Skip to main content
Mycoscience logoLink to Mycoscience
. 2021 Nov 20;62(6):345–355. doi: 10.47371/mycosci.2021.10.002

Taxonomy of corticioid fungi in Japan : Present status and future prospects

Nitaro Maekawa a,*
PMCID: PMC9733718  PMID: 37090178

Abstract

Corticioid fungi form effused basidiomata with various hymenophore configurations, mostly on woody substrates, and they are presently classified into 15 orders in Agaricomycotina in the phylum Basidiomycota. In this review, the corticioid fungi of Japan are treated on the basis of the current classification system, and all currently known species are listed and classified by order. Japanese corticioid fungi number 442 species in 160 genera belonging to 14 orders. Analysis of the distribution of Japanese corticioid species reveals that 375 species (85% of the total) have wide distributions, and that the Japanese corticioid fungal flora is composed of species with diverse patterns of distribution. In the subtropical regions, 146 corticioid species belonging to 77 genera are listed, including 100 species from the Nansei Islands and 76 from the Ogasawara Islands. Although these two island groups are located at similar latitudes, they share only 30 corticioid species―21% of the total reported from the subtropical regions. Along with this summary of the current status, this study presents future directions for the taxonomic research of the Japanese corticioid fungi.

Keywords: Agaricomycetes, Basidiomycota

1. Introduction

Corticioid fungi are homobasidiomycete fungi that form resupinate, effused, crust-like basidiomata, mostly on woody substrates. Hymenophore configurations vary widely (smooth, odontoid, raduloid, hydnoid, merulioid, and poroid) within genera and even within several species. The corticioid fungi belong to Agaricomycotina in Basidiomycota, and they have long been grouped in a single family, Corticiaceae (sensu lato). Recent advances in sequencing technology, however, have permitted the gathering of DNA sequence data for many basidiomycetes, including corticioid fungi, and molecular phylogenetic analyses have revealed that corticioid fungi are polyphyletic (K.-H. Larsson, E. Larsson, & Kõljalg, 2004; Binder et al., 2005). Hibbett et al. (2007) proposed a comprehensive phylogenetic classification of Basidiomycota in which Agaricomycotina contains 3 classes and 21 orders. In this classification, corticioid fungi were categorized into 13 orders: Agaricales, Atheliales, Boletales, Cantharellales, Corticiales, Dacrymycetales, Gloeophyllales, Gomphales, Hymenochaetales, Polyporales, Russulales, Thelephorales, and Trechisporales. Subsequently, on the basis of a six-locus nuclear dataset, Binder, Larsson, Matheny, and Hibbett (2010) introduced two new orders; Amylocorticiales―sister to Agaricales―and Jaapiales, which contains only the genus Jaapia Bres., comprising two resupinate species. Furthermore, phylogenetic analyses indicate that several corticoid genera are polyphyletic: Aleurodiscus Rabenh. ex J. Schröt. (Wu, Hibbett, & Binder, 2001), Gloeocystidiellum Donk (E. Larsson & K.-H. Larsson, 2003), Hyphoderma Wallr. (K.-H. Larsson, 2007), Hyphodontia J. Erikss. (Binder et al., 2005; K.-H. Larsson et al., 2006), Leucogyrophana Pouzar (Jarosch & Besl, 2001), Phanerochaete P. Karst. (De Koker, Nakasone, Haarhof, Burdsall, & Janse, 2003; Wu, Nilsson, Chen, Yu, & Hallenberg, 2010), Phlebia Fr. (Kuuskeri, Mäkelä, Isotalo, Oksane, & Lundell, 2015) and Sistotrema Fr. (Moncalvo et al., 2006). On the basis of these molecular phylogenetic analyses, each of these genera has been subdivided into several genera, some of which are new.

Most corticioid fungi live on woody substrates such as fallen trunks, branches, and twigs; they decompose cellulose, hemicelluloses, and lignin. Ectomycorrhizal associations have been demonstrated in several corticioid genera, such as Amphinema P. Karst., Piloderma Jülich, Sistotrema, and Tomentella Pers. ex Pat. (Dahlberg, Jonsson, & Nylund, 1997; Erland & Taylor, 1999; Kõljalg, Tammi, Timonen, Agerer, & Sen, 2002; Nilsson, K.-H. Larsson, E. Larsson, & Kõljalg, 2006). Thus, in forest ecosystems, they play an important role not only in nutrient recycling but also in tree growth. Some corticioid species are economically important. Several species―particularly Phanerochaete chrysosporium Burds.―are being used in basic and applied researches on lignin degradation, e.g., in pulping, bleaching, and converting lignin to useful products (Kirk & Farrell, 1987). Corticioid fungi also include several plant pathogens, such as Athelia rolfsii (Curzi) Tu & Kimbrough (Tu & Kimbrough, 1978) and Chondrostereum purpureum (Pers.) Pouzar (Pouzar, 1959), the causal agents of southern Sclerotium rot and silver-leaf disease, respectively. Some species occur on bedlogs used for cultivation of shiitake mushroom, Lentinula edodes (Berk.) Pegler, reducing fruiting body yield (Maekawa & Arita, 1984).

In this review, my primary purpose is to evaluate Japanese corticioid fungi on the basis of the current classification system. Second, I summarize the bioclimatic features and geographical distribution patterns of the species making up the Japanese corticioid fungal flora. Third, I discuss the current status of taxonomic research on Japanese corticioid fungi, including reclassifications based on the phylogenetic analysis of combined morphological and molecular data. Finally, I discuss future directions for taxonomic studies of Japanese corticioid fungi.

2. History of taxonomic research on Japanese corticioid fungi by using morphological features

Hennings (1901) wrote the first report on Japanese corticioid fungi. Subsequently, many species were reported by Yasuda (1909, 1912, 1913, 1914a, 1914b, 1918a, 1918b, 1918c, 1919a, 1919b, 1920a, 1920b, 1921a, 1921b, 1923a, 1923b), Lloyd (1920, 1921, 1922), Ito (1929a, 1929b), and Ito and Imai (1940). The comprehensive publication “Mycological Flora of Japan Vol. II (4)” by Ito (1955) reviewed the species of corticioid fungi that had been recorded in Japan up to that time. Subsequently, Japanese mycologists have classified many corticioid species on the basis of morphological features (Aoshima & Hayashi, 1964; Hayashi & Aoshima, 1964, 1966; Aoshima & Furukawa, 1966a, 1966b; Furukawa & Aoshima, 1966; Hayashi, 1969; Kobayashi, 1971; Furukawa, 1974; Hayashi, 1974), placing them in genera such as Corticium Pers., Odontia Pers., and Peniophora Cooke on the basis of the Friesian system (Fries, 1874). Parmasto (1968) introduced a new system for classification of corticioid fungi, and Japanese species were reclassified accordingly (Maekawa, 1993b, 1994). New and previously unreported Japanese species continued to be described (Maekawa, Arita, & Hayashi, 1982; Maekawa & Arita, 1984; Maekawa, 1987, 1990, 1991a, 1991b, 1992, 1993a, 1997a, 1997b, 1998, 1999, 2000a, 2000b, 2003; Núñez & Ryvarden, 1997; Nakasone & Gilbertson, 1998; Maekawa & Hasebe, 2002; Maekawa & Nordén, 2002; Suhara, Maekawa, Kubayashi, Sakai, & Kondo, 2002; Maekawa, Suhara, Kinjo, & Kondo, 2003; Hjortstam & Ryvarden, 2004; Maekawa, Suhara, Kinjo, Kondo, & Hoshi, 2005; Wu, Wang, & Yu, 2010; Suhara, Maekawa, Ushijima, Kinjo, & Hoshi, 2010; Suhara, Maekawa, & Ushijima, 2011; Chen, Wu, & Chen, 2017, 2018; Ushijima & Maekawa, 2018; Ushijima, Sotome, & Maekawa, 2019; Yagame & Maekawa, 2019; Maekawa et al., 2020; Yurchenko, Wu, & Maekawa, 2020). The currently known species of Japanese corticioid fungi are listed in Table 1; there are 442 species in 160 genera belonging to 14 orders. Among the previously reported corticioid fungi, several new taxa were subsequently placed in synonymy with other taxa (Maekawa, 1993b), and these taxa were excluded from Table 1. Phlebiella athelioides N. Maek. (1993b) has been treated as an invalid name because Phlebiella P. Karst. is not regarded as a validly published genus (Duhem, 2010), and the species referred to that genus have been transferred to Xenasmatella Oberw. Morphological characters clearly place P. athelioides in Xenasmatella. Therefore, the following combination is proposed: Xenasmatella athelioidea (N. Maek.) N. Maek., comb. nov., MycoBank no. MB840571 (Basionym: Phlebiella athelioides N. Maek., Reports of the Tottori Mycological Institute, 31: 124, 1993). In addition, a few species reported as Japanese corticioid fungi―e.g., Gloeopeniophora aurantiaca (Pers.) J. (Bres.) Höhn. & Litsch. (Hayashi, 1974), Peniophora farlowii Burt (Hayashi, 1974), Phlebia rufa (Pers.) M.P. Christ. (Maekawa, 1993b), and Xylodon papillosa (Fr.) Riebesehl, Yurchenko & Langer (as Odontia papillosa (Fr.) P. Karst) (Furukawa, 1974)―were excluded from this table because their voucher specimens were revealed to have been misidentified (Maekawa, 1993b, 2000b). On the other hand, 55 species (asterisks, Table 1) previously unreported in Japan were added, and their data were shown in Supplementary Table S1.

Table 1 Corticioid fungi reported from Japan.

Species
Acanthophysium oakesii (Berk. & M.A. Curtis) Parmasto12, A, g
Aleurocystidiellum subcruentatum (Berk. & M.A. Curtis) P.A. Lemke12, A, g
Aleurocystidiellum tsugae (Yasuda) S.H. He & Y.C. Dai12, A, i, **
Aleurodiscus aurantius (Pers.) J. Schröt.12, B, a
Aleurodiscus disciformis (DC.) Pat.12, B, c
Aleurodiscus grantii Lloyd12, A, i
Aleurodiscus mirabilis (Berk. & M.A. Curtis) Höhn.12, B, a, **
Aleurodiscus parvisporus Núñez & Ryvarden12, A, j
Aleurodiscus subglobosporus Ginns & Bandoni12, A, k
Aleurodiscus subroseus S.H. He & Y.C. Dai12, C, i, *, **
Alutaceodontia alutacea (Fr.) Hjortstam & Ryvarden10, A, m, **
Amphinema arachispora Burds. & Nakasone3, A, g
Amphinema byssoides (Pers.) J. Erikss.3, B, a, O
Amylocorticium canadense (Burt) J. Erikss. & Weresub2, B, g
Amylocorticium cebennense (Bourdot) Pouzar2, B, a, **
Amylocorticium indicum K.S. Thind & S.S. Rattan2, B, i, *, **
Amylocorticium suaveolens Parmasto2, A, g
Amylocorticium subincarnatum (Peck) Pouzar2, B, d
Amylofungus globosporus (N. Maek.) Sheng H. Wu12, A, j
Amylostereum areolatum (Chaillet ex Fr.) Boidin12, A, e
Amylostereum chailletii (Pers.) Boidin12, B, a, *, **
Amylostereum laevigatum (Fr.) Boidin12, A, g
Amylostereum orientale S.H. He & Hai J. Li12, A, j, **
Amyloxenasma allantosporum (Oberw.) Hjortstam & Ryvarden2, A, m
Amyloxenasma grisellum (Bourdot) Hjortstam & Ryvarden2, A, c
Aphanobasidium pseudotsugae (Burt) Boidin & Gilles1, B, d
Asterostroma andinum Pat.12, B, a, O
Asterostroma boninense Suhara & N. Maek.12, C, k, O, **
Asterostroma cervicolor (Berk. & M.A. Curtis) Massee12, B, a, O, **
Asterostroma macrosporum N. Maek. & Suhara12, C, k, N, **
Asterostroma muscicola (Berk. & M.A. Curtis) Massee12, B, a, N, O, **
Asterostroma praeacutosporum Boidin, Lanq. & Gilles12, C, m, N, *
Athelia acrospora Jülich3, B, a, **
Athelia binucleospora J. Erikss. & Ryvarden3, A, h
Athelia decipiens (Höhn. & Litsch.) J. Erikss.3, B, b, **
Athelia epiphylla Pers.3, B, a, **
Athelia fibulata M.P. Christ.3, A, f
Athelia repetobasidiifera N. Maek.3, A, k
Athelia rolfsii (Curzi) C.C. Tu & Kimbr.3, B, a, N, O
Athelia salicum Pers.3, B, d
Athelia sibirica (Jülich) J. Erikss. & Ryvarden3, A, h
Athelia termitophira N. Maek., Yokoi & Sotome3, A, k, **
Atheliachaete galactites (Bourdot & Galzin) Ţura, Zmitr., Wasser & Spirin11, A, g
Atheliachaete sanguinea (Fr.) Spirin & Zmitr.11, A, f
Atheloderma orientale Parmasto10, A, h
Baltazaria galactina (Fr.) Leal-Dutra, Dentinger & G.W. Griff.12, B, m
Boidinella cystidiolophora (Boidin & Gilles) Nakasone14, B, m
Boidinia borbonica Boidin, Lanq. & Gilles12, C, m, N
Boidinia furfuracea (Bres.) Stalpers & Hjortstam12, A, f
Boreostereum radiatum (Peck) Parmasto8, A, g
Boreostereum vibrans (Berk. & M.A. Curtis) Davydkina & Bondartseva8, B, i
Botryobasidium aureum Parmasto5, B, b
Botryobasidium bondarcevii (Parmasto) G. Langer5, B, c
Botryobasidium candicans J. Erikss.5, B, a, O
Botryobasidium conspersum J. Erikss.5, B, b, N, **
Botryobasidium curtisii Hallenb.5, B, m, O, *, **
Botryobasidium globosisporum (Boidin & Gilles) G. Langer5, C, m, N, *
Botryobasidium isabellinum (Fr.) D.P. Rogers5, B, c
Botryobasidium latisporum (N. Maek.) G. Langer5, A, j, **
Botryobasidium medium J. Erikss.5, B, c
Botryobasidium obtusisporum J. Erikss.5, B, a, **
Botryobasidium piliferum Boidin & Gilles5, B, m, N, **
Botryobasidium pruinatum (Bres.) J. Erikss.5, B, b, N
Botryobasidium sordidulum Boidin & Gilles5, B, m
Botryobasidium subcoronatum (Höhn. & Litsch.) Donk5, B, a, **
Botryobasidium vagum (Berk. & M.A. Curtis) D.P. Rogers5, B, a
Brevicellicium olivascens (Bres.) K.H. Larss. & Hjortstam14, B, a
Bulbillomyces farinosus (Bres.) Jülich11, B, a
Byssocorticium efibulatum Hjortstam & Ryvarden3, A, h, N
Byssocorticium pulchrum (S. Lundell) M.P. Christ.3, A, g
Byssomerulius corium (Pers.) Parmasto11, B, a, N, **
Byssomerulius hirtellus (Burt) Parmasto11, B, a, *, **
Byssomerulius tropicus (Sheng H. Wu) Zmitr.11, C, j, N
Cabalodontia queletii (Bourdot & Galzin) Piątek11, B, b
Candelabrochaete langloisii (Pat.) Boidin11, C, m, O
Candelabrochaete verruculosa Hjortstam11, B, m
Ceraceomyces tessulatus (Cooke) Jülich2, B, b
Ceratobasidium cornigerum (Bourdot) D.P. Rogers5, B, a
Ceratobasidium gramineum (Ikata & T. Matsuura) Oniki, Ogoshi & T. Araki5, A, i
Ceratobasidium setariae (Sawada) Oniki, Ogoshi & T. Araki5, A, j
Cerinomyces albosporus Boidin & Gilles7, B, m, **
Cerinomyces altaicus Parmasto7, A, j, *, **
Cerinomyces canadensis (H.S. Jacks. & G.W. Martin) G.W. Martin7, A, e, **
Cerinomyces pallidus G.W. Martin7, A, m
Cerocorticium molle (Berk. & M.A. Curtis) Jülich11, B, b, N, O, **
Chondrostereum purpureum (Pers.) Pouzar1, B, a, N, **
Conferticium karstenii (Bourdot & Galzin) Hallenb.12, A, e
Conferticium ochraceum (Fr.) Hallenb.12, B, f
Coniophora arida (Fr.) P. Karst.4, B, a, **
Coniophora fusispora (Cooke & Ellis) Cooke4, B, d
Coniophora olivacea (Fr.) P. Karst.4, B, a, **
Coniophora puteana (Schumach.) P. Karst.4, B, b
Coniophorafomes matsuzawae (Lloyd) Rick12, A, k
Corticium boreoroseum Boidin & Lanq.6, A, g
Corticium lombardiae (M.J. Larsen & Gilb.) Boidin & Lanq.6, A, g, **
Corticium meridioroseum Boidin & Lanq.6, A, h
Corticium roseocarneum (Schwein.) Hjortstam6, A, f, **
Cristinia helvetica (Pers.) Parmasto1, B, b
Crustodontia chrysocreas (Berk. & M.A. Curtis) Hjortstam & Ryvarden11, B, a, N, **
Crustomyces subabruptus (Bourdot & Galzin) Jülich1, A, g
Crystallicutis serpens (Tode) El-Gharabawy, Leal-Dutra & G.W. Griff.10, B, a
Cyanobasidium microverrucisporum (N. Maek.) Hjortstam & Ryvarden1, A, m
Cylindrobasidium argenteum (Kobayasi) N. Maek.1, C, k, N, **
Cylindrobasidium laeve (Pers.) Chamuris1, B, a, **
Cytidia salicina (Fr.) Burt6, A, g, **
Dacryobolus gracilis H.S. Yuan11, C, i, *, **
Dacryobolus karstenii (Bres.) Oberw. ex Parmasto11, B, b, N
Dacryobolus sudans (Alb. & Schwein.) Fr.11, B, a, N
Dendrocorticium polygonioides (P. Karst.) M.J. Larsen & Gilb.6, B, d
Dendrodontia bispora (Burds. & Nakasone) Guerrero & C.L.M. Rodrigues6, C, m, N, *
Dendrothele acerina (Pers.) P.A. Lemke1, B, a
Dendrothele arachispora Nakasone & Burds.1, A, m
Dendrothele strumosa (Fr.) P.A. Lemke1, B, m
Dentipellicula leptodon (Mont.) Y.C. Dai & L.W. Zhou12, B, a, *, **
Dentipellicula taiwaniana Sheng H. Wu12, C, j, N, *
Dentipellis dissita (Berk. & Cooke) Maas Geest.12, B, m, *
Dentipellis fragilis (Pers.) Donk12, B, m
Dentocorticium sulphurellum (Peck) M.J. Larsen & Gilb.11, A, i, **
Dichostereum granulosum (Pers.) Boidin & Lanq.12, A, e
Dichostereum kenyense Boidin & Lanq.12, B, m, *, **
Dichostereum rhodosporum (Wakef.) Boidin & Lanq.12, B, m
Duportella miranda Boidin, Lanq. & Gilles12, C, m, N
Echinodontiellum japonicum (Imazeki) S.H. He & Nakasone12, A, j
Echinodontium tsugicola (Henn. & Shirai) Imazeki12, A, k
Efibula corymbata (G. Cunn.) Zmitr. & Spirin11, B, m
Efibula tropica Sheng H. Wu11, C, j, N
Epithele efibulata Boidin, Lanq. & Gilles11, C, m, N, *, **
Epithele nikau G. Cunn.11, B, m, N
Epithele typhae (Pers.) Pat.11, A, f, N
Erythricium salmonicolor (Berk. & Broome) Burds.6, B, b, N
Erythromyces crocicreas (Berk. & Broome) Hjortstam & Ryvarden10, C, m, N, **
Fibricium rude (P. Karst.) Jülich10, B, d
Fibricium subcarneum Y. Hayashi10, A, k
Fibrodontia gossypina Parmasto10, B, c, N, O, **
Fibulomyces mutabilis (Bres.) Jülich3, B, m, **
Galzinia incrustans Parmasto6, B, f
Ginnsia viticola (Schwein.) Sheng H. Wu & Hallenb.10, A, m, **
Gloeocystidiellum convolvens (P. Karst.) Donk12, B, c, **
Gloeocystidiellum formosanum Sheng H. Wu12, B, j
Gloeocystidiellum kenyense Hjortstam12, B, m, *, **
Gloeocystidiellum leucoxanthum (Bres.) Boidin12, B, b
Gloeocystidiellum luridum (Bres.) Boidin12, B, d
Gloeocystidiellum moniliforme Sheng H. Wu12, C, m, N
Gloeocystidiellum porosum (Berk. & M.A. Curtis) Donk12, B, a, O, **
Gloeodontia discolor (Berk. & M.A. Curtis) Boidin12, B, m, O, **
Gloeohypochnicium analogum (Bourdot & Galzin) Hjortstam12, B, b
Gloeomyces moniliformis (N. Maek.) Sheng H. Wu12, A, j
Gloeostereum incarnatum S. Ito & S. Imai1, A, i, **
Gloiothele citrina (Pers.) Ginns & G.W. Freeman12, A, g, **
Gloiothele citrinoidea Sheng H. Wu12, C, j, *, **
Gloiothele globosa Sheng H. Wu12, C, m, O, *, **
Gloiothele lactescens (Berk.) Hjortstam12, B, c, **
Grammothele fuligo (Berk. & Broome) Ryvarden11, C, m, N, O
Granulobasidium vellereum (Ellis & Cragin) Jülich1, B, f
Gyrophanopsis polonensis (Bres.) Stalpers & P.K. Buchanan11, B, a, **
Haloaleurodiscus mangrovei N. Maek., Suhara & K. Kinjo12, C, k, N, **
Hastodontia hastata (Litsch.) Hjortstam & Ryvarden10, A, f
Hydnocristella himantia (Schwein.) R.H. Petersen9, A, e, **
Hydnophanerochaete odontoidea (Sheng H. Wu) Sheng H. Wu & C.C. Chen11, C, j
Hydnophlebia chrysorhiza (Torr.) Parmasto11, B, m, N, **
Hyphoderma lapponicum (Litsch.) Ryvarden11, A, f
Hyphoderma litschaueri (Burt) J. Erikss. & Å. Strid11, B, m, N
Hyphoderma medioburiense (Burt) Donk11, B, a
Hyphoderma microcystidium Sheng H. Wu11, C, m, N
Hyphoderma nudicephalum Gilb. & M. Blackw.11, B, a, N, O, **
Hyphoderma obtusum J. Erikss.11, A, e
Hyphoderma pilosum (Burt) Gilb. & Budington11, A, i
Hyphoderma roseocremeum (Bres.) Donk11, B, c
Hyphoderma setigerum (Fr.) Donk (s. l.)11, B, a, N, O, **
Hyphoderma sibiricum (Parmasto) J. Erikss. & Å. Strid11, B, f
Hyphoderma subsetigerum Sheng H. Wu11, A, j, **
Hyphoderma transiens (Bres.) Parmasto11, B, m, **
Hyphodermella corrugata (Fr.) J. Erikss. & Ryvarden11, B, a
Hyphodontia alienata (S. Lundell) J. Erikss.10, B, a
Hyphodontia alutaria (Burt) J. Erikss.10, B, a
Hyphodontia arguta (Fr.) J. Erikss.10, B, a
Hyphodontia pallidula (Bres.) J. Erikss.10, B, b, O, **
Hyphodontia sphaerospora (N. Maek.) Hjortstam10, A, m
Hyphodontia stipata (Fr.) Gilb.10, A, g
Hyphodontia subspathulata (H. Furuk.) N. Maek.10, A, k
Hyphodontia zhixiangii L.W. Zhou & Gafforov10, A, g, *, **
Hypochnicium eichleri (Bres. ex Sacc. & P. Syd.) J. Erikss. & Ryvarden11, B, d
Hypochnicium globosum Sheng H. Wu11, A, j, **
Hypochnicium longicystidiosum (S.S. Rattan) Hjortstam & Ryvarden11, B, m
Hypochnicium pini Y. Jang & J.J. Kim11, A, i, *, **
Hypochnicium punctulatum (Cooke) J. Erikss.11, B, a, **
Hypochnicium sphaerosporum (Höhn. & Litsch.) J. Erikss.11, B, c
Hypochnicium subrigescens Boidin11, B, m, *
Kavinia vivantii Boidin & Gilles9, C, i, O, *
Kneiffiella alutacea (Fr.) Jülich & Stalpers10, A. d
Kneiffiella barba-jovis (Bull.) P. Karst.10, A, a, N
Kneiffiella byssoidea (H. Furuk.) Hjortstam & Ryvarden10, A, k
Kneiffiella cineracea (Bourdot & Galzin) Jülich10, A, h
Kneiffiella microspora (J. Erikss. & Hjortstam) Jülich & Stalpers10, B, c, O
Kneiffiella serpentiformis (Langer) Riebesehl & Langer10, A, m, **
Kneiffiella subalutacea (P. Karst.) Bres.10, A, g, **
Kneiffiella subglobosa (Sheng H. Wu) Hjortstam10, C, m, N
Kurtia argillacea (Bres.) Karasiński6, B, a, N, O
Kurtia macedonica (Litsch.) Karasiński6, A, m
Laurilia sulcata (Burt) Pouzar12, A, g
Lauriliella taxodii (Lentz & H.H. McKay) S.H. He & Nakasone12, A, i
Lawrynomyces capitatus (J. Erikss. & Å. Strid) Karasiński10, A, g
Laxitextum bicolor (Pers.) Lentz12, B, a, N
Leptocorticium cyatheae (S. Ito & S. Imai) Hjortstam & Ryvarden6, C, m, O
Leptocorticium sasae (Boidin, Cand. & Gilles) Nakasone6, A, h, *, **
Leptosporomyces fuscostratus (Burt) Hjortstam3, A, g
Leptosporomyces septentrionalis (J. Erikss.) Krieglst.3, B, c
Leucogyrophana mollusca (Fr.) Pouzar4, B, b, O, **
Leucogyrophana pseudomollusca (Parmasto) Parmasto4, A, g, O, *, **
Licrostroma subgiganteum (Berk.) P.A. Lemke6, B, m
Lindtneria thujatsugina M.J. Larsen1, B, i, O, *
Lindtneria trachyspora (Bourdot & Galzin) Pilát1, B, c, O, *
Litschauerella clematidis (Bourdot & Galzin) J. Erikss. & Ryvarden14, B, d, N
Lloydella okabei S. Ito & S. Imai11, C, k, O
Lopharia ayresii (Berk. ex Cooke) Hjortstam11, C, m, N, O
Lopharia cinerascens (Schwein.) G. Cunn.11, B, a, **
Lyoathelia laxa (Burt) Hjortstam & Ryvarden3, A, i
Lyomyces bisterigmatus (Boidin & Gilles) Hjortstam & Ryvarden10, C, i, *, **
Lyomyces boninensis (S. Ito & S. Imai) Hjortstam & Ryvarden10, C, m, N, O
Lyomyces crustosus (Pers.) P. Karst.10, B, c, N, **
Lyomyces griseliniae (G. Cunn.) Riebesehl & Langer10, B, m, N
Lyomyces mascarensis Riebesehi, Yurchenko & Langer10, C, c, *, **
Lyomyces orientalis Riebesehi, Yurchenko & Langer10, A, i, *, **
Lyomyces pruni (Lasch) Riebesehi & Langer10, B, c
Lyomyces sambuci (Pers.) P. Karst.10, A, c, O
Megalocystidium wakullum (Burds., Nakasone & G.W. Freeman) E. Larss. & K.H. Larss.12, C, m, N
Melzericium rimosum Bononi & Hjortstam3, A, m
Metulodontia nivea (P. Karst.) Parmasto11, A, a
Mutatoderma mutatum (Peck) C.E. Gómez6, B, c
Mycoacia aurea (Fr.) J. Erikss. & Ryvarden11, B, a, N, O, **
Mycoacia chrysella (Berk. & M.A. Curtis) H. Furuk.11, A, i
Mycoacia fuscoatra (Fr.) Donk11, B, a, **
Mycoacia kurilensis Parmasto11, B, i
Mycoacia nothofagi (G. Cunn.) Ryvarden11, C, m, *
Neoaleurodiscus fujii Sheng H. Wu12, A, k, **
Odonticium flabelliradiatum (J. Erikss. & Hjortstam) Zmitr.-, B, g, *, **
Odontoefibula orientalis C.C. Chen & Sheng H. Wu11, C, j
Peniophora bicornis Hjortstam & Ryvarden12, C, m, O
Peniophora cinerea (Pers.) Cooke12, B, a, N, **
Peniophora erikssonii Boidin12, A, g
Peniophora incarnata (Pers.) P. Karst.12, B, a
Peniophora lycii (Pers.) Höhn. & Litsch.12, B, a
Peniophora manshurica Parmasto12, A, j, **
Peniophora nuda (Fr.) Bres.12, B, a
Peniophora ovalispora Boidin, Lanq. & Gilles12, C, m, N, **
Peniophora pithya (Pers.) J. Erikss.12, B, c
Peniophora versicolor (Bres.) Sacc. & P. Syd.12, B, m
Peniophora versiformis (Berk. & M.A. Curtis) Bourdot & Galzin12, A, g
Peniophora violaceolivida (Sommerf.) Massee12, A, e
Peniophorella crystallifera Yurchenko, Sheng H. Wu & N. Maek.-, B, j, O, **
Peniophorella echinocystis (J. Erikss. & Å. Strid) K.H. Larss.-, A, f
Peniophorella odontiiformis (Boidin & Berthier) K.H. Larss.-, B, a, N, O, **
Peniophorella pertenuis (P. Karst.) Hallenb. & H. Nilsson-, A, e, **
Peniophorella praetermissa (P. Karst.) K.H. Larss.-, B, a, O, **
Peniophorella pubera (Fr.) P. Karst.-, B, a, N, O, **
Penttilamyces olivascens (Berk. & M.A. Curtis) Zmitr., Kalinovskaya & Myasnikov4, B, d
Phaeophlebiopsis himalayensis (Dhingra) Zmitr.11, A, j, *
Phaeophlebiopsis peniophoroides (Gilb. & Adask.) Floudas & Hibbett11, B, i, *, **
Phaeophlebiopsis ravenelii (Cooke) Zmitr.11, B, a, N, O
Phanerochaete australis Jülich11, B, m, N, *, **
Phanerochaete brunnea Sheng H. Wu11, C, j, N
Phanerochaete burtii (Romell ex Burt) Parmasto11, B, m
Phanerochaete carnosa (Burt) Parmasto11, B, m
Phanerochaete eburnea Sheng H. Wu11, A, m, N, **
Phanerochaete laevis (Fr.) J. Erikss. & Ryvarden11, B, a
Phanerochaete leptoderma Sheng H. Wu11, A, j, N, **
Phanerochaete salmoneolutea Burds. & Gilb.11, B, i, *, **
Phanerochaete sordida (P. Karst.) J. Erikss. & Ryvarden11, B, a, N, O, **
Phanerochaete stereoides Sheng H. Wu11, C, j, N
Phanerochaete subceracea (Burt) Burds.11, B, m
Phanerochaete subglobosa Sheng H. Wu11, B, j
Phanerochaete velutina (DC.) P. Karst.11, B, c, **
Phanerodontia magnoliae (Berk. & M.A. Curtis) Hjortstam & Ryvarden11, B, f, O, **
Phlebia acanthocystis Gilb. & Nakasone11, B, m, N, O, **
Phlebia acerina Peck11, B, a, N, **
Phlebia brevispora Nakasone11, A, i, O, **
Phlebia caspica Hallenb.11, A, h, *
Phlebia coccineofulva Schwein.11, B, c
Phlebia lilascens (Bourdot) J. Erikss. & Hjortstam11, B, a
Phlebia livida (Pers.) Bres.11, B, a, N, O, **
Phlebia ludoviciana (Burt) Nakasone & Burds.11, B, f
Phlebia radiata Fr.11, B, a, **
Phlebia subserialis (Bourdot & Galzin) Donk11, B, a, N
Phlebia tremellosa (Schrad.) Nakasone & Burds.11, B, a, **
Phlebia tuberculata (Hallenb. & E. Larss.) Ghob.-Nejh.11, B, e
Phlebiopsis crassa (Lév.) Floudas & Hibbett11, B, a, N, **
Phlebiopsis flavidoalba (Cooke) Hjortstam11, B, f, N
Phlebiopsis gigantea (Fr.) Jülich11, B, a
Phlebiopsis roumeguerei (Bres.) Jülich & Stalpers11, B, d
Phlyctibasidium polyporoideum (Berk. & M.A. Curtis) Jülich-, B, a
Piloderma byssinum (P. Karst.) Jülich3, A, b
Piloderma lanatum (Jülich) J. Erikss. & Hjortstam3, A, g
Porostereum spadiceum (Pers.) Hjortstam & Ryvarden11, B, a, O, **
Pseudolagarobasidium calcareum (Cooke & Massee) Sheng H. Wu11, B, m, N, **
Pseudomerulius aureus (Fr.) Jülich4, B, e, **
Punctularia atropurpurascens (Berk. & Broome) Petch6, B, c, *, **
Punctularia strigosozonata (Schwein.) P.H.B. Talbot6, B, a, **
Radulodon casearius (Morgan) Ryvarden11, A, g
Radulodon copelandii (Pat.) N. Maek.11, A, e, **
Radulomyces confluens (Fr.) M.P. Christ.1, B, a, N, **
Radulomyces molaris (Chaillet ex Fr.) M.P. Christ.1, A, g
Ramaricium albo-ochraceum (Bres.) Jülich9, B, c, O, *
Repetobasidium intermedium Oberw.5, A, j
Repetobasidium mirificum J. Erikss.5, B, c, O, *
Repetobasidium vile (Bourdot & Galzin) J. Erikss.5, A, g
Resinicium bicolor (Alb. & Schwein.) Parmasto-, B, m, N, O
Resinicium luteosulphureum (Rick) Baltazar & Rajchenb.-, B, m, N, O, **
Resinicium mutabile Nakasone-, B, m, *
Resinicium saccharicola (Burt) K.K. Nakasone-, C, c, N, *, **
Rhizochaete filamentosa (Berk. & M.A. Curtis) Gresl., Nakasone & Rajchenb.11, B, m, N, **
Rhizochaete radicata (Henn.) Gresl., Nakasone & Rajchenb.11, B, a, **
Rhizochaete sulphurina (P. Karst.) K.H. Larss.11, A, e
Rhizoctonia anceps (Bres., Syd. & P. Syd.) Oberw., R. Bauer, Garnica & R. Kirschner5, A, g
Rhizoctonia fusispora (J. Schröt.) Oberw., R. Bauer, Garnica & R. Kirschner5, A, e, *, **
Rhizoctonia ochracea (Massee) Oberw., R. Bauer, Garnica & R. Kirschner5, B, m
Rhizoctonia solani J.G. Kühn5, B, a
Rhizoctonia sterigmatica (Bourdot) Oberw., R. Bauer, Garnica & R. Kirschner5, B, m, N
Sceptrulum inflatum (Burt) K.H. Larss.12, A, i, *
Scopuloides rimosa (Cooke) Jülich11, B, c, N, O, **
Scotoderma viride (Sacc.) Jülich12, A, m
Scytinostroma africanogalactinum Boidin, Lanq. & Gilles12, C, m, O, *
Scytinostroma duriusculum (Berk. & Broome) Donk12, B, a, N, O, **
Scytinostroma lusitanicum (Trotter) P.M. Kirk12, B, c
Scytinostroma odoratum (Fr.) Donk12, B, a, O, **
Scytinostroma portentosum (Berk. & M.A. Curtis) Donk12, B, a, N, O
Scytinostromella nannfeldtii (J. Erikss.) G.W. Freeman & R.H. Petersen12, A, g, O
Serpula himantioides (Fr.) P. Karst.4, B, a, **
Serpula lacrymans (Wulfen) J. Schröt.4, B, d, **
Serpula pulverulenta (Sowerby) Bondartsev4, A, g
Sertulicium granuliferum (Hallenb.) Spirin & Volobuev.14, B, d, O, *, **
Sertulicium niveocremeum (Höhn. & Litsch.) Spirin & K.H. Larss.14, B, a, O
Sistotrema athelioides Hallenb.5, A, f, **
Sistotrema biggsiae Hallenb.5, B, d
Sistotrema brinkmannii (Bres.) J. Erikss.5, B, a, **
Sistotrema confluens Pers.5, B, d
Sistotrema coronilla (Höhn.) Donk ex D.P. Rogers5, B, d, O
Sistotrema diademiferum (Bourdot & Galzin) Donk5, B, c, O
Sistotrema microsporum N. Maek.5, A, j
Sistotrema muscicola (Pers.) S. Lundell5, B, b
Sistotrema oblongisporum M.P. Christ. & Hauerslev5, B, c, **
Sistotrema porulosum Hallenb.5, A, f
Sistotrema subtrigonospermum D.P. Rogers5, B, a
Sistotremella perpusilla Hjortstam14, B, m
Skvortzovia furfuracea (Bres.) G. Gruhn & Hallenberg-, B, d
Skvortzovia furfurella (Bres.) Bononi & Hjortstam-, A, m, N
Skvortzovia pinicola (J. Erikss.) G. Gruhn & Hallenb.-, A, m, O, *, **
Sphaerobasidium minutum (J. Erikss.) Oberw. ex Jülich14, A, g, **
Steccherinum ciliolatum (Berk. & M.A. Curtis) Gilb. & Budington11, B, f
Steccherinum fimbriatum (Pers.) J. Erikss.11, B, a, N, **
Steccherinum helvolum (Zipp. ex Lév.) S. Ito11, A, j
Steccherinum laeticolor (Berk. & M.A. Curtis) Banker11, B, c
Steccherinum ochraceum (Pers. ex J.F. Gmel.) Gray11, B, a, N, **
Steccherinum rawakense (Pers.) Banker11, B, a
Stereofomes palmicola S. Ito & S. Imai12, C, k, O
Stereum boninense Yasuda12, C, k, O
Stereum gausapatum (Fr.) Fr.12, B, c
Stereum hirsutum (Willd.) Pers.12, B, c, N, **
Stereum kurilense Yasuda12, A, k
Stereum ochraceoflavum (Schwein.) Sacc.12, A, g
Stereum ostrea (Blume & T. Nees) Fr.12, B, m, N, **
Stereum pendulum R. Sasaki12, A, k
Stereum rimosum Berk.12, B, m
Stereum rugosum Pers.12, B, a, **
Stereum sanguinolentum (Alb. & Schwein.) Fr.12, B, a, N, **
Stereum spectabile Klotzsch12, B, m, N, O, **
Stereum vellereum Berk.12, B, a
Subulicium lautum (H.S. Jacks.) Hjortstam & Ryvarden10, A, e
Subulicystidium brachysporum (P.H.B. Talbot & V.C. Green) Jülich14, B, m, N, O
Subulicystidium longisporum (Pat.) Parmasto14, B, a, N, O
Subulicystidium meridense Oberw.14, B, m, N, O
Subulicystidium nikau (G. Cunn.) Jülich14, B, m, N
Subulicystidium perlongisporum Boidin & Gilles14, B, d
Terana coerulea (Lam.) Kuntze11, B, a
Thanatephorus repetosporus (G. Langer & Ryvarden) P. Roberts5, C, m, O, *
Thelephora ellisii (Sacc.) Zmitr., Shchepin, Volobuev & Myasnikov13, A, a, **
Theleporus calcicolor (Sacc. & P. Syd.) Ryvarden11, B, m, N, O, **
Theleporus membranaceus Y.C. Dai & L.W. Zhou11, C, j, N, *, **
Tomentella crinalis (Fr.) M.J. Larsen13, A, e, **
Tomentella ferruginea (Pers.) Pat.13, A, e
Trechispora cohaerens (Schwein.) Jülich & Stalpers14, B, f, N, O, **
Trechispora dimitica Hallenb.14, B, m, O
Trechispora farinacea (Pers.) Liberta14, B, a, N, O, **
Trechispora microspora (P. Karst.) Liberta14, B, a, **
Trechispora mollusca (Pers.) Liberta14, B, a
Trechispora nivea (Pers.) K.H. Larss.14, B, a, N, O, **
Trechispora praefocata (Bourdot & Galzin) Liberta14, A, m, N, O
Trechispora regularis (Murrill) Liberta14, B, a
Trechispora stevensonii (Berk. & Broome) K.H. Larss.14, B, a, N, **
Trechispora subsphaerospora (Litsch.) Liberta14, A, f
Trechispora tenuicula (Litsch.) K.H. Larss.14, A, h, *
Tubulicium curvisporum Ushijima & N. Maek.14, A, k, **
Tubulicium raphidisporum (Boidin & Gilles) Oberw., Kisim.-Hor. & L.D. Gómez14, C, m, N, O
Tubulicium vermiferum (Bourdot) Oberw. ex Jülich14, A, f
Tubulicrinis angustus (D.P. Rogers & Weresub) Donk10, A, g, *
Tubulicrinis borealis J. Erikss.10, A, f
Tubulicrinis calothrix (Pat.) Donk10, B, a, **
Tubulicrinis glebulosus (Fr.) Donk10, B, a, **
Tubulicrinis hamatus (H.S. Jacks.) Donk10, A, m
Tubulicrinis hirtellus (Bourdot & Galzin) J. Erikss.10, A, g, *, **
Tubulicrinis inornatus (H.S. Jacks. & D.P. Rogers) Donk10, A, f
Tubulicrinis medius (Bourdot & Galzin) Oberw.10, A, g, *, **
Tubulicrinis orientalis Parmasto10, A, h
Tubulicrinis subulatus (Bourdot & Galzin) Donk10, B, e, **
Tubulicrinis yunnanensis C.L. Zhao10, B, j, *, **
Tylospora asterophora (Bonord.) Donk3, A, g
Tylospora fibrillosa (Burt) Donk3, A, g, O
Vararia gittonii Boidin & Lanq.12, C, m, N
Vararia investiens (Schwein.) P. Karst.12, B, m
Vararia ochroleuca (Bourdot & Galzin) Donk12, A, m, **
Vararia phyllophila (Massee) D.P. Rogers & H.S. Jacks.12, B, m, O
Veluticeps abietina (Pers.) Hjortstam & Tellería8, A, g
Veluticeps berkeleyana Cooke8, B, g
Vuilleminia comedens (Nees) Maire6, B, b **
Vuilleminia cystidiata Parmasto6, B, m, * **
Waitea circinata Warcup & P.H.B. Talbot6, A, m
Xenasma pulverulentum (H.S. Jacks.) Donk11, B, a
Xenasma rimicola (P. Karst.) Donk11, B, a
Xenasma tulasnelloideum (Höhn. & Litsch.) Donk11, A, a, N, **
Xenasmatella alnicola (Bourdot & Galzin) K.H. Larss. & Ryvarden14, B, b, O, **
Xenasmatella athelioidea (N. Maek.) N. Maek.11, A, k, O, **
Xenasmatella christiansenii (Parmasto) Stalpers11, A, f, **
Xenasmatella fibrillosa (Hallenb.) K.H. Larss. & Hjortstam11, A, g
Xenasmatella vaga (Fr.) Stalpers11, B, a, **
Xylobolus frustulatus (Pers.) P. Karst.12, B, a, N, **
Xylobolus hiugensis (Imazeki) Imazeki & Hongo12, A, k
Xylobolus illudens (Berk.) Boidin12, B, a
Xylobolus princeps (Jungh.) Boidin12, B, m, N, **
Xylobolus subpileatus (Berk. & M.A. Curtis) Boidin12, B, a
Xylodon asper (Fr.) Hjortstam & Ryvarden10, B, b, **
Xylodon brevisetus (P. Karst.) Hjortstam & Ryvarden10, B, a
Xylodon flaviporus (Berk. & M.A. Curtis ex Cooke) Riebesehl & Langer10, B, a, N, **
Xylodon nespori (Bres.) Hjortstam & Ryvarden10, B, a, N, **
Xylodon niemelaei (Sheng H. Wu) Hjortstam & Ryvarden10, C, m, O, **
Xylodon nudisetus (Warcup & P.H.B. Talbot) Hjortstam & Ryvarden10, A, m, O
Xylodon ovisporus (Corner) Riebesehl & Langer10, B, m, N, **
Xylodon pelliculae (H. Furuk.) Riebesehl, Yurchenko & Langer10, A, j
Xylodon quercinus (Pers.) Gray10, A, g
Xylodon radula (Fr.) Ţura, Zmitr., Wasser & Spirin10, A, m, N
Xylodon raduloides Riebesehl & Langer10, B, a, N
Xylodon reticulatus (C.C. Chen & Sheng H. Wu) C.C. Chen & Sheng H. Wu10, A, j
Xylodon spathulatus (Schrad.) Kuntze10, B, c, **
Xylodon subflaviporus C.C. Chen & Sheng H. Wu10, C, i, *, **

* First report from Japan. ** Species identified on the basis of morphological and ITS sequence data

Superscript numbers indicate the orders to which the species belong: 1, Agaricales; 2, Amylocorticiales; 3, Atheliales; 4, Boletales; 5, Cantharellales; 6, Corticiales; 7, Dacrymycetales; 8, Gloeophyllales; 9, Gomphales; 10, Hymenochaetales; 11, Polyporales; 12, Russulales; 13, Thelephorales; 14, Trechisporales; and -, Unknown.

Superscript uppercase letters indicate the climatic zones or islands in which species are distributed: A, Subarctic to temperate zones; B, Subarctic to subtropical zones; C, Subtropical zone; N, Nansei Islands; and O, Ogasawara Islands.

Superscript lowercase letters indicate the regions where species are distributed: a, Cosmopolitan; b, Northern Hemisphere, Africa, and Oceania; c, Northern Hemisphere, Africa, and South America; d, Northern Hemisphere and Africa; e, Northern Hemisphere and Oceania; f, Northern Hemisphere and South America; g, Northern Hemisphere; h, Eurasia; i, Far East Asia and North America; j, Far East Asia; k, Japan (endemic); and m, Other.

3. Mycofloristics of the corticioid fungi in Japan

3.1. Diversity of the Japanese corticioid fungi

The Japanese Archipelago extends over approximately 3,000 km from northeast to southwest between lat. 24°N and 46°N, and it has many high mountains >2,000 m in altitude. Its climate encompasses subarctic, cool-temperate, warm-temperate, and subtropical zones. The mycofloral diversity of Agaricales in Japan reflects this geographical and climatic variation (Hongo & Yokoyama, 1978). Bioclimatically, the Japanese corticioid fungi are composed of species distributed in (A) subarctic to temperate zones (141 species, 32% of the total), (B) temperate to subtropical zones (252 species, 57% of the total), and (C) the subtropical zone (49 species, 11% of the total) (see footnote to Table 1). According to global distribution records, 105 species of Japanese corticioid fungi have been recorded on five continents, and 79, 92, and 99 species have been recorded on four, three, and two continents, respectively. Thus a total of 375 species―85% of known Japanese corticioid species―are distributed on multiple continents. The remaining 67 species are reported only from Eurasia, and of these 22 species (5% of the total) are endemic to Japan and 33 species (7% of the total) are distributed only in Far East Asia. Many species of Japanese corticioid fungi therefore have a wide global distribution, and Japanese corticioid fungi have diverse distribution patterns.

Analysis of the distributions of the Japanese corticioid species accepted in the present study reveals that they can be divided into 12 groups: (a) cosmopolitan (Africa, Eurasia, North America, Oceania, and South America), (b) Northern Hemisphere (Eurasia and North America), Africa, and Oceania, (c) Northern Hemisphere, Africa, and South America, (d) Northern Hemisphere and Africa, (e) Northern Hemisphere and Oceania, (f) Northern Hemisphere and South America, (g) Northern Hemisphere, (h) Eurasia, (i) Far East Asia and North America, (j) Far East Asia, (k) Japan (endemic), and (m) others. The main distribution patterns and their representative species are described below (see footnote to Table 1).

(a) Cosmopolitan: 112 species. Most of these species have been collected from both temperate and (sub)tropical regions. Representative species include Amphinema byssoides (Pers.) J. Erikss., Chondrostereum purpureum (Pers.) Pouzar, Dacryobolus sudans (Alb. & Schwein.) Fr., Laxitextum bicolor (Pers.) Lentz, Peniophorella pubera (Fr.) P. Karst., Phanerochaete sordida (P. Karst.) J. Erikss. & Ryvarden, Scytinostroma portentosum (Berk. & M.A. Curtis) Donk, Subulicystidium longisporum (Pat.) Parmasto, and Trechispora farinacea (Pers.) Liberta. These species have been collected from both subtropical and temperate regions of Japan.

(b) Northern Hemisphere, Africa, and Oceania: 20 species. All have been found in both temperate and (sub)tropical regions. Representative species include Brevicellicium olivascens (Bres.) K.H. Larss. & Hjortstam, Cerocorticium molle (Berk. & M.A. Curtis) Jülich, Coniophora puteana (Schumach.) P. Karst., Dacryobolus karstenii (Bres) Oberw. ex Parmasto, Erythricium salmonicolor (Berk. & Broome) Burds., Gloeocystidiellum porosum (Berk. & M.A. Curtis) Donk, Hyphodontia pallidula (Pers.) J. Erikss., and Trechispora alnicola (Bourdot & Galzin) Liberta.

(c) Northern Hemisphere, Africa, and South America: 35 species. These have been collected from temperate and (sub)tropical regions of Africa, Eurasia, and North and South America, excluding Oceania. Representative species include Amyloxenasma grisellum (Bourdot) Hjortstam & Ryvarden, Fibrodontia gossipina Parmasto, Gloeocystidiellum convolvens (P. Karst.) Donk, and Kneiffiella microspora (J. Erikss. & Hjortstam) Jülich & Stalpers.

(d) Northern Hemisphere and Africa: 21 species. Most of them are known from both temperate regions in the Northern Hemisphere and tropical regions of Africa. Litschauerella clematidis (Bourdot & Galzin) J. Erikss. & Ryvarden (Maekawa, 1993b) has been collected from subtropical regions of Japan (the Okinawa Islands in the Nansei Islands). Representative species include Amylocorticium subincarnatum (Peck) Pouzar, Aphanobasidium pseudotsugae (Burt) Boidin & Gilles, Gloeocystidiellum luridum (Bres.) Boidin, and Sistotrema oblongisporum M.P. Christ. & Hauerslev.

(e) Northern Hemisphere and Oceania: 13 species. These have been collected primarily in the temperate regions of Eurasia, North America, and Oceania and are not found in Africa or South America. In Japan, these species are known only from the temperate regions so far. Representative species include Amylostereum areolatum (Fr.) Hjortstam & Ryvarden, Byssomerulius albostramineus (Torrend) Hjortstam, Hydnocristella himantia (Schwein.) R.H. Petersen, Pseudomerulius aureus (Fr.) Jülich, Radulodon copelandii (Pat.) N. Maek., Tomentella ferruginea (Pers.) Pat., and Tubulicrinis subulatus (Bourdot & Galzin) Donk.

(f) Northern Hemisphere and South America: 25 species. These are known mainly from temperate regions. In Japan, Phanerodontia magnoliae (Berk. & M.A. Curtis) Hjortstam & Ryvarden, Phlebiopsis flavidoalba (Cooke) Hjortstam, and Trechispora cohaerens (Schwein.) Jülich have also been collected in subtropical regions, whereas the other species are known only from temperate regions (Maekawa, 1993b, 2010).

(g) Northern Hemisphere: 35 species. Most have been found in subarctic to temperate zones. In Japan, all of these species have been collected only from the temperate regions, except Tylospora fibrillosa (Burt) Donk, which has been collected not only from temperate regions but also from the subtropical Ogasawara Islands (Maekawa, 2010). Representative species include Aleurocystidiellum subcruentatum (Berk. & M.A. Curtis) P.A. Lemke, Amylocorticium canadense (Burt) J. Erikss & Weresub, Athelia salicum Pers., Byssocorticium pulchrum (S. Lundell) M.P. Christ., Cytidia salicina (Fr.) Burt., Gloiothele citrina (Pers.) Ginns & G.W. Freeman, Kneiffiella subalutacea (P. Karst.) Bres., Peniophora erikssonii Boidin, and Repetobasidium vile (Bourdot & Galzin) J. Erikss.

(h) Eurasia: 7 species. These species are known from with distributions in the subarctic to temperate zones of Asia and Europe, but not from other continents. In Japan, all of these species have been collected only from the temperate regions (Honshu and Shikoku islands), except for Byssocorticium efibulatum Hjortstam & Ryvarden, which has been collected not only from the temperate regions but also from subtropical lowland of Yakushima Island (Maekawa, 2010). Representative species include Athelia sibilica (Jülich) J. Erikss. & Ryvarden, Atheloderma orientale Parmasto, Byssocorticium efibulatum Hjortstam & Ryvarden, Kneiffiella cineracea (Bourdot & Galzin) Jülich, Phlebia caspica Hallenb., and Tubulicrinis orientalis Parmasto.

(i) Far East Asia and North America: 24 species. Most species in this group are distributed mainly in the boreal to temperate zones of Far East Asia and North America, but Kavinia vivantii Boidin & Gilles is known from Guadeloupe in the West Indies (Boidin & Gilles, 2000) and from the subtropical Ogasawara Islands (Maekawa, 2010). Representative species include Aleurodiscus grantii Lloyd, Gloeostereum incarnatum S. Ito & S. Imai, Hyphoderma pilosum (Burt) Bilb. & Budington, and Lyoathelia laxa (Burt) Hjortstam & Ryvarden.

(j) Far East Asia: 33 species. Of these species, Byssomerulius tropicus (Sheng H. Wu) Zmitr., Dentipellicula taiwaniana Sheng H. Wu, Efibula tropica Sheng H. Wu, Phanerochaete stereoides Sheng H. Wu, and Theleporus membranaceus Y.C. Dai & L.W. Zhou are known only from subtropical regions. In Japan, these four species are distributed in the Nansei Islands.

(k) Japan (endemic): 22 corticioid species are considered potentially endemic to Japan (Fig. 1). Cyanobasidium microverrucisporum (N. Maek.) Hjortstam & Ryvarden, Leptocorticium cyatheae (S. Ito & S. Imai) Hjortstam & Ryvarden, Lyomyces boninensis (S. Ito & S. Imai) Hjortstam & Ryvarden, and Xylodon pelliculae (H. Furuk.) Riebesehl, Yurchenko & Langer were also recognized as endemic to Japan, but they were subsequently found in Colombia (Hjortstam & Ryvarden, 2005), Reunion Island (Boidin & Gilles, 1998), Vanuatu (Maekawa, 2002), and China (Dai, 2011), respectively.

(m) Others: 95 corticioid species possess distribution patterns that are different from patterns (a) to (k), above.

Fig. 1 - Basidiomata of corticioid species endemic to Japan. A: Asterostroma boninense (TUMH 63841, holotype). B: Asterostroma macrosporum (TUMH 60992, holotype). C: Athelia repetobasidiifera (TUMH 63503, holotype). D: Athelia termitophila (TUMH 40433, holotype). E: Cylindrobasidium argenteum (TUMH 62012). F: Haloaleurodiscus mangrovei (TUMH 63842, holotype). G: Xenasmatella athelioidea (TUMH 63844, holotype). H: Tubulicium curvisporum (TUMH 63048, holotype). All specimens are deposited in TUMH, Tottori University. Bars: A, B, E, H 10 mm; C, D, G 1 mm; F 10 cm.

Fig. 1 - Basidiomata of corticioid species endemic to Japan. A: Asterostroma boninense (TUMH 63841, holotype). B: Asterostroma macrosporum (TUMH 60992, holotype). C: Athelia repetobasidiifera (TUMH 63503, holotype). D: Athelia termitophila (TUMH 40433, holotype). E: Cylindrobasidium argenteum (TUMH 62012). F: Haloaleurodiscus mangrovei (TUMH 63842, holotype). G: Xenasmatella athelioidea (TUMH 63844, holotype). H: Tubulicium curvisporum (TUMH 63048, holotype). All specimens are deposited in TUMH, Tottori University. Bars: A, B, E, H 10 mm; C, D, G 1 mm; F 10 cm.

3.2. Corticioid fungi from subtropical regions of Japan

The Nansei and Ogasawara Islands are located in the subtropical zone of Japan. The Ogasawara Islands (also known as the Bonin Islands), located about 1,000 km south of Tokyo (lat. 26°N-27°N, long. 142°E), are oceanic islands with a characteristic forest ecosystem that has many endemic species of trees and small woody plants. The Nansei Islands are 1,600 km west of the Ogasawara Islands (lat. 24°N-27°N, long. 124°E-127°E), are at almost the same latitude as the former. In contrast to the Ogasawara Islands, the Nansei Islands are continental islands and have forest vegetation types, including mangrove forests, similar to those of Taiwan and subtropical areas of the mainland China.

Taxonomic studies on corticioid fungi distributed in both archipelagos have been carried out by several Japanese mycologists (Ito & Imai, 1940; S. Ito, 1955; Maekawa, 1993b, 1994, 1997a, 1997b, 1998, 1999, 2000a, 2000b, 2010; Maekawa & Hasebe, 2002; Maekawa et al., 2003, 2005; Sato, Uzuhashi, Hosoya, & Hosaka, 2010; Suhara et al., 2010, 2011; Hosaka, 2018). These reports indicate that 146 corticioid species belonging to 77 genera are recorded in the subtropical regions of Japan; 100 species in 58 genera are recorded in the Nansei Islands, and 76 species in 50 genera are recorded in the Ogasawara Islands (see footnote to Table 1). Although the Nansei and Ogasawara Islands are located at similar latitudes, only 30 species (21% of the total corticioid species reported from the subtropical regions) are found on both island groups. The differences in the corticioid fungi found on the Nansei and Ogasawara Islands may be due to the following factors: (1) since the Nansei Islands are continental and the Ogasawara Islands are oceanic, they offer different types of vegetation as substrates; (2) the Nansei and Ogasawara Islands are separated by 1,600 km, east to west; (3) there are mangrove and Fagaceae trees on the Nansei Islands, whereas these trees are absent and also limited distribution of coniferous trees on the Ogasawara Islands.

3.3. Corticioid fungi in mangrove forests

Mangrove forests are distributed in coastal and riverine intertidal zones of the subtropics and tropics in many parts of the world. According to the checklist for mangrove xylophilous basidiomycetes compiled by Baltazar, Trierveiler-Pereira, and Louguercio-Leite (2009), a total of 23 corticioid species are known from mangroves around the world. In Japan, mangrove trees thrive mainly in intertidal zones of the mouths of rivers in the southwestern subtropical region. Before 2000, however, no corticioid species were known from the Japanese mangrove forests, although 98 species of corticioid fungi had been collected from the subtropical inland forests (Maekawa, 1993b, 1994, 1997a, 1997b, 1998, 2000a). Since the beginning of this century, several surveys of corticioid fungi have been conducted in the mangrove forests of the islands of Okinawa and Iriomote, in the Ryukyu Islands (part of the Nansei Islands), and the following 19 corticioid species, including one new genus and two new species, have been reported (Maekawa et al., 2003, 2005; Suhara et al., 2010): Asterostroma macrosporum N. Maek. (Fig. 1B), A. muscicola (Berk. & M.A. Curtis) Massee, Byssomerulius tropicus (Sheng H. Wu) Zmitr. (as Phanerochaete tropica (Sheng H. Wu) Hjortstam), Cerocorticium molle, Fibrodontia gossypina Parmasto, Gloeocystidiellum moniliforme Sheng H. Wu, Haloaleurodiscus mangrovei N. Maek., Suhara & K. Kinjo (Fig. 1F), Hyphoderma nudicephalum Gilb. & M. Blackw., Lopharia ayresii (Berk. ex Cooke) Hjortstam. (as Hyphoderma ayresii (Berk. ex Cooke) Boidin & Gilles), Lyomyces crustosus (Pers.) P. Karst., Megalocystidium wakullum (Burds., Nakasone & G.W. Freeman) E. Larss. & K.H. Larss. (as Gloeocystidiellum wakullum Burds.), Peniophorella odontiiformis (Boidin & Bethier) K.H. Larss. (as Hyphoderma rude (Bres.) Hjortstam & Ryvarden), Phanerochaete sordida, Phlebia acanthocystis Gilb. & Nakasone, Radulomyces confluens (Fr.) M.P. Christ., Subulicystidium longisporum, Trechispora farinacea, T. nivea (Pers.) K.H. Larss., and Tubulicium raphidisporum (Boidin & Gilles) Kisim.-Hor. & L.D. Gómez. Of these, Haloaleurodiscus N. Maek., Suhara & Kinjo was described as a new genus; H. mangrovei and A. macrosporum were each described as new species; and A. muscicola, B. tropicus, C. molle, G. moniliforme, L. ayresii, M. wakullum, and P. acanthocystis were reported from Japan for the first time (Maekawa et al., 2003, 2005; Suhara et al., 2010). None of these 19 species has been reported from mangroves outside Japan.

The genus Haloaleurodiscus is morphologically characterized as having resupinate basidioma, nodose-septate hyphae, sulphoaldehyde-positive gloeocystidia, dendrohyphidia, and amyloid basidiospores with minute warts. These morphological features are similar to those of Aleurodiscus s. l., but ribosomal DNA sequence data indicate that H. mangrovei is not closely related to Aleurodiscus spp. Haloaleurodiscus mangrovei differs from Aleurodiscus primarily by the association with a white pocket-rot. Maekawa et al. (2005) examined the phylogenetic relationships of aquatic homobasidiomycetous fungi, namely Calathella mangrovei E.B.G. Jones & Agerer (from mangrove), Halocyphina villosa Kohlm. & E. Kohlm. (from mangrove), Nia vibrissa R.T. Moore & Meyers (marine), Physalacria maipoensis Inderb. & Desjardin, and Limnoperdon incarnatum G.A. Escobar (fresh water). All the examined species were found to be phylogenetically nested in the euagarics clade, whereas H. mangrovei was placed at the root of the Peniophorales clade. On the basis of this result, Maekawa et al. (2005) indicated that H. mangrovei is phylogenetically distinct from previously reported aquatic homobasidiomycetous species, supporting the view that it represents a unique evolutionary transition from terrestrial to marine environments in Homobasidiomycetes. This species prefers dead branches at the lower portions of living Sonneratia alba Sm. as its substrate, although the collection sites is dominated by Bruguiera gymhorhiza (L.) Lam. and Rhizophora mucronata Lam. Basidiomata of this species usually occur on dead branches near the high tide mark, but they sometimes form below the high tide mark. Therefore, the tide certainly covers the basidiomata at least once a day for about 1 week during the higher high tides. This habitat resembles that of the marine basidiomycetous fungi. Mycelia of H. mangrovei can grow on malt-extract agar (MEA) containing higher concentrations (100‰, w/v) of sea salts than are found (32‰-35‰, w/v) in seawater, although growth is slower than on freshwater agar media (MEA). These features lead us to conclude that H. mangrovei is salt tolerant, as is Physalacria maipoensis collected from mangrove (Inderbitzin & Desjardin, 1999). They also suggest that basidiomata can be produced on substrates that are periodically covered by the tide during development (Maekawa et al., 2005). On the other hand, all other corticioid species collected in mangrove forests produce their basidiomata 1.5 m or more above the ground on dead branches of living mangroves, never forming basidiomata as low as H. mangrovei. In addition, these species are not able to grow on MEA containing salt concentrations similar to seawater (32‰-35‰, w/v). Differences in the position of basidioma formation between corticioid species of mangrove trees may be due to differences in their tolerance to seawater (unpublished data).

4. Reevaluation of Japanese corticioid fungi on the basis of combined morphological and molecular data

Molecular phylogenetic analyses have been performed for several corticioid taxa, and these studies included some Japanese specimens or isolates, or both. Nilsson, Hallenberg, Nordén, Maekawa, and Wu (2003) performed molecular analysis, morphological observation, and crossing tests of Hyphoderma setigerum collected from the Northern Hemisphere, and they revealed that H. setigerum sensu lato contains nine preliminary taxa. Hyphoderma nudicephalum Gilb. & M. Blackw., H. subsetigerum Sheng H. Wu and an undescribed species were also detected, but H. setigerum sensu stricto was not recognized among the Japanese specimens.

Peniophorella praetermissa (P. Karst.) K.H. Larss. has long been regarded as a morphologically variable species complex. It is distributed widely in Japan and shows variability in cystidium morphology, basidiospore shape and size, and productivity of stephanocysts. Hallenberg et al. (2007) recognized three major clades, further categorized into well-supported subclades on the basis of phylogenetic analysis of internal transcribed spacer (ITS) data from worldwide sampling. Japanese specimens identified as P. praetermissa sensu lato on the basis of morphological features were placed in five (sub)clades; subclade 1A, subclade 1B (= P. praetermissa sensu stricto), Clade 2 [= P. pertenuis (P. Karst.) Hallenb. & H. Nilsson], subclade 3A [= P. odontiiformis (Boidin & Berthier) K.-H. Larss.], and a fifth, unnamed clade. Recently, the specimens belonging to the subclade 1A were reported as a new species, P. crystallifera Yurchenko, Sheng H. Wu & N. Maek. (Yurchenko et al., 2020).

Tabata and Abe (1997) were the first to report Amylostereum laevigatum (Fr.) Boidin from Japan, associated with the Japanese horntail, Urocerus japonicus (L. f.) D. Don, a species of sawfly. Although Tabata, Harrington, Chen, and Abe (2000) used molecular and morphological analyses to show Japanese A. laevigatum is distinct from French A. laevigatum, the scientific name remains in use in Japan (Tabata & Abe, 1999; Tabata, Harrington, Chen, & Abe, 2000). Recently, however, by using morphological and molecular data (ITS nrDNA and rpb2 markers), Nogal-Prata et al. (2017) demonstrated that some specimens of A. laevigatum from Japan belong to A. orientale S.H. He & Hai J. Li.

These studies suggest that some corticioid species may consist of several cryptic species. Molecular phylogenetic analyses have also revealed cryptic species in many corticioid genera such as Gloeocystidiellum, Hyphoderma, Hyphodontia (sensu lato), and Hypochnicium J. Erikss. (sensu lato). In a study of G. porosum and its cryptic species, although we could not identify morphological differences between teleomorphs, the two taxa differed in the production of anamorphs in culture (Maekawa, 2018). Thus, mycelial characteristics in culture may be useful as taxonomic criteria for distinguishing cryptic species.

5. Future prospects

Of the 442 corticioid fungi reported from Japan, sequence data are available for almost half (218 species), and 168 species have been identified on the basis of both morphological characteristics of basidiomata and ITS sequence data (Supplementary Table S2). However, for 50 species, the sequence collected for this study did not match those previously deposited in GenBank (unpublished data). Such discrepancies indicate that species identification by using morphological characteristics of the specimens alone can be unreliable. Therefore, the taxonomic positions of these specimens should be reevaluated. As mentioned in the previous section, cryptic species have also been found among some corticioid species from Japan. More accurate identification of these species will require a combination of morphological characteristics and DNA sequence data. In addition, mycelial characteristics in culture may be useful as taxonomic criteria for distinguishing cryptic species.

The remaining 224 species have been identified on the basis of morphological characteristics alone and lack sequence data. In addition, some species have been identified from an insufficient number of specimens or by using only a few morphological traits. For example, taxa with the Japanese names “Akakouyakutake” and “Kawatake” were first reported from Japan as Aleurodiscus amorphus (Pers.) J. Schröt. by Yasuda (1914a) and Peniophora quercina (Pers.) Cooke by Hennings (1903), respectively. The scientific names have been commonly used in Japan for more than 80 years. However, all of the Japanese specimens labeled “Aleurodiscus amorphus” and “Peniophora quercina” deposited in several herbaria were identified as A. grantii Lloyd and P. manshurica Parmasto, respectively (Maekawa, 1994). In addition, A. grantii and P. manshurica have been collected throughout Japan, whereas I have never encountered A. amorphus or P. quercina. As mentioned in the previous section, H. setigerum (sensu stricto) was not recognized among the specimens of H. setigerum (sensu lato) collected in Japan (Nilsson et al., 2003). Subsequently, many specimens of H. setigerum (sensu lato) have been collected from various localities in Japan, but no H. setigerum sensu stricto has been found. These results indicate that A. amorphus, H. setigerum sensu stricto, and P. quercina, reported as Japanese corticioid species, may not be distributed in Japan. To verify the identities of those Japanese species that have been identified by morphological characteristics alone, detailed morphological observations and phylogenetic analysis are needed. In addition, the characteristics of cultured mycelia, such as production of anamorphs and cystidia, may be useful as taxonomic criteria, depending on the species.

To date, numerous corticioid specimens have been collected from all over Japan. However, many specimens have yet to be identified. In particular, more than half of the specimens collected in subtropical regions, such as the Nansei and Ogasawara Islands, remain unidentified. Many of these are likely to be new taxa not listed in Table 1. These specimens warrant detailed taxonomic studies in the future.

Disclosure

The author declares no conflicts of interest. All the experiments undertaken in this study comply with the current laws of the country where they were performed.

Supplementary Material

Supplementary Table S1 Corticioid fungi first reported from Japan in this study.
MYC-62-345-s01.pdf (164.4KB, pdf)
Supplementary Table S2 Cultures (TUFC) and voucher specimens (TUMH) of corticioid fungi with ITS sequence data.
MYC-62-345-s02.pdf (161.4KB, pdf)

Acknowledgements

The present article is based on the memorial talk for the reception of MSJ award. I sincerely thank the late Dr. Naohide Hiratsuka and the late Dr. Yasuyuki Hiratsuka, of the Tottori Mycological Institute, Japan, for their support of my research on the corticioid fungi. I also thank Dr. B. Nordén Dr. N. Hallenberg and Dr. R. H. Nilsson, University of Gothenburg, Göteborg, Sweden, for their contribution to our cooperative studies and support. I am grateful to the late Dr. J. Boidin (Lyon, France), Dr. J. Ginns (Centre for Land and Biological Resources Research, Canada), Dr. K.-H. Larsson and Dr. E. Larsson (University of Gothenburg), Dr. K. Nakasone (United States Department of Agriculture, USA) and the late Dr. E. Parmasto (Institute of Zoology and Botany, Estonia) and Dr. S.-H. Wu (National Museum of Natural Science, Taiwan), for their valuable comments on the Japanese corticioid specimens and their loan of precious specimens. Thanks are also due to the many professional and amateur researchers who provided their many corticioid specimens. Finally, I would like to thank all my colleagues and students at the Fungus/Mushroom Resource and Research Center, Tottori University, for valuable discussions on the taxonomy of corticioid fungi.

References

  1. Aoshima, K., & Furukawa, H. (1966. a) .Some Japanese species of hydnaceous fungi growing on wood(in Japanese). Transaction of the Mycological Society of Japan, 7, 133–143. [Google Scholar]
  2. Aoshima, K., & Furukawa, H. (1966. b) .The genus Odontia and allied genera of Japan (1)(in Japanese). Transaction of the Mycological Society of Japan, 7, 144–153. [Google Scholar]
  3. Aoshima, K., & Hayashi, Y. (1964) .Vuilleminia comedens, a new record for the Japanese fungus flora (in Japanese). Transaction of the Mycological Society of Japan, 4, 152–154. [Google Scholar]
  4. Baltazar, J. M., Trierveiler-Pereira, L., & Louguercio-Leite, C. (2009) .A checklist of xylophilous basidiomycetes (Basidiomycota) in mangroves. Mycotaxon, 107, 221–224. https://doi.org/10.5248/107.221. [Google Scholar]
  5. Binder, M., Hibbett, D. S., Larsson, K. H., Larsson, E., Langer, E., & Langer, G. (2005) .The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Systematics and Biodiversity, 3, 1–45. https://doi.org/10.1017/S1477200005001623. [Google Scholar]
  6. Binder, M., Larsson, K.-H., Matheny, P. B., & Hibbett, D. S. (2010) .Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia, 102, 865–880. https://doi.org/10.3852/09-288. [DOI] [PubMed] [Google Scholar]
  7. Boidin, J., & Gilles, G. (1998) .Contribution a l'étude des genres Dendrocorticium, Dendrodontia et Dentocorticium (Basidiomycotina). Cryptogamie Mycologie, 19, 181–202. [Google Scholar]
  8. Boidin, J., & Gilles, G. (2000) .Le genre Kavinia Pilat (Basidiomycotina). Cryptogamie Mycologie, 21, 139–143. [Google Scholar]
  9. Chen, C.-C., Wu, S.-H., & Chen, C.-Y. (2017) .Three new species of Hyphodontia s.l. (Basidiomycota) with poroid or raduloid hymenophore. Mycological Progress, 16, 553–564. https://doi.org/10.1007/s11557-017-1286-0. [Google Scholar]
  10. Chen, C.-C., Wu, S.-H., & Chen, C.-Y. (2018) .Hydnophanerochaete and Odontoefibula, two new genera of phanerochaetoid fungi (Polyporales, Basidiomycota) from East Asia. MycoKeys, 39, 75–96. https://doi.org/10.3897/mycokeys.39.28010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dahlberg, A., Jonsson, L., & Nylund, J.-E. (1997) .Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Canadian Journal of Botany, 75, 1323–1335. https://doi.org/10.1139/b97-844. [Google Scholar]
  12. Dai, Y.-C. (2011) .A revised checklist of corticioid and hydnoid fungi in China for 2010. Mycoscience, 52, 69–79. https://doi.org./10.1007/s10267-010-0068-1. [Google Scholar]
  13. De Koker, T. H., Nakasone, K. K., Haarhof, J., Burdsall, H. H., Jr., Janse, B. J. H. (2003) .Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycological Research, 107, 1032–1040. https://doi.org/10.1017/S095375620300827X. [DOI] [PubMed] [Google Scholar]
  14. Duhem, B. (2010) .Deux corticiés nouveaux méditerranéens à spores allantoïdes. Cryptogamie Mycologie, 31, 143–152. https://sciencepress.mnhn.fr/sites/default/files/articles/pdf/cryptogamie-mycologie2010v31f2a3.pdf [Google Scholar]
  15. Erland, S., & Taylor, A. F. S. (1999) .Resupinate ectomycorrhizal fungal genera. In: Cairney, J. W. G., & Chambers S. M. (Eds.), Ectomycorrhizal Fungi: Key genera in Profile, (pp. 347–363). Berlin: Springer. [Google Scholar]
  16. Fries, E. M. (1874) .Hymenomcetes europaei: sive, Epicriseos systematis mycologici. Uppsala: Typis Descripsit. Ed. Berling. [Google Scholar]
  17. Furukawa, H. (1974) .Taxonomic studies of the genus Odontia and its allied genera in Japan. Bulletin of the Government Forest Experimental Station, 261, 1–87. [Google Scholar]
  18. Furukawa, H., & Aoshima, K. (1966) .The genus Odontia of Japan (II). Transaction of the Mycological Society of Japan, 7, 149–153. [Google Scholar]
  19. Hallenberg, N., Nilsson, R. H., Antonelli, A., Wu, S. H., Maekawa, N., & Nordén, B. (2007) .The Peniophorella praetermissa species complex (Basidiomycota). Mycological Research, 111, 1366–1376.https://doi.org/10.1016/j.mycres.2007.10.001. [DOI] [PubMed] [Google Scholar]
  20. Hayashi, Y. (1969) .Notes onPeniophora of Japan II (in Japanese). Transaction of the Mycological Society of Japan, 10, 82–88. [Google Scholar]
  21. Hayashi, Y. (1974) .Studies on the genus Peniophora Cke. and its allied genera in Japan. Bulletin of the Government Forest Experimental Station, 260, 1–98. [Google Scholar]
  22. Hayashi, Y., & Aoshima, K. (1964) .Peniophora viticola and P. martiana newly found in Japan. Transaction of the Mycological Society of Japan, 4, 155–157. (in Japanese). [Google Scholar]
  23. Hayashi, Y., & Aoshima, K. (1966) .Notes on Peniophora of Japan I (in Japanese). Transaction of the Mycological Society of Japan, 7, 154–159. [Google Scholar]
  24. Hennings, P. (1901) .Fungi japonici. Botanische Jahrbücher fur Systematic, 28, 259–280. [Google Scholar]
  25. Hennings, P. (1903) .Fungi japonica III. Botanische Jahrbücher fur Systematic, 32, 32–46. [Google Scholar]
  26. Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., Huhndorf, S., James, T., Kirk, P. M., Lücking, R., Lumbsch, H. T., Lutzoni, F., Matheny, P. B., Mclaughlin, D. J., Powell, M. J., Redhead, S., Schoch, C. L., Spatafora, J. W., Stalpers, J. A., … Zhang, N. (2007) .A higher-level phylogenetic classification of the fungi. Mycological Research, 111, 509–547. https://doi.org/10.1016/j.mycres.2007.03.004 [DOI] [PubMed] [Google Scholar]
  27. Hjortstam, K., & Ryvarden, L. (2004) .Some new and noteworthy corticioid fungi (Basidiomycotina, Aphyllophorales) from Japan. Synopsis Fungorum, 18, 8–13. [Google Scholar]
  28. Hjortstam, K., & Ryvarden, L. (2005) .New taxa and new combinations in tropical corticioid fungi (Basidiomycotina, Aphyllophorales). Synopsis Fungorum, 20, 33–41. [Google Scholar]
  29. Hongo, T., Yokoyama, K. (1978) .Mycofloristic ties of Japan to the Continents. Memoirs of the Faculty of Education (Natural Science), Shiga University28, 76–80. [Google Scholar]
  30. Hosaka, K. (2018) .Distribution data of some mushroom species distributed in and around the Ogasawara Islands, Japan (in Japanese). Memoirs of the National Science Museum, 52, 17–37. [Google Scholar]
  31. Inderbitzin, P., & Desjardin, E. D. (1999) .A new halotolerant species of Physalacria from Hong Kong. Mycologia, 91, 666–668. https://doi.org/10.1080/00275514.1999.12061066. [Google Scholar]
  32. Ito, S. (1955) .Mycological flora of Japan. Vol. 2. Basidiomycetes. No. 4. Auriculariales, Tremellales, Dacrymycetales, Aphyllophorales (Polyporales) (in Japanese). Tokyo: Yokendo. [Google Scholar]
  33. Ito, S., & Imai, S. (1940) .Fungi of the Bonin Islands. V. Transactions of the Sapporo Natural History Society, 16, 120–138. [Google Scholar]
  34. Ito, T. (1929. a) .Symbolae ad mycologiam Japonicam. II. Peniophora.The Botanical Magazine, Tokyo, 43, 515–524. [Google Scholar]
  35. Ito, T. (1929. b) .Symbolae ad mycologiam Japonicam. III. Corticium, Gloeocystidium, et Asterostroma. The Botanical Magazine, Tokyo, 43, 633–642. [Google Scholar]
  36. Jarosch, M., & Besl, H. (2001) .Leucogyrophana, a polyphyletic genus of the order Boletales (Basidiomycetes). Plant Biology, 3, 443–448. https://doi.org/10.1055/s-2001-16455. [Google Scholar]
  37. Kirk, T. K., & Farrell, R. L. (1987) .Enzymatic “combustion”: the microbial degradation of lignin. Annual Review of Microbiology, 41, 465–505. https://doi.org/10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  38. Kobayashi, Y. (1971) .On a species causing the thread blight and a so-called “Cyphella pulchra” in Japan. Transaction of the Mycological Society of Japan, 12, 70–78. [Google Scholar]
  39. Kõljalg, U., Tammi, H., Timonen, S., Agerer, R., & Sen, R. (2002) .ITS rDNA sequence-based phylogenetic analysis of Tomentellopsis species from boreal and temperate forests, and the identification of pink-type ectomycorrhizas. Mycological Progress, 1, 81–92. https://doi.org/10.1007%2Fs11557-006-0007-x. [Google Scholar]
  40. Kuuskeri, J., Mäkelä, M., Isotalo, J., Oksanen, I., & Lundell, T. (2015) .Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polypporales, Basidiomycota). BMC Microbiology, 15, 217. https://doi.org/10.1186/s12866-015-0538-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Larsson, K.-H. (2007) .Molecular phylogeny of Hyphoderma and the reinstatement of Peniophorella. Mycological Research, 111, 186–195. https://doi.org/10.1016/j.mycres.2006.10.002. [DOI] [PubMed] [Google Scholar]
  42. Larsson, E., & Larsson, K.-H. (2003) .Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia, 95, 1037–1065. https://doi.org/10.1080/15572536.2004.11833020. [DOI] [PubMed] [Google Scholar]
  43. Larsson, K.-H., Larsson, E., & Kõljalg, U. (2004) .High phylogenetic diversity among corticioid homobasidiomycetes. Mycological Research, 108, 983–1002. https://doi.org/10.1017/S0953756204000851. [DOI] [PubMed] [Google Scholar]
  44. Larsson, K.-H., Parmasto, E., Fischer, M., Langer, E., Nakasone, K. K., & Redhead, S. A. (2006) .Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. Mycologia, 96, 926–936. https://doi.org/10.1080/15572536.2006.11832622. [DOI] [PubMed] [Google Scholar]
  45. Lloyd, C. G. (1920) .Mycological Note 62. Mycological Writings, 6, 926–930. [Google Scholar]
  46. Lloyd, C. G. (1921) .Mycological Note 65. Mycological Writings, 6, 1029–1101. [Google Scholar]
  47. Lloyd, C. G. (1922) .Mycological Note 67. Mycological Writings, 7, 1137–1168. [Google Scholar]
  48. Maekawa, N. (1987) .A new species of the genus Cerinomyces. Canadian Journal of Botany, 65, 583–588. https://doi.org/10.1139/b87-074. [Google Scholar]
  49. Maekawa, N. (1990) .Redefinition of Botryobasidium pruinatum (Corticiaceae, Aphyllophorales) and its relationship to B. asperulum and B. laeve. Transaction of the Mycological Society of Japan, 31, 467–478. [Google Scholar]
  50. Maekawa, N. (1991. a) .Seven species of the genus Botryobasidium (Corticiaceae, Aphyllophorales). Transaction of the Mycological Society of Japan, 32, 125–133. [Google Scholar]
  51. Maekawa, N. (1991. b) .A new variety of Botryobasidium candicans (Corticiaceae, Aphyllophorales). Transaction of the Mycological Society of Japan, 32, 401–406. [Google Scholar]
  52. Maekawa, N. (1992) .The genus Botryohypochnus (Corticiaceae, Aphyllophorales). Transaction of the Mycological Society of Japan, 33, 317–324. [Google Scholar]
  53. Maekawa, N. (1993. a) .Three new corticiaceous fungi (Basidiomycotina, Aphyllophorales) from Japan. Proceeding of the Japanese Academy, 69(B), 119–122. https://doi.org/10.2183/pjab.69.119. [Google Scholar]
  54. Maekawa, N. (1993. b) .A taxonomic study of Corticaceae (Aphyllophorales) I. Reports of the Tottori Mycological Institute, 31, 1–149. [Google Scholar]
  55. Maekawa, N. (1994) .A taxonomic study of Corticaceae (Aphyllophorales) II. Reports of the Tottori Mycological Institute, 32, 1–123. [Google Scholar]
  56. Maekawa, N. (1997. a) .Ypsilonidium bananasporum sp. nov. (Ceratobasidiales) from Iriomote Island, Japan. Mycoscience, 38, 71–73. https://doi.org/10.1007/BFo2464970. [Google Scholar]
  57. Maekawa, N. (1997. b) .Taxonomic study of Japanese Corticiaceae (Aphyllophorales) III. Reports of the Tottori Mycological Institute, 35, 29–38. [Google Scholar]
  58. Maekawa, N. (1998) .Taxonomic study of Japanese Corticiaceae (Aphyllophorales) IV. Reports of the Tottori Mycological Institute, 36, 1–12. [Google Scholar]
  59. Maekawa, N. (1999) .Taxonomic study of Japanese Corticiaceae (Aphyllophorales) V. Reports of the Tottori Mycological Institute, 37, 7–20. [Google Scholar]
  60. Maekawa, N. (2000. a) .Taxonomic study of Japanese Corticiaceae (Aphyllophorales) VI. Reports of the Tottori Mycological Institute, 38, 14–22. [Google Scholar]
  61. Maekawa, N. (2000. b) .Corticiaceae sensu lato (Basidiomycota) collected from the Fukiage Gardens of the Imperial Palace, Tokyo. Memoirs of the National Science Museum, 34, 299–303. [Google Scholar]
  62. Maekawa, N. (2002) .Corticioid fungi (Basidiomycota) collected in Vanuatu. Annals of the Tsukuba Botanical Garden, 21, 119–126. [Google Scholar]
  63. Maekawa, N. (2003) .Taxonomic study of Japanese Corticiaceae (Aphyllophorales) VIII. Reports of the Tottori Mycological Institute, 41, 13–19. [Google Scholar]
  64. Maekawa, N. (2010) .Species diversity of corticioid fungi (Basidiomycota) in the subtropical regions of Japan (in Japanese). Institute for Fermentation, Osaka, Research Communications, 24, 59–67. [Google Scholar]
  65. Maekawa, N. (2018) .Evaluation of mycelial characteristics in culture as taxonomic criteria and their applications to classification of Basidiomycota (in Japanese). Research Communications, 32, 17–27. [Google Scholar]
  66. Maekawa, N., & Arita, I. (1984) .Antagonistic effects of Phlebia species on the mycelial growth of Lentinus edodes. Reports of Tottori Mycological Institute, 22, 74–75. [Google Scholar]
  67. Maekawa, N., & Hasebe, K. (2002) .Pseudolagarobasidium calcareum: Japanese records and cultural characters. Mycoscience, 43, 271–275. [Google Scholar]
  68. Maekawa, N., & Nordén, B. (2002) .Taxonomic study of Japanese Corticiaceae (Aphyllophorales) VII. Mycoscience, 43, 363–365. https://doi.org/10.1007/S102670200053. [Google Scholar]
  69. Maekawa, N., Arita, I., & Hayashi, Y. (1982) .Corticiaceae in Japan. 1. Three species of the genus Gloeocystidiellum previously unrecorded from Japan. Reports of the Tottori Mycological Institute, 20, 33–41. [Google Scholar]
  70. Maekawa, N., Suhara, H., Kinjo, K., & Kondo, R. (2003) .Corticioid fungi (Basidiomycota) in mangrove forests of the islands of Iriomote and Okinawa, Japan. Myoscience, 44, 403–409. https://doi.org/10.1007/S10267-003-0133-0. [Google Scholar]
  71. Maekawa, N., Suhara, H., Kinjo, K., Kondo, R., & Hoshi, K. (2005) .Haloaleurodiscus mangrovei gen. sp. nov. (Basidiomycotina) from mangrove forest in Japan. Mycological Research, 109, 825–832. https://doi.org/10.1017/S095375620500287X. [DOI] [PubMed] [Google Scholar]
  72. Maekawa, N., Yokoi, H., Sotome, K., Matsuura, K., Tanaka, C., Endo, N., Nakagiri, A., & Ushijima, S. (2020) .Athelia termitophila sp. nov. is the teleomorph of the termite ball fungus Fibularhizoctonia sp. Mycoscience, 61, 323–330. https://doi.org/10.1016/j.myc.2020.08.002. [Google Scholar]
  73. Moncalvo, J.-M., Nilsson, R. H., Koster, B., Dunham, S. M., Bernauer, T., Matheny, P. B., Porter, T. M., Margaritescu, S., Weiß, M., Garnica, S., Danell, E., Langer, G., Langer, E., Larsson, E., Larsson, K.-H., & Vilgalys, R. (2006) .The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia, 98, 937–948.https://doi.org/10.1080/15572536.2006.11832623. [DOI] [PubMed] [Google Scholar]
  74. Nakasone, K. K., & Gilbertson, R. L. (1998) .Three resupinate hydnaceous basidiomycetes from Hawai‘i. Folia Cryptogamica Estonica, 33, 85–92. https://www.fpl.fs.fed.us/documnts/pdf1998/nakas98b.pdf. [Google Scholar]
  75. Nilsson, R. H., Hallenberg, N., Nordén, B., Maekawa, N., & Wu, S. H. (2003) .Phylogeography of Hyphoderma setigerum (Basidiomycota) in the Northern Hemisphere. Mycological Research, 107, 645–652. https://doi.org/10.1017/S0953756203007925. [DOI] [PubMed] [Google Scholar]
  76. Nilsson, R. H., Larsson, K-H., Larsson, E., & Kõljalg, U. (2006) .Fruiting body-guided molecular identification of root-tip mantle mycelial provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycological Research, 110, 1426–1432. https://doi.org/10.1016/j.mycres.2006.09.017. [DOI] [PubMed] [Google Scholar]
  77. Nogal-Prata, S., Maekawa, N., Matozaki, T., Dueñas, M., Martin, M. P., & Telleria, M. T. (2017) .Based on DNA sequences of ITS and rpb2, Amylostereum orientale is reported for the first time in Japan. Mycoscience, 58, 169–173. https://doi.org/10.1016/j.myc.2016.12.005. [Google Scholar]
  78. Núñez, M., & Ryvarden, L. (1997) .The genus Aleurodiscus (Basidiomycotina). Synopsis Fungorum, 12, 1–164. [Google Scholar]
  79. Parmasto, E. (1968) .Conspectus Systematic Corticiacearum. Institutum Zoologicum et Botanicum Academiae Scientiarum R.P.S.S. Estonicae. Tartu: Institutum Zoologicum et Botanicum, Academiae Scientiarum R. P. S. S. Estonicae. [Google Scholar]
  80. Pouzar, Z. (1959) .New genera of higher fungi III. Ceská Mykologie, 13, 10–19. [Google Scholar]
  81. Sato, T., Uzuhashi, S., Hosoya, T., & Hosaka, K. (2010) .A list of fungi found in the Bonin (Ogasawara) Islands. Ogasawara Research, 35, 59–160. [Google Scholar]
  82. Suhara, H., Maekawa, N., Kubayashi, T., Sakai, K., & Kondo, R. (2002) .Identification of the basidiomycetous fungus isolated from butt rot of the Japanese cypress. Mycoscience, 43, 477–481. https://doi.org/10.1007/S102670200070. [Google Scholar]
  83. Suhara, H., Maekawa, N., Ushijima, S., Kinjo, K., & Hoshi, Y. (2010) .Asterostroma species (Basidiomycota) from mangrove forests in Japan. Mycoscience, 51, 75–80. https://doi.org/10.1007/S10267-009-0006-2. [Google Scholar]
  84. Suhara, H., Maekawa, N., & Ushijima, S. (2011) .A new Asterostroma species (Basidiomycota) from a subtropical region in Japan. Mycotaxon, 114, 197–203. https://doi.org/10.5248/114.197. [Google Scholar]
  85. Tabata, M., & Abe, Y. (1997) .Amylostereum laevigatum associated with the Japanese horntail, Urocerus japonicus. Mycoscience, 38, 421–427. https://doi.org/10.1007/BF02461682 [Google Scholar]
  86. Tabata, M., & Abe, Y. (1999) .Amylostereum laevigatum associated with a horntail, Urocerus antennatus. Mycoscience, 40, 535–539. https://doi.org/10.1007/BF02461032. [Google Scholar]
  87. Tabata, M., Harrington, T. C., Chen, W., & Abe, Y. (2000) .Molecular phylogeny of species in the genera Amylostereum and Echinodontium. Mycoscience, 41, 585–593. https://doi.org/10.1007/BF02460925. [Google Scholar]
  88. Tu, C. C., & Kimbrough, J. W. (1978) .Systematics and phylogeny of fungi in the Rhizoctonia complex. Botanical Gazette, 139, 454–466. https://doi.org/10.1086/337021. [Google Scholar]
  89. Ushijima, S., & Maekawa, N. (2018) .First record of a corticioid fungus Dendrothele arachispora (Agaricomycetes) from Japan. Reports of the Tottori Mycological Institute, 48, 1–4. [Google Scholar]
  90. Ushijima, S., Sotome, K., & Maekawa, N. (2019) .A new species of the genus Tubulicium from living Pieris paponica. Mycoscience, 60, 137–140. https://doi.org/10.1016/j.myc.2019.01.001. [Google Scholar]
  91. Wu, S.-H., Hibbett, D. S., & Binder, M. (2001) .Phylogenetic analyses of Aleurodiscus s. l., and allied genera. Mycologia, 93, 720–731. https://doi.org/10.1080/00275514.2001.12063203. [Google Scholar]
  92. Wu, S.-H., Nilsson, H. R., Chen, C.-T., Yu, S.-Y., & Hallenberg, N. (2010) .The white-rotting genus Phanerochaete is polyphyletic and distribute throughout the phleboid clade of the Polyporales (Basidioycota). Fungal Diversity, 42, 107–118. https://doi.org/10.1007/s13225-010-0031-7. [Google Scholar]
  93. Wu, S.-H., Wang, D.-M., & Yu, S.-Y. (2010) .Neoaleurodiscus fujii, a new genus and new species found at the timberline in Japan. Mycologia, 102, 217–223. https://doi.org/10.3852/09-052. [DOI] [PubMed] [Google Scholar]
  94. Yagame, T., & Maekawa, N. (2019) .Ectomycorrhiza synthesis and basidiome formation of an orchid symbiont of the genus Thelephora on Quercus serrata. Mycoscience, 60, 343–350. https://doi.org/10.1016/j.myc.2019.08.001. [Google Scholar]
  95. Yasuda, A. (1909) .Notes on fungi (3) (in Japanese). The Botanical Magazine, Tokyo: 23, 402–404. [Google Scholar]
  96. Yasuda, A. (1912) .Notes on fungi (12) (in Japanese). The Botanical Magazine, Tokyo: 26, 360–362. [Google Scholar]
  97. Yasuda, A. (1913) .Notes on fungi (20) (in Japanese). The Botanical Magazine, Tokyo, 27, 386–388. [Google Scholar]
  98. Yasuda, A. (1914. a) .Notes on fungi (28) (in Japanese). The Botanical Magazine, Tokyo: 28, 234–236. [Google Scholar]
  99. Yasuda, A. (1914. b) .Notes on fungi (30) (in Japanese). The Botanical Magazine, Tokyo, 30, 324–326. [Google Scholar]
  100. Yasuda, A. (1918. a) .Notes on fungi (72) (in Japanese).The Botanical Magazine, Tokyo, 32, 49–50. [Google Scholar]
  101. Yasuda, A. (1918. b) .Notes on fungi (73). (in Japanese) The Botanical Magazine,Tokyo,32, 74–76. [Google Scholar]
  102. Yasuda, A. (1918. c) .Notes on fungi (79) (in Japanese). The Botanical Magazine, Tokyo,32, 263–264. [Google Scholar]
  103. Yasuda, A. (1919. a) .Notes on fungi (84) (in Japanese). The Botanical Magazine, Tokyo, 33, 33–35. [Google Scholar]
  104. Yasuda, A. (1919. b) .Notes on fungi (92) (in Japanese). The Botanical Magazine, Tokyo, 33, 262–263. [Google Scholar]
  105. Yasuda, A. (1920. a) .Notes on fungi (98) (in Japanese).The Botanical Magazine, Tokyo, 34, 162–164. [Google Scholar]
  106. Yasuda, A. (1920. b) .Notes on fungi (101) (in Japanese).The Botanical Magazine, Tokyo, 34, 212–214. [Google Scholar]
  107. Yasuda, A. (1921. a) .Notes on fungi (111) (in Japanese). The Botanical Magazine, Tokyo, 35, 161–162. [Google Scholar]
  108. Yasuda, A. (1921. b) .Notes on fungi (117) (in Japanese). The Botanical Magazine, Tokyo, 35, 269–270. [Google Scholar]
  109. Yasuda, A. (1923. a) .Notes on fungi (134) (in Japanese). The Botanical Magazine, Tokyo, 37, 136–138. [Google Scholar]
  110. Yasuda, A. (1923. b) .Notes on fungi (136-141) (in Japanese). The Botanical Magazine, Tokyo, 37, 200–208. [Google Scholar]
  111. Yurchenko, E., Wu, S.-H., & Maekawa, N. (2020) .Three new species of Peniophorella (Basidiomycota) from East Asia. Nova Hedwigia, 111, 473–495. https://doi.org/10.1127/nova_hedwigia/2020/0598. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Table S1 Corticioid fungi first reported from Japan in this study.
MYC-62-345-s01.pdf (164.4KB, pdf)
Supplementary Table S2 Cultures (TUFC) and voucher specimens (TUMH) of corticioid fungi with ITS sequence data.
MYC-62-345-s02.pdf (161.4KB, pdf)

Articles from Mycoscience are provided here courtesy of The Mycological Society of Japan

RESOURCES