP) and the Sway Angle SD (ML and AP) with a high potential to quantify balance. Since we assume that balance improves significantly during maturation in childhood, we selected parameters that show a low variation within a given age and sex group along with a great variation with increasing age.

The distinct bend in the curve reaching adult abilities around age 9 has been seen in other studies on the development of balance skills[17-19]. Interestingly, balance control in antero-posterior (AP) direction was observed earlier than in the medio-lateral direction (ML) as seen in the equilibrium score or sway angle datasets. In developmental studies postural control of AP is reached earlier than in ML plane. Blanchet et al. evaluated the centre of pressure displacement during maximum leaning in four directions showing that postural mechanisms in the anteroposterior axis reach maturity before the mechanisms involved in controlling the mediolateral axis[20]. Clear differences in postural sway have been documented even between children with minimal developmental difficulties (e.g. developmental coordination disorder) and healthy controls[21]. Control of posture in the medio-lateral direction is seen as a good parameter to describe the overall extent of postural control in healthy volunteers and patients. Patients with Multiple sclerosis compared to healthy persons exhibited greater ML motion compared to sway in the AP direction associated to a significantly greater risk of falls in daily life[22].

In our study males consistently showed poorer balance than girls, clearly justifying differentiation for reference data, although the differences are certainly not as pronounced as in the over-all physical performance measurements, especially at the adolescent age[7,8]. Sex differences have been found in other studies, among sportive and non-sportive children. These become apparent from scholar age[17-19,23]. It has been suggested that females might have a better use of vestibular information and males lag behind with their physical growth as well as the development of their neuromuscular system[24]. It should be noted that another factor for this effect might be the observation of the test operator who noticed that females during the test tended to be more focussed (less time and repetition of instructions) compared to males.

Parameter Scalability between Test Variants

For a standardized clinical application, the relation of analysis parameters between the different test variants is of interest. The more demanding a balance test becomes for an individual, the better it distinguishes balance abilities compared to a reference database. However, if the individual test is too difficult for one subject that it has to be ended before time or there is an incident with a high impact on the analysis parameters is recorded (e.g. the second foot touched the force plate during the actual test duration of a One-Leg stand). In both cases the test result is therefore not reliable.

However, it would be favourable if the tests variants of a battery best suited are used on an individual basis (as difficult as possible but still achievable) then results would still be comparable to other individuals using different test difficulties.

Although not in the focus of the current analysis, the results of the comparison of C50 plots vs. age show that for some analysis parameters (especially the mean velocity) a strict hierarchy within the test battery can be observed even when combining the EO/EC option with each test. The resulting hierarchy order with increasing difficulty is: Rom EO, Rom EC, SemTan EO, SemTand EC, Tan EO, Tan EO, 1L EO (1L EC, which was not part of the test battery but would be the next difficult test).

For vmean in females there is a quite constant delta between C50 curves which indicate that even independent of age a scaling factor for each test variant can be calculated. This would allow a scalable comparison of a test results. For male subjects an adjustment curve per age group would be needed to make test results of the different test variants comparable.

Other analysis parameters like the Sway Angle show a less distinct hierarchy where for example the EO/EC option seem to make much less differences (Figure 6a, Sway Angle SD AP) and a separation between tests variants is not as clear (Figure 6b, Sway Angle SD ML).

Clinical relevance of this dataset

This reference dataset provides normative values to test postural control using automated analysis with the Leonardo Mechanograph force plate. Instrumented posturography is ubiquitously applicable in healthy children within the context of sports medicine, as well as in child neurology. Balance control is not only influenced by functioning cerebellar circuits, but sensory processes such as visual, vestibular and proprioceptive input. In addition, there is now a wealth of evidence indicating that balance involves higher-order brain systems for the integration of not only somatosensory, visual, and vestibular information, but for memory needed for anticipatory movements[25]. Thus, postural control can be hindered by many childhood onset disorders from peripheral neuromuscular disorders or neuropathies to global developmental disorders and cerebral palsy. Since potential new drugs are currently being developed for many neurological diseases, suitable clinical test instruments to quantify physical performance and coordination to evaluate the effects of new therapeutic targets are mandatory.

Limitations and future work

Ethics approval was only obtained for balance and strength measurements. As a result, we were not able to acquire information on lifestyle habits, nor did we document ethnic background. In a minority of participants (7,9%) less than three repetitions of tests are available. In principle, an increasing number of measurements to average decreases variability, hence it is favourable to use the average of more than one measurement.

However, given the limitations in time it was not possible to achieve four measurements of all participants. Using a cut-off of a minimum of three measurements would have resulted in 7.9% (one repetitions: 1.6%, two repetitions 6.3%) less data points but most likely representing the low performance percentiles of the study population with significant effects on the spread of the calculated percentiles for lower performance levels. Including the groups of 1 and 2 repetitions thus results in a considerable increase in variability in this group (resulting in an increased spread for the lower performance percentiles) but it also allows to represent this important sub-group. Not representing this sub-group would therefore increase the thresholds for the lower performance levels significantly. The authors therefore considered the negative effect of an increased variability for this subgroup to be acceptable compared to not representing them in the reference data at all.

Conclusion

The data from healthy participants provide a reference dataset for the assessment of postural control in childhood by mechanography. This study identified four parameters that show a low variation within a given age and sex group but a greater variation with increasing age.

In addition to sports medicine, mechanography may supplement clinical tools to assess the trajectory and effect of interventions in normal development and pediatric neurology.

Ethics approval

The local ethics committee of the Ludwig Maximillian’s University of Munich approved the study (internal No: 18-775).

Funding

This project was supported by grants from PTC Therapeutics Germany.

Acknowledgements

The authors thank all parents and children who participated in this study, as well as the participating schools for their kind cooperation and the possibility of carrying out the measurements within the framework of the regular sports classes. WMF, KV und AB are members of the European reference network (ERN) neuromuscular diseases.

Table S1.

Parameters measured by Mechanography. List of names, units and description of all balance parameters currently analyzed by the Leonardo Mechanograpy Software. According to the method described in the selections section the six most promising (highlighted in bold letters) parameters have been selected for detailed discussion.

Name Unit Description
Path Length mm Total Length CoF trajectory, resulting from variation of position of the force vector entering the platform (CoF aka. CoP); Sum of the position distance between each to consecutive sample points of CoF
v mean cm/s Mean velocity of CoF, equivalent to pathlength divided by measurement time
Plen X (ML) mm Path Length, only analysing the projection in the ML plane
V mean X (ML) cm/s Mean velocity of CoF ML component (projection in the ML plane)
Plen Y (AP) mm Path Length, only analysing the projection in the AP plane
V mean Y (AP) cm/s Mean velocity of CoF AP component (projection in the AP plane)
Plen / Area 1/mm Path Length / Standard Ellipse area
v mean SD %
Std.Ellipse Area cm2 Standard Ellipse (90% confidence ellipse) area covering 90% of all CoF points
Std.Ellipse num. Excent. Standard Ellipse numerical eccentricity, (a value of 0.5 is equivalent to a circle, larger values is more elliptic)
Std.Ellipse Angle ° Angle of the main axis of the standard ellipse
F tot SD N Std. Dev. of vertical Force variation over complete analysis section equivalent to RMS difference to average Force during analysed section
F tot rel SD N/kg Std. Dev. of vertical Force variation in relation to body mass over complete analysis section
CoF Dist. SD cm Std. Dev. of CoF Distance variation (direction independent distance to average position) over complete analysis section, equivalent to RMS distance from mean position
CoF X x (ML) cm Std. Dev. of CoF variation x component (ML), equivalent to RMS distance from mean position (ML) for projection in ML plane
CoF Y x (AP) cm Std. Dev. of CoF variation x component (AP), equivalent to RMS distance from mean position (AP) for projection in ML plane
max. Sway Angle ML ° Max Sway Angle ML, Downsampled to 100Hz, calculated over the last 0.7 sec., assuming height of CoG is 0.5527 * Body Height according to[12]
max. Sway Angle AP ° Max Sway Angle AP, Downsampled to 100Hz, calculated over the last 0.7 sec., assuming height of CoG is 0.5527 * Body Height according to (12)
Sw. Angle ° Std.Dev. Sway Angle ML component (see above)
ML Std. Dev.
Sw. Angle AP Std. Dev. ° Std.Dev. Sway Angle AP component (see above)
Bt: Sw. Angle Peak to Peak ML ° Peak to Peak angular displacement of Sway Angle in ML direction
Bt: Sw. Angle Peak to Peak AP ° Peak to Peak angular displacement of Sway Angle in AP direction
Std. Elllipse dimension ML cm 90% Standard Ellipse dimension in ML direction
Std. Elllipse dimension AP cm 90% Standard Ellipse dimension in AP direction
EQ ML % Equilibrium Score in ML direction. Calculated from the ML projection of the 90% Std.Ellipse and estimated height of CoG according to[12]
EQ AP % Equilibrium Score in AP direction. Calculated from the AP projection of the 90% Std.Ellipse and estimated height of CoG according to[12]
v CoF mean cm/s Velocity histogram: Mean of al values
V CoF median cm/s Velocity histogram: Median of al values
V CoF range cm/s Velocity histogram: 95% cut-of frequency (95% percentile)
Dominant frequency Hz Dominant frequency of CoF power spectral density (PSD), analysed frequency Band: 0.15Hz..10Hz, according to[15]
Median frequency Hz Median frequency of CoF power spectral density (PSD), analysed frequency Band: 0.15Hz..10Hz, according to[15]
Max. Freq. (95%) Hz Frequency range covering 95% of energy (95% percentile), analysed frequency Band: 0.15Hz..10Hz, according to[15]
Freq. Dispersion Unitless measure of the variability of the power spectral density (PSD) frequency content (zero for pure sinusoid; increases with spectral bandwidth to one) analysed frequency Band: 0.15Hz..10Hz, according to[15]
fs10 rel. PLeng mm/s Path length / duration, data down-sampled to 10Hz according to[16]
fs10 av. R mm Average radial displacement (ARD), data down-sampled to 10Hz according to[16]
fs10 Ampl. ML mm Amplitude x-component (ML), data down-sampled to 10Hz according to[16]
fs10 Ampl. AP mm Amplitude y-component (AP), data down-sampled to 10Hz according to[16]
fs 10 Area/s mm2/s Area (90° std. Ellipse) / duration, data down-sampled to 10Hz according to[16]
fs 10 av. Freq. Hz Average frequency, data down-sampled to 10Hz according to[16]

Supplemental Tables S2-S7. The following tables show the LMS parameters needed to calculate ager- and gender specific z-scores according to Formula 1 (where M = C50, L = Lambda, S = Sigma) for the listed parameters and test variants. 1 (where M = C50, L = Lambda, S = Sigma) for the listed parameters and test variants.

Table S2. Parameter: mean velocity (vmean).

Table S2a: LMS parameters per age group and gender, Romberg Tests, vmean [m/s].

RomEO - vmean [m/s] RomEC - vmean [m/s]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 210,5631 -1,5059 0,1999 208,3057 -0,2005 0,1425 290,5039 -0,7244 0,2929 262,5420 -0,5259 0,1476
4 199,8784 -1,3643 0,2045 194,5369 -0,1829 0,1456 270,4257 -0,6302 0,2882 243,1005 -0,5212 0,1561
5 189,1676 -1,2231 0,2094 180,8554 -0,1667 0,1487 250,3754 -0,5360 0,2835 223,7688 -0,5164 0,1650
6 178,4202 -1,0843 0,2144 167,6730 -0,1591 0,1522 230,6207 -0,4428 0,2785 205,1791 -0,5119 0,1740
7 168,1133 -0,9503 0,2194 155,5371 -0,1669 0,1560 212,0934 -0,3556 0,2736 188,4430 -0,5114 0,1835
8 159,5112 -0,8232 0,2245 145,3911 -0,1925 0,1604 196,2458 -0,2786 0,2693 174,6545 -0,5159 0,1933
9 153,3483 -0,7038 0,2293 137,4276 -0,2357 0,1657 183,9815 -0,2147 0,2659 163,8331 -0,5245 0,2038
10 149,1456 -0,5919 0,2332 131,0420 -0,2898 0,1722 174,8893 -0,1671 0,2636 155,4624 -0,5373 0,2138
11 145,6831 -0,4872 0,2364 125,4964 -0,3482 0,1797 167,5373 -0,1337 0,2629 148,7157 -0,5535 0,2228
12 141,9226 -0,3881 0,2381 120,0695 -0,4097 0,1875 160,3425 -0,1072 0,2631 142,4607 -0,5738 0,2296
13 138,2640 -0,2956 0,2378 114,8877 -0,4754 0,1951 153,8364 -0,0834 0,2629 136,5609 -0,5999 0,2333
14 135,2121 -0,2091 0,2351 110,5001 -0,5425 0,2023 149,2411 -0,0629 0,2615 131,1627 -0,6336 0,2340
15 132,6976 -0,1280 0,2308 107,0367 -0,6063 0,2095 146,3666 -0,0451 0,2586 126,0989 -0,6735 0,2327
16 131,0683 -0,0515 0,2258 104,3571 -0,6645 0,2160 144,9874 -0,0291 0,2546 121,0734 -0,7172 0,2303
17 130,0730 0,0234 0,2210 101,9647 -0,7203 0,2223 144,2521 -0,0130 0,2500 116,0014 -0,7621 0,2273

Table S2b.

LMS parameters per age group and gender, Semi-Tandem Tests, vmean [m/s].

SemTnEO - vmean [m/s] SemTanEC - vmean [m/s]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 292,4163 -1,0956 0,2354 284,6394 -0,8282 0,1962 371,5929 -0,8345 0,3014 347,8633 -0,5943 0,1813
4 275,7711 -1,0260 0,2399 265,6641 -0,7639 0,2018 349,3509 -0,7722 0,2984 322,8271 -0,4574 0,1881
5 259,2450 -0,9568 0,2445 246,7650 -0,6998 0,2076 327,1306 -0,7104 0,2955 297,8943 -0,3207 0,1950
6 243,3580 -0,8897 0,2496 228,5091 -0,6374 0,2138 305,2094 -0,6507 0,2927 273,9788 -0,1864 0,2019
7 228,7380 -0,8273 0,2551 212,0727 -0,5819 0,2204 284,7888 -0,5943 0,2903 253,4775 -0,0631 0,2096
8 217,1738 -0,7693 0,2603 197,9043 -0,5404 0,2267 268,2387 -0,5404 0,2877 238,0251 0,0397 0,2181
9 210,0914 -0,7126 0,2639 186,1155 -0,5162 0,2328 256,9918 -0,4866 0,2844 227,3991 0,1178 0,2269
10 206,8103 -0,6542 0,2650 177,2012 -0,5074 0,2380 249,7886 -0,4320 0,2804 219,9852 0,1714 0,2347
11 205,2192 -0,5934 0,2637 170,8176 -0,5107 0,2417 243,4924 -0,3763 0,2762 214,4307 0,2043 0,2401
12 202,6073 -0,5323 0,2605 165,3417 -0,5221 0,2433 235,1584 -0,3171 0,2722 208,5946 0,2217 0,2431
13 198,1510 -0,4724 0,2550 159,9967 -0,5394 0,2435 224,7283 -0,2538 0,2682 201,4543 0,2277 0,2437
14 193,0131 -0,4137 0,2475 154,7734 -0,5593 0,2427 214,5277 -0,1881 0,2637 193,4666 0,2268 0,2432
15 187,9791 -0,3547 0,2386 149,4179 -0,5784 0,2415 205,1716 -0,1199 0,2587 184,4134 0,2203 0,2423
16 182,7638 -0,2929 0,2288 144,5310 -0,5968 0,2398 196,5274 -0,0493 0,2535 173,8003 0,2114 0,2408
17 177,3148 -0,2302 0,2188 139,9914 -0,6155 0,2377 187,7818 0,0228 0,2483 162,0881 0,2011 0,2387

Table S2c.

LMS parameters per age group and gender, Tandem Tests, vmean [m/s].

TanEO - vmean [m/s] TanEC - vmean [m/s]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 393,9302 -0,8282 0,2737 401,3895 -0,9459 0,2460 540,6653 -0,8097 0,2641 505,4153 -0,4480 0,2441
4 377,7004 -0,7654 0,2771 375,8632 -0,9099 0,2433 512,8263 -0,7198 0,2667 472,9714 -0,4389 0,2447
5 361,5912 -0,7023 0,2805 350,4055 -0,8740 0,2407 485,1718 -0,6299 0,2694 440,5595 -0,4289 0,2453
6 346,0424 -0,6379 0,2841 325,7036 -0,8386 0,2390 458,4612 -0,5405 0,2723 408,7619 -0,4140 0,2464
7 331,3893 -0,5732 0,2875 303,9024 -0,8034 0,2386 433,3058 -0,4534 0,2750 380,2120 -0,3917 0,2480
8 319,6445 -0,5104 0,2897 287,2408 -0,7689 0,2392 411,6381 -0,3721 0,2765 358,4225 -0,3590 0,2492
9 312,9876 -0,4544 0,2897 276,3362 -0,7384 0,2417 395,6283 -0,3008 0,2761 343,6336 -0,3155 0,2497
10 311,0790 -0,4099 0,2866 269,8120 -0,7176 0,2457 384,3800 -0,2404 0,2743 334,2688 -0,2639 0,2487
11 310,6400 -0,3764 0,2810 264,3268 -0,7083 0,2498 373,6339 -0,1899 0,2717 327,2838 -0,2029 0,2459
12 307,2216 -0,3514 0,2747 257,3755 -0,7076 0,2532 358,7177 -0,1462 0,2685 318,9284 -0,1336 0,2411
13 300,2890 -0,3322 0,2677 249,5213 -0,7117 0,2553 341,3804 -0,1066 0,2648 308,6109 -0,0607 0,2348
14 292,0166 -0,3169 0,2597 241,0725 -0,7167 0,2569 326,0986 -0,0704 0,2602 296,5667 0,0142 0,2275
15 282,7948 -0,3018 0,2506 230,9741 -0,7194 0,2591 313,4119 -0,0363 0,2548 283,0344 0,0896 0,2197
16 272,4543 -0,2855 0,2408 218,4634 -0,7201 0,2620 301,4853 -0,0032 0,2488 266,9870 0,1666 0,2118
17 261,1039 -0,2685 0,2309 204,2578 -0,7197 0,2655 289,0205 0,0293 0,2424 248,9475 0,2446 0,2040

Table S2d.

LMS parameters per age group and gender, One Leg Stance, vmean [m/s].

1L EO - vmean [m/s]
Male Female
Age C50 Lambda Sigma C50 Lambda Sigma
3 922,5746 0,3351 0,2949 711,1495 -0,5722 0,2559
4 858,7285 0,2835 0,2948 664,4194 -0,5210 0,2538
5 795,0391 0,2321 0,2946 617,6474 -0,4699 0,2517
6 732,4480 0,1815 0,2940 570,9651 -0,4186 0,2491
7 672,7598 0,1325 0,2920 526,4385 -0,3700 0,2454
8 618,7642 0,0846 0,2881 487,7524 -0,3314 0,2406
9 575,5103 0,0384 0,2828 455,2329 -0,3088 0,2354
10 547,4494 -0,0051 0,2772 431,1204 -0,3046 0,2306
11 532,0197 -0,0478 0,2729 417,1009 -0,3175 0,2258
12 522,4338 -0,0931 0,2695 406,4656 -0,3406 0,2213
13 514,4264 -0,1396 0,2665 394,2852 -0,3685 0,2179
14 507,0164 -0,1880 0,2638 378,5650 -0,3939 0,2159
15 498,3354 -0,2387 0,2610 362,7413 -0,4138 0,2150
16 488,0953 -0,2925 0,2586 350,3517 -0,4315 0,2143
17 475,3389 -0,3488 0,2565 340,1125 -0,4488 0,2139

Table S3a.

LMS parameters per age group and gender, Romberg Tests, vCoFrange,95% [m/s].

RomEO - vCoFrange,95% [m/s] RomEC - vCoFrange,95% [m/s]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 3,2340 -1,4984 0,2289 3,2673 -0,4535 0,1873 4,6268 -0,9182 0,3016 4,0960 -0,2557 0,2020
4 3,0737 -1,3580 0,2368 3,0434 -0,4094 0,1875 4,2893 -0,8052 0,3010 3,7818 -0,2625 0,2078
5 2,9130 -1,2180 0,2449 2,8213 -0,3661 0,1877 3,9525 -0,6924 0,3003 3,4687 -0,2693 0,2138
6 2,7526 -1,0803 0,2533 2,6091 -0,3274 0,1880 3,6235 -0,5810 0,2996 3,1643 -0,2772 0,2201
7 2,6011 -0,9472 0,2619 2,4174 -0,2992 0,1894 3,3209 -0,4747 0,2992 2,8900 -0,2887 0,2275
8 2,4790 -0,8202 0,2702 2,2632 -0,2829 0,1924 3,0691 -0,3774 0,2996 2,6712 -0,3050 0,2360
9 2,3966 -0,6996 0,2775 2,1451 -0,2753 0,1972 2,8821 -0,2902 0,3007 2,5090 -0,3285 0,2454
10 2,3452 -0,5855 0,2833 2,0496 -0,2709 0,2038 2,7458 -0,2135 0,3027 2,3890 -0,3607 0,2546
11 2,2965 -0,4765 0,2881 1,9644 -0,2639 0,2115 2,6226 -0,1433 0,3062 2,2931 -0,4004 0,2626
12 2,2297 -0,3680 0,2909 1,8839 -0,2555 0,2199 2,4874 -0,0730 0,3102 2,1998 -0,4483 0,2682
13 2,1596 -0,2593 0,2909 1,8096 -0,2474 0,2280 2,3537 0,0008 0,3127 2,1074 -0,5049 0,2705
14 2,1044 -0,1509 0,2881 1,7507 -0,2369 0,2357 2,2536 0,0766 0,3125 2,0192 -0,5681 0,2698
15 2,0635 -0,0428 0,2833 1,7074 -0,2237 0,2435 2,1842 0,1533 0,3092 1,9327 -0,6374 0,2671
16 2,0343 0,0660 0,2773 1,6786 -0,2106 0,2512 2,1347 0,2302 0,3035 1,8421 -0,7099 0,2629
17 2,0114 0,1757 0,2711 1,6557 -0,1992 0,2590 2,0922 0,3071 0,2968 1,7491 -0,7833 0,2580

Table S3b.

LMS parameters per age group and gender, Semi-Tandem Tests, vCoFrange,95% [m/s].

SemTnEO - vCoFrange,95% [m/s] SemTanEC - vCoFrange,95% [m/s]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 5,0003 -1,0078 0,2956 4,8845 -1,1304 0,2065 6,2047 -0,8634 0,3070 6,1262 -0,9273 0,2074
4 4,6883 -0,9627 0,2998 4,4980 -1,0221 0,2201 5,7957 -0,7729 0,3120 5,5876 -0,7603 0,2176
5 4,3778 -0,9180 0,3043 4,1150 -0,9144 0,2345 5,3876 -0,6827 0,3170 5,0527 -0,5938 0,2282
6 4,0772 -0,8755 0,3096 3,7576 -0,8116 0,2491 4,9900 -0,5939 0,3220 4,5497 -0,4304 0,2388
7 3,7997 -0,8361 0,3159 3,4618 -0,7221 0,2628 4,6337 -0,5084 0,3266 4,1403 -0,2753 0,2497
8 3,5790 -0,7987 0,3222 3,2350 -0,6500 0,2745 4,3653 -0,4259 0,3300 3,8596 -0,1333 0,2609
9 3,4457 -0,7606 0,3266 3,0610 -0,5942 0,2842 4,2028 -0,3467 0,3312 3,6919 -0,0038 0,2728
10 3,3948 -0,7179 0,3270 2,9350 -0,5503 0,2911 4,1117 -0,2720 0,3302 3,5878 0,1139 0,2842
11 3,3776 -0,6678 0,3238 2,8438 -0,5179 0,2951 4,0216 -0,2041 0,3283 3,5038 0,2218 0,2928
12 3,3393 -0,6096 0,3176 2,7490 -0,4950 0,2961 3,8778 -0,1438 0,3266 3,4003 0,3196 0,2976
13 3,2705 -0,5425 0,3085 2,6396 -0,4826 0,2950 3,6817 -0,0916 0,3256 3,2644 0,4075 0,2988
14 3,1973 -0,4667 0,2969 2,5262 -0,4787 0,2927 3,4875 -0,0471 0,3247 3,1102 0,4867 0,2986
15 3,1371 -0,3833 0,2838 2,4121 -0,4785 0,2899 3,3102 -0,0052 0,3242 2,9465 0,5585 0,2988
16 3,0893 -0,2952 0,2699 2,3039 -0,4789 0,2869 3,1450 0,0371 0,3244 2,7674 0,6248 0,2991
17 3,0447 -0,2063 0,2560 2,1942 -0,4793 0,2841 2,9725 0,0805 0,3247 2,5713 0,6896 0,2994

Table S3c.

LMS parameters per age group and gender, Tandem Tests, vCoFrange,95% [m/s].

TanEO - vCoFrange,95% [m/s] TanEC - vCoFrange,95% [m/s]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 7,2312 -0,6253 0,3378 6,8852 -0,9910 0,3159 9,6609 -0,8533 0,3075 9,6350 -0,0723 0,3816
4 6,9080 -0,6079 0,3445 6,4668 -0,9714 0,3201 9,1372 -0,7703 0,3119 8,8778 -0,0758 0,3653
5 6,5874 -0,5902 0,3514 6,0523 -0,9522 0,3243 8,6175 -0,6875 0,3165 8,1255 -0,0794 0,3499
6 6,2809 -0,5711 0,3584 5,6616 -0,9356 0,3282 8,1195 -0,6068 0,3211 7,4073 -0,0841 0,3367
7 5,9962 -0,5502 0,3656 5,3214 -0,9239 0,3309 7,6575 -0,5303 0,3255 6,7805 -0,0909 0,3252
8 5,7557 -0,5277 0,3720 5,0555 -0,9170 0,3317 7,2570 -0,4590 0,3282 6,3082 -0,0982 0,3149
9 5,5945 -0,5054 0,3758 4,8550 -0,9150 0,3315 6,9591 -0,3955 0,3283 5,9770 -0,1047 0,3052
10 5,5116 -0,4855 0,3747 4,7060 -0,9187 0,3300 6,7470 -0,3411 0,3260 5,7470 -0,1112 0,2960
11 5,4448 -0,4685 0,3676 4,5681 -0,9246 0,3260 6,5288 -0,2955 0,3228 5,5610 -0,1149 0,2872
12 5,2991 -0,4546 0,3568 4,4030 -0,9304 0,3191 6,2163 -0,2552 0,3199 5,3453 -0,1139 0,2787
13 5,0783 -0,4430 0,3435 4,2159 -0,9341 0,3094 5,8454 -0,2179 0,3168 5,1006 -0,1109 0,2713
14 4,8587 -0,4329 0,3277 4,0177 -0,9335 0,2981 5,5193 -0,1834 0,3133 4,8435 -0,1074 0,2656
15 4,6883 -0,4235 0,3105 3,7961 -0,9297 0,2863 5,2632 -0,1512 0,3090 4,5859 -0,1042 0,2618
16 4,5861 -0,4147 0,2928 3,5241 -0,9241 0,2747 5,0412 -0,1203 0,3045 4,3087 -0,1014 0,2590
17 4,5109 -0,4065 0,2759 3,2094 -0,9177 0,2638 4,8164 -0,0896 0,2999 4,0064 -0,0980 0,2566

Table S3d.

LMS parameters per age group and gender, One Leg Stance, vCoFrange,95% [m/s].

1L EO - vCoFrange,95% [m/s]
Male Female
Age C50 Lambda Sigma C50 Lambda Sigma
3 16,1151 0,7189 0,2906 12,5119 -0,0975 0,2813
4 15,0204 0,6334 0,2968 11,7064 -0,1017 0,2808
5 13,9267 0,5480 0,3030 10,9010 -0,1059 0,2803
6 12,8438 0,4637 0,3086 10,0988 -0,1094 0,2795
7 11,8004 0,3818 0,3123 9,3228 -0,1082 0,2784
8 10,8413 0,3022 0,3132 8,6218 -0,1035 0,2777
9 10,0704 0,2248 0,3110 8,0170 -0,1017 0,2777
10 9,5839 0,1498 0,3063 7,5702 -0,1085 0,2778
11 9,3285 0,0784 0,3004 7,3242 -0,1270 0,2765
12 9,1866 0,0107 0,2939 7,1490 -0,1571 0,2734
13 9,0746 -0,0524 0,2871 6,9450 -0,1975 0,2688
14 8,9489 -0,1114 0,2796 6,6540 -0,2423 0,2634
15 8,7743 -0,1693 0,2710 6,3285 -0,2882 0,2578
16 8,5520 -0,2292 0,2618 6,0229 -0,3356 0,2523
17 8,2724 -0,2904 0,2526 5,7296 -0,3835 0,2473

Table S4a.

LMS parameters per age group and gender, Romberg Tests, Equilibrium Score ML [%].

RomEO - Eqilibrium Score ML [%] RomEC - Equilibirum Score ML [%]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 87,3252 17,7018 0,0520 87,2360 7,5575 0,0385 82,9529 7,3979 0,0653 84,3454 4,4830 0,0355
4 88,2540 19,3798 0,0500 88,2496 8,6836 0,0341 84,4813 10,0275 0,0633 85,7071 5,2988 0,0335
5 89,1724 21,0533 0,0481 89,2578 9,7984 0,0304 86,0052 12,6569 0,0613 87,0628 6,1213 0,0316
6 90,0812 22,6984 0,0464 90,2358 10,8636 0,0271 87,4515 15,2841 0,0593 88,3781 6,9887 0,0298
7 90,9409 24,2792 0,0447 91,1520 11,9109 0,0246 88,7649 17,9018 0,0572 89,5869 7,9674 0,0282
8 91,6822 25,7601 0,0432 91,9506 13,0092 0,0226 89,8728 20,5027 0,0547 90,5940 9,1303 0,0266
9 92,2300 27,1260 0,0415 92,5857 14,2006 0,0211 90,7281 23,0771 0,0519 91,3679 10,4688 0,0251
10 92,6013 28,3647 0,0398 93,0750 15,4930 0,0201 91,3651 25,6101 0,0489 91,9598 11,9440 0,0236
11 92,8605 29,4952 0,0382 93,4608 16,8758 0,0193 91,8680 28,0965 0,0459 92,4542 13,5445 0,0222
12 93,0718 30,5425 0,0368 93,7851 18,3378 0,0186 92,3140 30,5324 0,0430 92,9067 15,2643 0,0208
13 93,2506 31,5193 0,0355 94,0471 19,8833 0,0181 92,7082 32,9277 0,0404 93,2944 17,0888 0,0195
14 93,3421 32,4480 0,0342 94,2419 21,5101 0,0175 93,0242 35,2936 0,0379 93,5919 18,9843 0,0183
15 93,3431 33,3474 0,0328 94,3899 23,1858 0,0170 93,2623 37,6381 0,0355 93,8027 20,9089 0,0173
16 93,2943 34,2246 0,0315 94,5009 24,8829 0,0166 93,4498 39,9668 0,0333 93,9586 22,8342 0,0163
17 93,2340 35,0877 0,0303 94,5817 26,5796 0,0162 93,6360 42,2847 0,0312 94,0759 24,7556 0,0154

Table S4b.

LMS parameters per age group and gender, Semi-Tandem Tests, Equilibrium Score ML [%].

SemTnEO - Eqilibrium Score ML [%] SemTanEC - Eqilibrium Score ML [%]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 84,4425 12,7219 0,0733 84,7461 11,2071 0,0570 81,6211 8,1007 0,0732 82,6319 7,2114 0,0541
4 85,5991 14,1373 0,0711 86,1226 13,4207 0,0568 83,0268 10,0261 0,0695 84,1317 7,4385 0,0492
5 86,7350 15,5517 0,0689 87,4793 15,6360 0,0566 84,3975 11,9487 0,0661 85,6292 7,6661 0,0448
6 87,8558 16,9618 0,0669 88,7714 17,8582 0,0563 85,7445 13,8545 0,0629 87,0788 7,9074 0,0409
7 88,9210 18,3657 0,0648 89,9272 20,0839 0,0556 87,0341 15,7287 0,0600 88,3900 8,2191 0,0374
8 89,8366 19,7419 0,0627 90,8828 22,3122 0,0545 88,1847 17,5560 0,0572 89,4678 8,6615 0,0343
9 90,5115 21,0643 0,0602 91,6080 24,5336 0,0527 89,1350 19,3301 0,0542 90,2849 9,2704 0,0316
10 90,9511 22,3214 0,0575 92,1286 26,7384 0,0506 89,8891 21,0509 0,0512 90,8947 10,0681 0,0291
11 91,2564 23,5165 0,0548 92,5275 28,9310 0,0483 90,5417 22,7102 0,0484 91,3818 11,0141 0,0268
12 91,5552 24,6594 0,0524 92,8738 31,1207 0,0459 91,1701 24,3184 0,0458 91,8128 12,0384 0,0246
13 91,8541 25,7701 0,0501 93,1814 33,3110 0,0436 91,7595 25,9001 0,0433 92,2069 13,1002 0,0226
14 92,0987 26,8636 0,0479 93,4954 35,4907 0,0414 92,1944 27,4721 0,0408 92,5846 14,1849 0,0207
15 92,2893 27,9478 0,0457 93,8085 37,6564 0,0394 92,4756 29,0409 0,0383 92,9016 15,2754 0,0190
16 92,4809 29,0282 0,0436 94,0805 39,8147 0,0374 92,6619 30,6093 0,0359 93,1692 16,3508 0,0173
17 92,7084 30,1066 0,0417 94,3129 41,9699 0,0354 92,8257 32,1771 0,0336 93,3900 17,4200 0,0158

Table S4c.

LMS parameters per age group and gender, Tandem Tests, Equilibrium Score ML [%].

TanEO - Eqilibrium Score ML [%] TanEC - Equilibirum Score ML [%]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 80,8008 7,2002 0,0968 81,0855 7,9114 0,0902 78,0702 5,6636 0,0909 79,7420 6,5050 0,0840
4 82,4259 8,5683 0,0927 82,8240 9,2958 0,0874 80,0023 7,4765 0,0859 81,7356 8,6805 0,0802
5 83,9922 9,9346 0,0888 84,5119 10,6797 0,0847 81,8909 9,2878 0,0811 83,6705 10,8561 0,0765
6 85,4757 11,2916 0,0850 86,1008 12,0590 0,0819 83,6753 11,0942 0,0766 85,4837 13,0334 0,0728
7 86,8210 12,6356 0,0811 87,5072 13,4205 0,0790 85,3079 12,9075 0,0720 87,0810 15,2178 0,0687
8 87,9499 13,9548 0,0770 88,6800 14,7456 0,0759 86,7066 14,7386 0,0672 88,3608 17,3982 0,0641
9 88,8042 15,2335 0,0725 89,5784 15,9970 0,0727 87,8046 16,5882 0,0620 89,3340 19,5566 0,0591
10 89,3780 16,4752 0,0678 90,1920 17,1674 0,0696 88,6317 18,4577 0,0566 90,0782 21,6890 0,0540
11 89,7864 17,6977 0,0630 90,6602 18,2656 0,0666 89,3026 20,3563 0,0512 90,7107 23,8024 0,0490
12 90,1993 18,9203 0,0584 91,0664 19,3063 0,0640 89,9631 22,2789 0,0463 91,2964 25,9060 0,0445
13 90,6488 20,1573 0,0541 91,3607 20,3043 0,0615 90,6317 24,2132 0,0419 91,8049 28,0020 0,0402
14 91,0576 21,4156 0,0498 91,5654 21,2777 0,0590 91,2262 26,1526 0,0378 92,1917 30,0990 0,0363
15 91,4169 22,6921 0,0458 91,7458 22,2479 0,0567 91,7204 28,0966 0,0341 92,4103 32,2050 0,0325
16 91,7468 23,9802 0,0419 91,9857 23,2219 0,0544 92,1283 30,0419 0,0306 92,5214 34,3206 0,0289
17 92,0820 25,2736 0,0384 92,2632 24,1990 0,0523 92,4841 31,9881 0,0275 92,5748 36,4416 0,0257

Table S4d.

LMS parameters per age group and gender, One Leg Stance, Equilibrium Score ML [%].

1L EO - Eqilibrium Score ML [%]
Male Female
Age C50 Lambda Sigma C50 Lambda Sigma
3 69,0002 2,6623 0,1199 75,2085 3,1123 0,0842
4 71,1974 2,9837 0,1067 76,8488 3,5904 0,0760
5 73,3856 3,3057 0,0949 78,4876 4,0668 0,0686
6 75,5260 3,6325 0,0846 80,1158 4,5394 0,0619
7 77,5854 3,9764 0,0758 81,6971 5,0289 0,0557
8 79,5388 4,3462 0,0683 83,1517 5,5611 0,0502
9 81,2592 4,7361 0,0620 84,4565 6,1294 0,0455
10 82,5846 5,1363 0,0568 85,5367 6,7017 0,0418
11 83,5454 5,5374 0,0524 86,3727 7,2461 0,0387
12 84,3375 5,9140 0,0485 87,0673 7,7337 0,0362
13 85,0400 6,2414 0,0449 87,6042 8,1559 0,0342
14 85,5940 6,5270 0,0418 87,9767 8,5184 0,0326
15 86,0082 6,7792 0,0393 88,1462 8,8474 0,0312
16 86,3182 7,0118 0,0373 88,0979 9,1637 0,0301
17 86,5967 7,2366 0,0356 87,9575 9,4758 0,0290

Table S5a.

LMS parameters per age group and gender, Romberg Tests, Equilibrium Score AP [%].

RomEO - Eqilibrium Score AP [%] RomEC - Equilibirum Score AP [%]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 89,0331 15,1182 0,0836 89,0622 15,0342 0,0503 87,6851 11,0585 0,0664 87,7126 2,0198 0,0498
4 89,8798 16,7119 0,0764 90,1270 18,0579 0,0472 88,5599 11,0271 0,0587 88,9593 3,4568 0,0442
5 90,7211 18,3128 0,0697 91,1430 21,0835 0,0444 89,4883 11,0001 0,0520 90,1986 4,8937 0,0392
6 91,5470 19,9442 0,0636 92,0872 24,1057 0,0415 90,4462 10,9965 0,0459 91,3902 6,3329 0,0347
7 92,3314 21,5810 0,0578 92,9362 27,0582 0,0387 91,3974 11,0267 0,0406 92,4681 7,8057 0,0308
8 93,0104 23,1704 0,0522 93,6615 29,8635 0,0358 92,2715 11,0865 0,0360 93,3620 9,4112 0,0275
9 93,5276 24,6706 0,0468 94,2646 32,4913 0,0330 92,9816 11,1762 0,0321 94,0620 11,2298 0,0249
10 93,8918 26,0582 0,0416 94,7532 34,9666 0,0302 93,5329 11,3258 0,0288 94,5826 13,2938 0,0227
11 94,2054 27,3220 0,0368 95,1317 37,3620 0,0274 94,0365 11,5645 0,0262 94,9767 15,5837 0,0208
12 94,5574 28,4901 0,0324 95,4336 39,7308 0,0247 94,5753 11,9039 0,0239 95,3181 18,0584 0,0190
13 94,9103 29,6078 0,0284 95,6671 42,1254 0,0220 95,0964 12,3354 0,0220 95,6166 20,6919 0,0173
14 95,1931 30,7115 0,0247 95,8557 44,5673 0,0195 95,5022 12,8570 0,0202 95,9075 23,4450 0,0157
15 95,4163 31,8226 0,0212 96,0369 47,0431 0,0171 95,7917 13,4444 0,0186 96,2357 26,2697 0,0142
16 95,6213 32,9468 0,0181 96,2175 49,5392 0,0150 96,0023 14,0715 0,0171 96,6216 29,1259 0,0128
17 95,8395 34,0773 0,0155 96,4176 52,0432 0,0132 96,1966 14,7147 0,0158 97,0379 31,9877 0,0116

Table S5b.

LMS parameters per age group and gender, Semi-Tandem Tests, Equilibrium Score AP [%].

SemTnEO - Eqilibrium Score AP [%] SemTanEC - Equilibirum Score AP [%]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 83,4103 11,7389 0,0795 83,2378 10,5117 0,0600 80,1095 6,8562 0,0736 80,6399 2,8571 0,0531
4 84,2909 11,7110 0,0729 84,5742 11,0147 0,0568 81,5067 7,1972 0,0691 82,3276 3,2301 0,0505
5 85,2040 11,6830 0,0669 85,9052 11,5108 0,0538 82,9076 7,5363 0,0649 84,0044 3,6049 0,0481
6 86,1814 11,6515 0,0615 87,1969 11,9698 0,0510 84,3212 7,8633 0,0610 85,6062 3,9919 0,0457
7 87,2129 11,6015 0,0567 88,3726 12,3808 0,0481 85,7140 8,1634 0,0572 87,0353 4,4061 0,0435
8 88,2102 11,5085 0,0523 89,3879 12,7640 0,0453 86,9877 8,4213 0,0536 88,2372 4,8539 0,0412
9 89,0562 11,3465 0,0482 90,2370 13,1328 0,0423 88,0203 8,6273 0,0500 89,2024 5,3554 0,0389
10 89,6960 11,1074 0,0444 90,9278 13,4797 0,0392 88,8056 8,7745 0,0464 89,9492 5,9052 0,0366
11 90,2034 10,7904 0,0408 91,4967 13,7992 0,0359 89,5054 8,8557 0,0430 90,5551 6,4971 0,0342
12 90,6987 10,4069 0,0375 92,0107 14,0938 0,0326 90,2411 8,8678 0,0397 91,0895 7,1355 0,0319
13 91,1994 9,9852 0,0344 92,5025 14,3782 0,0294 90,9917 8,8205 0,0366 91,5749 7,8253 0,0298
14 91,6389 9,5473 0,0314 93,0053 14,6490 0,0262 91,6133 8,7348 0,0336 92,0390 8,5641 0,0278
15 92,0458 9,0937 0,0286 93,5194 14,8975 0,0232 92,1339 8,6281 0,0307 92,5143 9,3328 0,0260
16 92,4915 8,6209 0,0260 94,0261 15,1318 0,0204 92,6565 8,5122 0,0281 93,0481 10,1125 0,0242
17 92,9949 8,1353 0,0237 94,5324 15,3649 0,0180 93,2423 8,3886 0,0257 93,6339 10,8960 0,0224

Table S5c.

LMS parameters per age group and gender, Tandem Tests, Equilibrium Score AP [%].

TanEO - Eqilibrium Score AP [%] TanEC - Equilibirum Score AP [%]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 79,6861 3,4937 0,0663 80,5680 10,4310 0,0607 74,7870 3,4128 0,0784 76,3443 4,1376 0,0655
4 81,0497 4,5082 0,0617 82,0347 10,3785 0,0569 76,4305 3,7779 0,0734 78,0167 3,9275 0,0606
5 82,4128 5,5171 0,0575 83,5026 10,3235 0,0534 78,0692 4,1435 0,0687 79,6861 3,7172 0,0561
6 83,7565 6,4978 0,0536 84,9059 10,2585 0,0500 79,6829 4,5145 0,0644 81,3195 3,5103 0,0522
7 85,0443 7,4467 0,0500 86,1589 10,1912 0,0467 81,2519 4,9012 0,0605 82,8154 3,3275 0,0487
8 86,2125 8,3695 0,0467 87,2025 10,1309 0,0434 82,7170 5,3063 0,0567 84,0664 3,1956 0,0457
9 87,1599 9,2755 0,0437 88,0182 10,0916 0,0403 83,9786 5,7346 0,0531 85,0795 3,1279 0,0431
10 87,8418 10,1600 0,0407 88,6042 10,0838 0,0375 84,9960 6,1885 0,0497 85,8954 3,1136 0,0410
11 88,3114 11,0118 0,0377 89,0536 10,0941 0,0350 85,8662 6,6648 0,0464 86,6075 3,1231 0,0391
12 88,6729 11,8363 0,0349 89,4668 10,1122 0,0327 86,7252 7,1649 0,0434 87,2846 3,1619 0,0375
13 89,0141 12,6314 0,0321 89,8631 10,1451 0,0306 87,5459 7,6976 0,0407 87,9058 3,2353 0,0361
14 89,3613 13,4025 0,0294 90,2599 10,2045 0,0287 88,2059 8,2706 0,0382 88,4621 3,3359 0,0348
15 89,7195 14,1574 0,0268 90,6804 10,2825 0,0269 88,7561 8,8822 0,0358 88,9474 3,4580 0,0335
16 90,1011 14,9053 0,0244 91,1659 10,3703 0,0251 89,3121 9,5220 0,0337 89,4316 3,5889 0,0322
17 90,5254 15,6537 0,0222 91,7015 10,4589 0,0235 89,9044 10,1746 0,0317 89,9432 3,7229 0,0308

Table S5d.

LMS parameters per age group and gender, One Leg Stance, Equilibrium Score AP [%].

1L EO - Eqilibrium Score AP [%]
Male Female
Age C50 Lambda Sigma C50 Lambda Sigma
3 76,6441 2,4528 0,0642 79,2552 1,3270 0,0605
4 78,2453 2,7602 0,0590 80,6352 2,5994 0,0533
5 79,8430 3,0657 0,0541 82,0131 3,8788 0,0470
6 81,4125 3,3712 0,0496 83,3773 5,1901 0,0414
7 82,8958 3,7204 0,0454 84,6982 6,5394 0,0366
8 84,2183 4,1679 0,0416 85,9096 7,9838 0,0326
9 85,2925 4,7430 0,0382 86,9630 9,5566 0,0293
10 86,0718 5,4517 0,0353 87,7821 11,2395 0,0265
11 86,6298 6,2780 0,0330 88,3489 13,0095 0,0244
12 87,0918 7,1870 0,0311 88,7859 14,8245 0,0226
13 87,5159 8,1619 0,0297 89,1704 16,6511 0,0213
14 87,8862 9,1878 0,0285 89,5793 18,4840 0,0203
15 88,2207 10,2623 0,0275 89,9814 20,3146 0,0195
16 88,5943 11,3753 0,0268 90,3341 22,1439 0,0187
17 89,0187 12,5067 0,0263 90,6766 23,9739 0,0181

Table S6a.

LMS parameters per age group and gender, Romberg Tests, Sway Angle SD ML [°].

RomEO - Sway Angle SD ML [°] RomEC - Sway Angle SD ML [°]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 0,3518 -0,3082 0,4789 0,3572 -0,0957 0,3628 0,3903 -0,1339 0,5214 0,3770 0,6685 0,3907
4 0,3237 -0,2512 0,4780 0,3213 -0,0908 0,3688 0,3567 -0,0778 0,5134 0,3375 0,6003 0,4044
5 0,2954 -0,1942 0,4768 0,2856 -0,0858 0,3747 0,3230 -0,0215 0,5054 0,2981 0,5320 0,4183
6 0,2667 -0,1374 0,4745 0,2512 -0,0811 0,3798 0,2893 0,0349 0,4965 0,2601 0,4637 0,4313
7 0,2390 -0,0805 0,4716 0,2201 -0,0764 0,3844 0,2565 0,0905 0,4880 0,2257 0,3959 0,4438
8 0,2150 -0,0212 0,4690 0,1948 -0,0733 0,3903 0,2273 0,1449 0,4808 0,1978 0,3272 0,4560
9 0,1976 0,0426 0,4661 0,1758 -0,0731 0,3980 0,2046 0,1977 0,4753 0,1763 0,2562 0,4663
10 0,1871 0,1102 0,4634 0,1624 -0,0741 0,4061 0,1885 0,2475 0,4725 0,1610 0,1807 0,4727
11 0,1804 0,1810 0,4617 0,1529 -0,0740 0,4113 0,1748 0,2926 0,4734 0,1497 0,0996 0,4729
12 0,1733 0,2536 0,4603 0,1451 -0,0731 0,4118 0,1599 0,3311 0,4769 0,1394 0,0116 0,4669
13 0,1650 0,3262 0,4561 0,1379 -0,0733 0,4064 0,1449 0,3611 0,4808 0,1297 -0,0846 0,4558
14 0,1566 0,3974 0,4463 0,1305 -0,0763 0,3957 0,1337 0,3817 0,4835 0,1195 -0,1882 0,4415
15 0,1464 0,4682 0,4316 0,1224 -0,0806 0,3817 0,1252 0,3955 0,4842 0,1076 -0,2967 0,4258
16 0,1332 0,5397 0,4143 0,1141 -0,0862 0,3665 0,1179 0,4058 0,4831 0,0936 -0,4075 0,4103
17 0,1179 0,6116 0,3965 0,1054 -0,0924 0,3514 0,1106 0,4149 0,4811 0,0785 -0,5187 0,3952

Table S6b.

LMS parameters per age group and gender, Semi-Tandem Tests, Sway Angle SD ML [°].

SemTnEO - Sway Angle SD ML [°] SemTanEC - Sway Angle SD ML [°]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 0,5245 -0,1783 0,3205 0,5092 -0,7621 0,2716 0,5949 -0,1577 0,3113 0,5803 0,5266 0,2614
4 0,4955 -0,1340 0,3323 0,4716 -0,6316 0,2867 0,5553 -0,1255 0,3258 0,5302 0,4953 0,2713
5 0,4661 -0,0895 0,3446 0,4340 -0,5018 0,3027 0,5155 -0,0930 0,3410 0,4804 0,4637 0,2814
6 0,4347 -0,0442 0,3573 0,3973 -0,3758 0,3195 0,4744 -0,0596 0,3565 0,4334 0,4308 0,2920
7 0,4011 0,0008 0,3702 0,3634 -0,2571 0,3362 0,4329 -0,0250 0,3722 0,3922 0,3957 0,3033
8 0,3683 0,0441 0,3828 0,3332 -0,1509 0,3521 0,3942 0,0100 0,3868 0,3578 0,3590 0,3148
9 0,3409 0,0849 0,3937 0,3074 -0,0614 0,3663 0,3631 0,0443 0,3990 0,3292 0,3225 0,3257
10 0,3217 0,1234 0,4014 0,2868 0,0112 0,3773 0,3408 0,0783 0,4088 0,3057 0,2880 0,3353
11 0,3082 0,1615 0,4062 0,2700 0,0708 0,3838 0,3219 0,1145 0,4170 0,2856 0,2558 0,3440
12 0,2952 0,2009 0,4081 0,2544 0,1239 0,3854 0,3007 0,1557 0,4228 0,2677 0,2252 0,3523
13 0,2809 0,2401 0,4068 0,2379 0,1735 0,3825 0,2782 0,2009 0,4259 0,2515 0,1945 0,3607
14 0,2669 0,2780 0,4020 0,2199 0,2216 0,3757 0,2588 0,2481 0,4253 0,2363 0,1618 0,3698
15 0,2526 0,3163 0,3951 0,2004 0,2705 0,3661 0,2412 0,2964 0,4218 0,2200 0,1281 0,3791
16 0,2354 0,3572 0,3870 0,1798 0,3205 0,3547 0,2229 0,3453 0,4174 0,2007 0,0944 0,3877
17 0,2155 0,4002 0,3787 0,1583 0,3705 0,3428 0,2020 0,3949 0,4129 0,1796 0,0603 0,3957

Table S6c.

LMS parameters per age group and gender, Tandem Tests, Sway Angle SD ML [°].

TanEO - Sway Angle SD ML [°] TanEC - Sway Angle SD ML [°]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 0,6150 0,1072 0,2911 0,5900 -0,3493 0,2864 0,7153 -0,2742 0,2608 0,6787 0,3134 0,2315
4 0,5736 0,0773 0,2978 0,5446 -0,2855 0,2945 0,6713 -0,2423 0,2667 0,6318 0,3477 0,2371
5 0,5323 0,0478 0,3046 0,4996 -0,2219 0,3028 0,6272 -0,2105 0,2729 0,5851 0,3823 0,2431
6 0,4914 0,0203 0,3115 0,4573 -0,1594 0,3108 0,5833 -0,1794 0,2795 0,5401 0,4176 0,2497
7 0,4520 -0,0047 0,3181 0,4195 -0,0985 0,3162 0,5398 -0,1506 0,2864 0,4993 0,4512 0,2570
8 0,4162 -0,0272 0,3239 0,3870 -0,0379 0,3172 0,4984 -0,1247 0,2930 0,4650 0,4799 0,2640
9 0,3880 -0,0481 0,3276 0,3617 0,0163 0,3152 0,4626 -0,1033 0,2992 0,4373 0,5005 0,2711
10 0,3690 -0,0666 0,3273 0,3447 0,0590 0,3114 0,4346 -0,0883 0,3043 0,4153 0,5132 0,2781
11 0,3569 -0,0804 0,3222 0,3327 0,0917 0,3069 0,4116 -0,0802 0,3079 0,3961 0,5212 0,2851
12 0,3483 -0,0902 0,3128 0,3223 0,1167 0,3025 0,3891 -0,0795 0,3108 0,3772 0,5248 0,2917
13 0,3402 -0,0967 0,3002 0,3126 0,1322 0,2986 0,3675 -0,0893 0,3133 0,3597 0,5225 0,2978
14 0,3313 -0,1015 0,2851 0,3021 0,1390 0,2946 0,3502 -0,1122 0,3148 0,3439 0,5148 0,3034
15 0,3202 -0,1049 0,2687 0,2893 0,1413 0,2899 0,3355 -0,1472 0,3158 0,3293 0,5029 0,3079
16 0,3062 -0,1074 0,2517 0,2731 0,1417 0,2848 0,3202 -0,1904 0,3171 0,3137 0,4899 0,3107
17 0,2904 -0,1102 0,2355 0,2545 0,1415 0,2794 0,3038 -0,2372 0,3185 0,2964 0,4764 0,3125

Table S6d.

LMS parameters per age group and gender, One Leg Stance, Sway Angle SD ML [°].

1L EO - Sway Angle SD ML [°]
Male Female
Age C50 Lambda Sigma C50 Lambda Sigma
3 0,5202 -0,6183 0,2476 0,5204 0,7423 0,2614
4 0,4954 -0,5093 0,2458 0,4915 0,6107 0,2525
5 0,4705 -0,4003 0,2439 0,4627 0,4785 0,2441
6 0,4459 -0,2925 0,2418 0,4340 0,3445 0,2367
7 0,4222 -0,1912 0,2396 0,4053 0,2117 0,2306
8 0,4001 -0,1023 0,2372 0,3771 0,0813 0,2260
9 0,3814 -0,0307 0,2351 0,3514 -0,0507 0,2220
10 0,3679 0,0191 0,2335 0,3319 -0,1892 0,2178
11 0,3587 0,0465 0,2326 0,3200 -0,3354 0,2133
12 0,3510 0,0558 0,2330 0,3116 -0,4816 0,2090
13 0,3431 0,0475 0,2350 0,3044 -0,6219 0,2058
14 0,3346 0,0232 0,2386 0,2955 -0,7556 0,2041
15 0,3244 -0,0135 0,2445 0,2851 -0,8817 0,2040
16 0,3124 -0,0579 0,2535 0,2743 -1,0007 0,2053
17 0,2992 -0,1057 0,2650 0,2623 -1,1149 0,2071

Table S7a.

LMS parameters per age group and gender, Romberg Tests, Sway Angle SD AP [°].

RomEO - Sway Angle SD AP [°] RomEC - Sway Angle SD AP [°]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 0,4145 -0,4027 0,3196 0,4065 -0,0503 0,3032 0,5015 0,1224 0,3684 0,4623 0,4101 0,2237
4 0,3802 -0,4026 0,3186 0,3720 -0,0477 0,2970 0,4606 0,0802 0,3619 0,4226 0,3598 0,2364
5 0,3460 -0,4021 0,3177 0,3378 -0,0443 0,2912 0,4196 0,0382 0,3556 0,3832 0,3093 0,2497
6 0,3125 -0,3996 0,3174 0,3050 -0,0376 0,2866 0,3792 -0,0033 0,3494 0,3451 0,2573 0,2637
7 0,2816 -0,3942 0,3179 0,2753 -0,0290 0,2842 0,3413 -0,0471 0,3438 0,3105 0,2017 0,2779
8 0,2564 -0,3879 0,3195 0,2506 -0,0207 0,2849 0,3085 -0,0944 0,3390 0,2828 0,1411 0,2919
9 0,2397 -0,3829 0,3217 0,2322 -0,0136 0,2886 0,2831 -0,1448 0,3352 0,2628 0,0784 0,3043
10 0,2306 -0,3771 0,3248 0,2192 -0,0076 0,2945 0,2647 -0,1956 0,3324 0,2476 0,0183 0,3136
11 0,2249 -0,3680 0,3280 0,2090 -0,0019 0,3003 0,2501 -0,2430 0,3304 0,2328 -0,0380 0,3180
12 0,2200 -0,3538 0,3301 0,1998 0,0041 0,3047 0,2368 -0,2815 0,3287 0,2176 -0,0940 0,3181
13 0,2161 -0,3361 0,3313 0,1917 0,0089 0,3067 0,2248 -0,3116 0,3266 0,2046 -0,1563 0,3152
14 0,2150 -0,3173 0,3306 0,1852 0,0110 0,3064 0,2162 -0,3361 0,3237 0,1960 -0,2262 0,3104
15 0,2163 -0,2983 0,3276 0,1796 0,0126 0,3045 0,2111 -0,3563 0,3200 0,1913 -0,3000 0,3050
16 0,2188 -0,2782 0,3232 0,1749 0,0146 0,3017 0,2087 -0,3728 0,3161 0,1887 -0,3744 0,2989
17 0,2214 -0,2567 0,3182 0,1712 0,0171 0,2986 0,2074 -0,3876 0,3126 0,1871 -0,4482 0,2926

Table S7b.

LMS parameters per age group and gender, Semi-Tandem Tests, Sway Angle SD AP [°].

SemTnEO - Sway Angle SD AP [°] SemTanEC - Sway Angle SD AP [°]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 0,4666 -0,4855 0,3353 0,4616 -0,7714 0,3343 0,5226 -0,0974 0,3231 0,5105 -0,0778 0,2999
4 0,4334 -0,4736 0,3419 0,4209 -0,7165 0,3409 0,4860 -0,1460 0,3245 0,4627 -0,0644 0,3039
5 0,3999 -0,4614 0,3486 0,3804 -0,6622 0,3477 0,4492 -0,1938 0,3262 0,4152 -0,0511 0,3080
6 0,3657 -0,4473 0,3556 0,3414 -0,6111 0,3547 0,4118 -0,2375 0,3288 0,3697 -0,0390 0,3122
7 0,3318 -0,4300 0,3622 0,3064 -0,5665 0,3621 0,3754 -0,2731 0,3327 0,3293 -0,0316 0,3163
8 0,3025 -0,4096 0,3685 0,2778 -0,5301 0,3696 0,3424 -0,2978 0,3372 0,2973 -0,0331 0,3198
9 0,2827 -0,3854 0,3745 0,2573 -0,5017 0,3762 0,3148 -0,3112 0,3415 0,2747 -0,0463 0,3218
10 0,2726 -0,3564 0,3802 0,2439 -0,4777 0,3808 0,2924 -0,3151 0,3452 0,2588 -0,0732 0,3212
11 0,2669 -0,3200 0,3858 0,2334 -0,4537 0,3818 0,2734 -0,3125 0,3485 0,2461 -0,1111 0,3178
12 0,2603 -0,2733 0,3908 0,2231 -0,4294 0,3794 0,2556 -0,3068 0,3505 0,2350 -0,1558 0,3127
13 0,2522 -0,2172 0,3941 0,2129 -0,4060 0,3747 0,2397 -0,3028 0,3500 0,2249 -0,2035 0,3063
14 0,2448 -0,1553 0,3948 0,2024 -0,3846 0,3704 0,2300 -0,3022 0,3463 0,2152 -0,2526 0,2996
15 0,2382 -0,0900 0,3938 0,1925 -0,3654 0,3678 0,2256 -0,3033 0,3398 0,2074 -0,3018 0,2920
16 0,2310 -0,0227 0,3920 0,1845 -0,3476 0,3660 0,2239 -0,3041 0,3319 0,2011 -0,3493 0,2834
17 0,2229 0,0455 0,3896 0,1783 -0,3302 0,3646 0,2229 -0,3042 0,3235 0,1962 -0,3960 0,2744

Table S7c.

LMS parameters per age group and gender, Tandem Tests, Sway Angle SD AP [°].

TanEO - Sway Angle SD AP [°] TanEC - Sway Angle SD AP [°]
Male Female Male Female
Age C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma C50 Lambda Sigma
3 0,5387 -0,5904 0,4001 0,5591 -0,5392 0,4025 0,5996 -0,4694 0,3603 0,5573 0,0308 0,3475
4 0,4926 -0,5758 0,4029 0,5040 -0,5205 0,4112 0,5488 -0,4970 0,3613 0,5047 -0,0078 0,3517
5 0,4466 -0,5610 0,4058 0,4491 -0,5020 0,4201 0,4983 -0,5244 0,3622 0,4522 -0,0462 0,3558
6 0,4018 -0,5452 0,4089 0,3960 -0,4837 0,4287 0,4491 -0,5509 0,3626 0,4011 -0,0840 0,3593
7 0,3607 -0,5287 0,4118 0,3483 -0,4643 0,4359 0,4030 -0,5771 0,3615 0,3543 -0,1227 0,3606
8 0,3270 -0,5120 0,4148 0,3090 -0,4414 0,4411 0,3631 -0,6053 0,3581 0,3160 -0,1650 0,3592
9 0,3041 -0,4967 0,4183 0,2825 -0,4158 0,4463 0,3324 -0,6391 0,3525 0,2876 -0,2125 0,3559
10 0,2931 -0,4846 0,4224 0,2692 -0,3884 0,4522 0,3097 -0,6803 0,3458 0,2669 -0,2647 0,3512
11 0,2889 -0,4767 0,4269 0,2618 -0,3584 0,4591 0,2909 -0,7273 0,3390 0,2496 -0,3192 0,3458
12 0,2839 -0,4726 0,4326 0,2565 -0,3245 0,4664 0,2713 -0,7762 0,3328 0,2342 -0,3741 0,3400
13 0,2755 -0,4715 0,4394 0,2554 -0,2875 0,4732 0,2518 -0,8237 0,3264 0,2222 -0,4288 0,3333
14 0,2650 -0,4724 0,4463 0,2564 -0,2487 0,4789 0,2363 -0,8696 0,3192 0,2142 -0,4825 0,3249
15 0,2525 -0,4735 0,4519 0,2557 -0,2094 0,4831 0,2251 -0,9144 0,3105 0,2113 -0,5334 0,3142
16 0,2383 -0,4733 0,4558 0,2506 -0,1702 0,4861 0,2182 -0,9595 0,3006 0,2115 -0,5816 0,3016
17 0,2227 -0,4723 0,4587 0,2429 -0,1310 0,4885 0,2137 -1,0046 0,2904 0,2134 -0,6287 0,2884

Table S7d.

LMS parameters per age group and gender, One Leg Stance, Sway Angle SD AP [°].

1L EO - Sway Angle SD AP [°]
Male Female
Age C50 Lambda Sigma C50 Lambda Sigma
3 0,8103 0,2492 0,2567 0,6459 -0,0025 0,2854
4 0,7578 0,2204 0,2585 0,6102 -0,0158 0,2825
5 0,7055 0,1912 0,2604 0,5746 -0,0293 0,2797
6 0,6549 0,1597 0,2628 0,5390 -0,0438 0,2767
7 0,6060 0,1247 0,2659 0,5032 -0,0603 0,2738
8 0,5593 0,0857 0,2696 0,4693 -0,0797 0,2712
9 0,5189 0,0449 0,2736 0,4390 -0,1025 0,2693
10 0,4895 0,0048 0,2767 0,4145 -0,1247 0,2680
11 0,4696 -0,0324 0,2783 0,3951 -0,1389 0,2671
12 0,4528 -0,0594 0,2777 0,3774 -0,1400 0,2659
13 0,4366 -0,0664 0,2758 0,3629 -0,1278 0,2648
14 0,4222 -0,0516 0,2748 0,3527 -0,1065 0,2640
15 0,4092 -0,0174 0,2762 0,3480 -0,0818 0,2634
16 0,3984 0,0296 0,2807 0,3495 -0,0568 0,2626
17 0,3888 0,0826 0,2876 0,3526 -0,0314 0,2614

Footnotes

Edited by: G. Lyritis

References

  • 1.Alsalaheen BA, Haines J, Yorke A, Stockdale K, Broglio SP. Reliability and concurrent validity of instrumented balance error scoring system using a portable force plate system. Phys Sportsmed. 2015;43:221–6. doi: 10.1080/00913847.2015.1040717. [DOI] [PubMed] [Google Scholar]
  • 2.Yi SH, Hwang JH, Kim SJ, Kwon JY. Validity of pediatric balance scales in children with spastic cerebral palsy. Neuropediatrics. 2012;43:307–13. doi: 10.1055/s-0032-1327774. [DOI] [PubMed] [Google Scholar]
  • 3.Buehring B, Belavy DL, Michaelis I, Gast U, Felsenberg D, Rittweger J. Changes in lower extremity muscle function after 56 days of bed rest. J Appl Physiol (1985) 2011;111:87–94. doi: 10.1152/japplphysiol.01294.2010. [DOI] [PubMed] [Google Scholar]
  • 4.Matheson LA, Duffy S, Maroof A, Gibbons R, Duffy C, Roth J. Intra- and inter-rater reliability of jumping mechanography muscle function assessments. J Musculoskelet Neuronal Interact. 2013;13:480–6. [PubMed] [Google Scholar]
  • 5.Rittweger J, Schiessl H, Felsenberg D, Runge M. Reproducibility of the jumping mechanography as a test of mechanical power output in physically competent adult and elderly subjects. J Am Geriatr Soc. 2004;52:128–31. doi: 10.1111/j.1532-5415.2004.52022.x. [DOI] [PubMed] [Google Scholar]
  • 6.Veilleux LN, Rauch F. Reproducibility of jumping mechanography in healthy children and adults. J Musculoskelet Neuronal Interact. 2010;10:256–66. [PubMed] [Google Scholar]
  • 7.Busche P, Rawer R, Rakhimi N, Lang I, Martin DD. Mechanography in childhood:references for force and power in counter movement jumps and chair rising tests. J Musculoskelet Neuronal Interact. 2013;13:213–26. [PubMed] [Google Scholar]
  • 8.Lang I, Busche P, Rakhimi N, Rawer R, Martin DD. Mechanography in childhood:references for grip force, multiple one-leg hopping force and whole body stiffness. J Musculoskelet Neuronal Interact. 2013;13:227–35. [PubMed] [Google Scholar]
  • 9.Blaschek A, Rodrigues M, Rawer R, et al. Jumping Mechanography is a Suitable Complementary Method to Assess Motor Function in Ambulatory Boys with Duchenne Muscular Dystrophy. Neuropediatrics. 2021 doi: 10.1055/s-0041-1722880. [DOI] [PubMed] [Google Scholar]
  • 10.Vill K, Ille L, Blaschek A, et al. Jumping Mechanography as a Complementary Testing Tool for Motor Function in Children with Hereditary Motor and Sensory Neuropathy. Neuropediatrics. 2017;48:420–5. doi: 10.1055/s-0037-1603778. [DOI] [PubMed] [Google Scholar]
  • 11.Indrayan A. Demystifying LMS and BCPE methods of centile estimation for growth and other health parameters. Indian Pediatr. 2014;51:37–43. doi: 10.1007/s13312-014-0310-6. [DOI] [PubMed] [Google Scholar]
  • 12.Gurfinkel EV. Physical foundations of stabilography. Agressologie. 1973;14:9–13. [PubMed] [Google Scholar]
  • 13.Maurer C, Peterka RJ. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol. 2005;93:189–200. doi: 10.1152/jn.00221.2004. [DOI] [PubMed] [Google Scholar]
  • 14.Wolff DR, Rose J, Jones VK, Bloch DA, Oehlert JW, Gamble JG. Postural balance measurements for children and adolescents. J Orthop Res. 1998;16:271–5. doi: 10.1002/jor.1100160215. [DOI] [PubMed] [Google Scholar]
  • 15.Paloski WH, Wood SJ, Feiveson AH, Black FO, Hwang EY, Reschke MF. Destabilization of human balance control by static and dynamic head tilts. Gait Posture. 2006;23:315–23. doi: 10.1016/j.gaitpost.2005.04.009. [DOI] [PubMed] [Google Scholar]
  • 16.Melzer I, Benjuya N, Kaplanski J. [Effect of physical training on postural control of elderly] Harefuah. 2005;144:839–44. 911. [PubMed] [Google Scholar]
  • 17.Brett BL, Zuckerman SL, Terry DP, Solomon GS, Iverson GL. Normative Data for the Sway Balance System. Clin J Sport Med. 2020;30:458–64. doi: 10.1097/JSM.0000000000000632. [DOI] [PubMed] [Google Scholar]
  • 18.Paschaleri Z, Arabatzi F, Christou EA. Postural control in adolescent boys and girls before the age of peak height velocity:Effects of task difficulty. Gait Posture. 2022;92:461–6. doi: 10.1016/j.gaitpost.2021.12.018. [DOI] [PubMed] [Google Scholar]
  • 19.Voss S, Zampieri C, Biskis A, et al. Normative database of postural sway measures using inertial sensors in typically developing children and young adults. Gait Posture. 2021;90:112–9. doi: 10.1016/j.gaitpost.2021.07.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Blanchet M, Prince F, Messier J. Development of postural stability limits:Anteroposterior and mediolateral postural adjustment mechanisms do not follow the same maturation process. Hum Mov Sci. 2019;63:164–71. doi: 10.1016/j.humov.2018.11.016. [DOI] [PubMed] [Google Scholar]
  • 21.Chen F-C, Tsai C-L, Chang W-D, Li Y-C, Chou C-L, Wu S-K. Postural Control of Anteroposterior and Mediolateral Sway in Children With Probable Developmental Coordination Disorder. Pediatric Physical Therapy. 2015;27:328–35. doi: 10.1097/PEP.0000000000000186. [DOI] [PubMed] [Google Scholar]
  • 22.Morrison S, Rynders CA, Sosnoff JJ. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait Posture. 2016;49:148–54. doi: 10.1016/j.gaitpost.2016.06.036. [DOI] [PubMed] [Google Scholar]
  • 23.Jastrzębska AD. Gender Differences in Postural Stability among 13-Year-Old Alpine Skiers. Int J Environ Res Public Health. 2020;17 doi: 10.3390/ijerph17113859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Smith AW, Ulmer FF, Wong DP. Gender differences in postural stability among children. J Hum Kinet. 2012;33:25–32. doi: 10.2478/v10078-012-0041-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Doty RL, MacGillivray MR, Talab H, et al. Balance in multiple sclerosis:relationship to central brain regions. Experimental Brain Research. 2018;236:2739–50. doi: 10.1007/s00221-018-5332-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Musculoskeletal & Neuronal Interactions are provided here courtesy of International Society of Musculoskeletal and Neuronal Interactions (ISMNI)

RESOURCES