Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Dec 7;30(12):33206–33228. doi: 10.1007/s11356-022-24067-5

Numerical simulation of social distancing of preventing airborne transmission in open space with lateral wind direction, taking into account temperature of human body and floor surface

Alibek Issakhov 1,2,3,, Perizat Omarova 1, Aizhan Abylkassymova 2
PMCID: PMC9734804  PMID: 36478554

Abstract

This paper presents the numerical results of particle propagation in open space, taking into account the temperature of the human body and the surface of the ground. And also, the settling of particles or droplets under the action of gravitational force and transport in the open air is taken into account, taking into account the temperature during the process of breathing and sneezing or coughing. The temperature of the body and the surface of the ground, different rates of particle emission from the mouth, such as breathing and coughing or sneezing, are numerically investigated. The effect of temperature, cross-inlet wind, and the velocity of particle ejection from a person’s mouth on social distancing is being investigated using a numerical calculation. The variable temperature of the human body forms a thermal plume, which affects the increase in the trajectory of the particle propagation, taking into account the lateral air flow. The thermal plume affects the particles in the breathing zone and spreads the particles over long distances in the direction of the airflow. The result of this work shows that in open space, taking into account the temperature of the body and the surface of the ground, a 2-m social distance may be insufficient for the process of sneezing and social distance must be observed depending on the breathing mode.

Keywords: Airborne transmission, Thermal effects from body, Particle dispersion, Indoor, Breathe, COVID-19, Social distancing, SARS-CoV-2-laden droplets, Computational fluid dynamic (CFD)

Introduction

Over the past two decades, the third highly pathogenic representative of the coronavirus family is MERS and SARS-CoV-2 (Issakhov et al. 2021a, b). At present, due to the rapid growth of infected people around the world, there is a sharp need to combat the spread of the virus. So far, certain and effective treatments have been developed to mitigate the effects of the disease (Smieszek et al. 2019). One of them is vaccination — which has greatly improved the general population confinement in some countries by relaxing strict quarantine measures (Grimalt et al. 2022). However, there are some risks of reinfection for the vaccinated population. For this, strict precautions must be taken in public places, as public places are hotspots for the spread of the virus (Birgand et al. 2020).

In addition, COVID-19 is transmitted from asymptomatic people through the airborne route, so it is necessary to understand the spread of the virus in the environment in order to prevent the accumulation of infection (Morawska et al. 2020, Bai et al. 2020, Feng et al. 2020, Gao et al. 2021). In connection with this, many research papers have been carried out, for example, on outbreaks of infectious diseases in various enclosed spaces, such as hospitals (Takanabe et al. 2021, Xian et al. 2020; Xu et al. 2021, Chia et al. 2020, Mizukoshi et al. 2021) public places (Rencken et al. 2021, Park et al. 2021), public transportation (Alexei Pichardo-Orta et al. 2022), air travel (Li et al. 2016, Zee et al. 2021) and open-space office (Weissberg et al. 2020). Everyone knows that most cases of respiratory diseases are transmitted by airborne droplets or through close contact. For example, such as tuberculosis, measles, chicken pox (Busco et al. 2020; Li et al. 2020) influenza, bronchitis, and pneumonic plague (Leclair et al. 1980, Escombe et al. 2007, Roy and Milton 2004, Sattar et al. 1987, Chan et al. 2020) are transmitted by airborne droplets.

The main mechanism for the spread of viral diseases is coughing and sneezing. When simply breathing, sneezing or coughing, small droplets are formed, consisting of water and air. Consequently, these small particles have different generation rates and durations, with different effects on the environment and the human body (Hinds 1982, Zhao et al. 2005). And also, the spread of the virus by airborne droplets indoors and outdoors depends on many factors, such as, humidity, pollution, particle size, temperature, population density, ventilation rate, particle settling rate, the presence of other aerosols or volatile organic compounds (VOC), and others (Cai et al. 2020, Memarzadeh 2012, Schaffer et al. 1976, Lowen et al. 2007). Moreover, all these factors affect different infectious organisms differently and to varying degrees, and in some cases it is difficult to draw a conclusion, since different experimental methods were used during the study (Tang 2009).

Coughing and sneezing is a major source of exhaled pollutants and is also a symptom of most respiratory infections (Duguid 1945, Gupta et al. 2009). There are many scientific papers on the size of the distribution of droplets during active breathing, sneezing, and coughing and have a wide range of diameters approximately dp < 10–6 m (Chao et al. 2009, Zhang et al. 2015, Morawska et al. 2009, Papineni and Rosenthal 1997). Therefore, the distance and settling of particles also depends on the size and speed of their propagation. And also, the number and size of the particles differ significantly, for example, when sneezing, about 40,000 drops are formed, and when coughing, about 3000 drops (Cole and Cook 1998, Wei and Li 2016). Moreover, the behavior of large and small particles in the air plays an important role in reducing the risk of SARS-CoV-2 infection. In addition, the particles spread differently from 0 to 7 m and beyond. This spread depends on the influence of various factors, such as settling, size, air flow and evaporation of droplets, etc. Another important point is that at high temperature and relative humidity, particles can evaporate and shrink, changing their propagation trajectory. The work (van Doremalen et al. 2020) showed that viable SARS-CoV-1 and SARS-CoV-2 influenza infectious particles remain in the air for about 1–3 h (Kampf et al. 2020, van Doremalen et al. 2020). Thus, droplets or particles are more likely to spread both indoors and outdoors, increasing the risk of infecting people in a certain period of time after exposure (Wang et al. 2020a, b, Zhang and Li, 2012). Xian et al. 2020; Li et al. 2020 consider the evaporation and propagation of particles in the open air. It should be noted that this kind of study is quite rare in studies, and most studies focus on ventilation assessment, vehicle pollution dispersion, various chemical reactions and particulate matter associated with outdoor ventilation (Chen et al. 2017; Zhang et al. 2020a, 2020b; He et al. 2017; Liu et al. 2015; Yang et al. 2020; Scungio et al. 2018; Tung et al. 2021; Yao et al. 2020; Bartzis et al. 2015). From those studies, it can be observed that the spread of COVID-19 in the open air is still to be studied, since the virus can be transmitted not only indoors, but also outdoors (Zhang et al. 2020c, Xu et al. 2021). There is a lot of work and WHO recommends a certain social distance, at least 1–2 m from each other in rooms, to reduce the risk of infection (WHO 2020). To determine the optimal distance to prevent the transmission of infectious diseases, there are still no solutions for physical distancing in the outdoors (Kissler et al. 2020; Gao et al. 2021). As the results of some simulation studies show, 2 m for social distancing may not be enough (Dbouk and Drikakis 2020; Feng et al. 2020, Pendar and Páscoa, 2020; Issakhov et al. 2021a, b).

Computational Fluid Dynamics (CFD) simulations are used to predict airborne spread of the virus (Holmes and Morawska 2006) because, CFD simulations are affordable and inexpensive compared to experiments. In order to get a more accurate forecast, setting the boundary conditions close to reality plays an important role, for example, flow velocity, flow direction, temperature, pollutant source area, etc. Therefore, numerical simulation makes it possible to obtain a more accurate prediction for particle propagation even taking into account particle evaporation (Li et al. 2018).

The purpose of this work is to determine the optimal distance to prevent the transmission of infectious diseases in the open air, which takes into account the distributed body temperature and ambient temperature during various breathing patterns, coughing, and sneezing. Accounting for these factors during simulation brings this calculation closer to a more realistic case. As it is knowing, the spread of infectious diseases depends on many factors, and determining a safe distance without taking into account these factors may lead to incorrect results, which may not lead to a very good result.

Mathematical model

For the correct construction of the mathematical model of the air flow, the system of Navier–Stokes equations is used, which is numerically implemented through the ANSYS Fluent. For modeling are used the incompressible Navier–Stokes equations. The continuity and momentum equations used in the model are defined as follows:

ujxj=0 1
uit+xjuiuj=fi-1ρpxjμeffuixj+xjui 2

where μeff – the effective viscosity, p – the pressure, μeff=μ+μt, where μt – the turbulence viscosity. The external force of the body considered is gravity, so that f=ρg, where g is the acceleration due to gravity, ρ—the density.

The kinematic relationship between the position of particles and the speed of particles is

dxpdt=up 3
mpdupdt=FD+FG 4

where xp, the particles location, FG is the gravity force, FD, the drag force, up, the velocity of particles, uf, the velocity of fluids, mp, the mass of particles and FD calculated as follows

FD=12ρfπdp24CDuf-upuf-up 5

where the resistance coefficient

CD=24Re;Re<124Re1+0.15Re0.687;1Re1000 6

where ρf is the density of the fluid, ρp is the particle density and dp is the particle diameter, Re=ρdpu-upμ is the Reynolds number.

In order to close the system of equations was used SST k-ω turbulent model, which described in detail in (Spalart, 1997; Menter and Kuntz 2003; Menter 1994; Jones and Launder 1972; Issakhov and Mashenkova 2019; Issakhov and Omarova 2019; Issakhov et al. 2020a; Issakhov et al. 2020b; Issakhov, Alimbek, Zhandaulet,  2021).

These equations are approximated by using the finite volume method. The numerical model for this problem was presented using the widely used SIMPLE method (Semi-Implicit Method for Pressure-Linked Equations). This method is used in many works to solve various problems of hydrodynamics and heat transfer and served to create a whole class of numerical methods. All variables that were used in this method are completely physical. For discretization of the all equations of convective term was used Second Order Upwind scheme (Issakhov and Omarova 2021; Issakhov and Zhandaulet 2019; Issakhov and Borsikbayeva 2021; Issakhov et al. 2022a, b, c; Issakhov et al. 2022a, b, c; Issakhov, Alimbek, Abylkassymova, 2022).

Numerical simulations

Validation of the mathematical model and numerical algorithm was performed for the test problem and the obtained results were compared with experimental data, this procedure is described in more detail in the works papers (Issakhov et al. 2021a, b; Issakhov et al. 2022a, b, c). This work represents the propagation of a particle in open space, taking into account the temperature of the human body, the environment and the lateral inlet air flow, and also takes into account different speed regimes for breathing, coughing and sneezing. For implementations of numerical simulations, the problems were taken in an indoor room with a person. The size of the constructed room with a person is X × Y × Z = 8 × 3 × 3 m, and the total height of a European person is 1.8 m. To describe the process of breathing, coughing, and sneezing, the level of the mouth was used; in addition to this process, particles are ejected from the mouth. The height from the floor to the mouth inside the box is approximately 1.65 m. In the presented work, the distribution of concentration and particles was considered, taking into account the influence of the inlet wind, body temperature and the surface of the ground, provided that a person is talking, sneezing or coughing. The full size of the area under consideration is shown in Fig. 1.

Fig. 1.

Fig. 1

Geometry of the study area

The studies show that the speeds for sneezing, coughing while talking are different from each other (Verma et al. 2017, Xu et al. 2018, Hasan 2020, Redrow et al. 2011). The variation in the speed of ejected particles from the human mouth was from 1 to 20 m/s. In this study, a simpler version of sneezing and coughing was investigated, but it should be taken into account that this process of sneezing and coughing occurs once. The main factor is that many people sneeze more than once per sneeze cycle. Thus, in the problem, the rate of simple breathing is periodic, and the rate of the process of coughing or sneezing is pulsed. In addition, repeated sneezing or coughing increases the distance of the ejected particles by an even greater propagation distance.

The particle diameter is set in the range of about 10–6–10–3 m depending on normal breathing, coughing or sneezing (Zhao et al. 2005).

The total duration of one sneeze was approximately 0.1925s (Busco et al. 2020). The following formulas were used to describe the rate of particle ejection from the mouth

u=V,10.1t10.25u=Vsin2πt,10.25t10.5u=sin2πt,10.5t

Particles are droplets of a mixture consisting of water and air, based on some works for this problem, the particle density was set to 600 kg/m3 (Zhao et al. 2005). In this paper, it was considered several scenarios with variable body and ambient temperatures in open space: (a) breathing at a speed of V = 1 m/s; (b) coughing at a speed V = 6 m/s; and (c) sneezing at a speed of V = 20 m/s. For all cases, the initial 10 s is simulated taking into account the variable temperature of a person and the surface of the ground, taking into account the lateral inlet wind (inlet), and the particles are ejected from the mouth from 10.1 to 10.3 s, and then up to 20.5 s, the process of inhalation and exhalation of a person without ejection. This sets the particle ejection temperature to 309.75 K. The floor temperature is also set to a constant value of 305 K. This procedure is given by the connection in order to approximate a more real process. All scenarios take into account the influence of variable body and floor temperatures, taking into account the inlet wind on the movement and concentration of emitted particles before the process of breathing, coughing and sneezing.

In order to obtain a more accurate result in a short period, the computational grid was refined in certain areas. For the study area, it was used clumps around the mouth (face mouth = 0.001) and around the human body (face body = 0.005) to reduce the number of cells and computational costs, since this geometry is complex. The total number of elements of the study area is 7 731 570 and nodes (nodes = 1 366 119). The three-dimensional (3D) computational grid of this area is shown in Fig. 2. The following functions were taken as the distribution profile of the incoming flow and for body temperature:

Uinlet=0.71-exp-2z+3

Fig. 2.

Fig. 2

Computational grid of the study area

In order to realize the initial distribution of body temperature, it was taken into account that body temperature is not evenly distributed throughout the body (Psikuta et al. 2017), since the maximum temperature is on the human head (310.75 K), and the minimum temperature is on the lower extremities (309.75 K). For this purpose, the initial approximation of body temperature is given by the following formula

Tbody=309.75+z/1.8

where z varies according to the height of the person.

Numerical simulation results

Figures 3, 4 and 5 show the temperature distribution over time for various speed modes. To obtain these results, the first 10 s of the simulation was performed taking into account the variable temperature of the body and floor, but the emission of particles from the mouth is not carried out. This procedure is carried out in order to form temperature and velocity fields. After the formation of temperature and velocity fields, the particle is ejected. As it can be seen from the obtained numerical results, the influence of a variable body temperature and the presence of an air flow significantly affect the distribution of velocity and the distance of particle movement. It should be noted that, taking into account the force of friction and gravity, a thermal plume arises due to the variable body temperature and the presence of a lateral inlet air flow accelerates the transfer and diffusion of the particles. As a result, one can see a huge change in the thermal plume at different points in time for each scenario. Moreover, it should be noted that due to the thermal plume, an additional lift force is generated, which lifts up the lateral inlet air flow, which ultimately leads to the fact that the ejected particles rise up.

Fig. 3.

Fig. 3

Contour temperature 10.5–20.5 s cough = 1 m/s

Fig. 4.

Fig. 4

Contour temperature 10.5–20.5 s cough = 6 m/s

Fig. 5.

Fig. 5

Contour temperature 10.5–20.5 s cough = 20 m/s

And it should also be noted that with different breathing patterns (coughing and sneezing), there is a change in the thermal plume around the body. As can be seen from Figs. 3, 4 and 5, at 12.5 s, one can notice changes in the thermal plume due to different breathing modes at the initial time, and then, due to the lateral inlet wind flow, the heat propagation characteristics are almost similar. Figures 6, 7 and 8 show the transfer of particles at different times. As can be seen from Fig. 6, the particle propagation distance, taking into account the temperature plume, in the time period from 10.2 to 10.5 s, reaches 0.12 m. From the obtained results, it can be seen that different breathing modes play an important role in particle propagation. However, it should be noted that after the process of coughing and sneezing from 12.5 s, the lifting force that is created due to the variable temperature emanating from the human body significantly affects the particle propagation behavior and, despite the force of gravity, the particle rises upwards. At 16.5 s, it can be seen that around the person, due to the lateral inlet air flow and the temperature plume, small vortices are formed with particles from both sides, which move downstream. However, some particles remain in the center. After the process of coughing or sneezing during breathing, due to the high velocity value, some part of the particle remains around the person, and part of the ejected particle due to the influence of the lateral inlet air flow and the temperature plume spreads downstream.

Fig. 6.

Fig. 6

Fig. 6

Fig. 6

Fig. 6

Particles, cough = 1 m/s open space with temperature 20.5 s. a Time step = 10.2 s, b Time step = 10.3 s, c Time step = 10.4 s, d Time step = 10.5 s, e Time step = 12.5 s, f Time step = 16.5 s, g Time step = 20.5 s

Fig. 7.

Fig. 7

Fig. 7

Fig. 7

Fig. 7

Particles, cough = 6 m/s open space with temperature 20.5 s. a Time step = 10.2 s, b Time step = 10.3 s, c Time step = 10.4 s, d Time step = 10.5 s, e Time step = 12.5 s, f Time step = 16.5 s, g Time step = 20.5 s

Fig. 8.

Fig. 8

Fig. 8

Fig. 8

Fig. 8

Particles, cough = 20 m/s open space with temperature 20.5 s. a Time step = 10.2 s, b Time step = 10.3 s, c Time step = 10.4 s, d Time step = 10.5 s, e Time step = 12.5 s, f Time step = 16.5 s, g Time step = 20.5 s

Figure 7 shows the spread of a particle during coughing, where the speed is V = 6 m/s. As the results show, due to the influence of the temperature plume, particles with small diameters are very strongly subject to lift and rise up, while slowing down and propagating the particles downstream. As a result, due to the influence of the lifting force, small particles rise up to 1.343 m.

At the same time, it should be noted that on the trajectory of the particle transfer, the lateral inlet air flow plays an important role. However, from the obtained results, it can be noted that at the initial moments of coughing and sneezing, the influence of the temperature plume and the lateral inlet air flow shows a minimal effect. However, if it compares the obtained results after the process of coughing and sneezing, one can observe changes in the distance of particle propagation. So in 10.5 s with simple breathing, the distance reaches 0.12 m, and with coughing up to 0.46 m, which is almost 4 times more.

Figure 8 presents the results of particle propagation for the sneezing process at a speed of 20 m/s. The distance from a person during the propagation of a particle at 10.5 s reaches 0.99 m. At the same time, at the last moment, due to the lateral inlet air flow, it transports the particles much further. As can be seen from the obtained data, in the initial process of breathing, coughing, and sneezing, the influence of the crosswind and temperature plume has a minimal effect, while after this process, the further distribution of particles is very much dependent on the crosswind and temperature plume. It is also possible to note the spread of particles along the width depending on the lateral velocity and the presence of a temperature plume.

In all calculation scenarios, it can be seen that a large number of small droplets disperse along the jet air flow, while some small droplets diffuse upward easily depending on the temperature plume. The difference is noticed only when the emission of particles occurs for the process of respiration and larger particles after the release largely settle to the ground due to gravity.

Thus, from the obtained data, it can be concluded that most of the larger particles begin to settle due to gravitational forces, while small particles are transported over a long distance, which, in terms of airborne disease transmission from a person, poses a greater danger or risk. As a result, in the presence of a lateral inlet wind, the risk of infection increases, since the particle transfer distance increases several times compared to without a wind event.

Figure 9 shows the range of particle propagation in open space, taking into account the temperature of the body and the floor surface. As the results show, under different modes of particle ejection, it significantly affects the transport of particles along the height. In the mode of particle ejection with a speed of 20 m/s and 1 m/s (case 1) in the last 20.5 s, the propagation trajectory is the same, the difference is only at the level h (height). It should be noted that due to the speed of breathing or coughing, the settling of particles, taking into account the temperature, is approximately the same, except for the sneezing option.

Fig. 9.

Fig. 9

Particle propagation range (scenarios 1–3)

From the results, it can be seen that due to the lateral air flow, small vortices are formed behind the human body, which led the particles to a non-standard movement. These small vortices are formed due to the fact that the lateral air flows around the human body, while forming vortex movements behind the human body. It must be taken into account that a process of dissipation occurs, which leads to random motion. It can also be observed that due to the vortex motion in the central region behind the human body, reduced velocities are observed. In this case, the particles due to the vortex motion are brought into the external flow of motion. After these particles begin to move downstream, so that these particles are almost indicators of air flow. However, it should be noted that inertial particles are mainly collected in areas with low vorticity. At the same time, particles with greater inertia have relatively little effect on vortex movements and are mainly subject to mainly the direction of movement of the air side flow. It should also be noted that the particles move along a circular path with an almost equal radius. However, this process will not last for a long time, since an actively dissipative process takes place behind the human body. Due to this downstream phenomenon, vortex motions are generally not observed and particles move along the air flow.

According to the obtained data, it can be concluded that when taking into account the temperature of the human body and the temperature of the ground surface in the outdoor, by sneezing or coughing, particles can be transported to a much greater distance compared to not taking into account the temperature effect. To reduce the risk of infection, it is recommended not to stand or talk to people face to face in the direction of the wind, as particles spread much faster. Taking into account the temperature of the human body and the temperature of the ground surface in the outdoor, as well as taking into account the direction of the wind, which is directed along the distribution of particles, during the process of coughing or sneezing, particles can spread in 2 s in different ways, so for breathing 0.65 m, for coughing 1.63 m, for sneezing 2.86 m. It should be noted that in order to reduce the risk of infection, not only these factors play a much role, but also the time period of influence in which a person is located.

Conclusion

In this work, computational fluid dynamics was used to investigate the effect of body temperature and the heating of the earth's surface from sunlight on the transport and dispersion of particles produced by coughing or sneezing in open space. Computational calculations have been made of the emission of particles during normal human breathing, sneezing, and coughing. The verification of the model for test problem is in good agreement with the experimental data, which was described in details in the papers (Issakhov et al. 2021a, b; Issakhov et al. 2022a, b, c) and it can be said that the entire mechanism is effectively simulated.

Based on the results of a numerical calculation on the transfer and distribution of particles or droplets formed during normal breathing, sneezing, or coughing in open space, taking into account the temperature of the human body and the floor surface, the following conclusions were made: during a normal breathing process, particles or droplets can be transferred only for short distances, when sneezing or coughing, the particles are carried almost the same distance, the difference is only in the range. Also, the presence of body temperature and the floor surface strongly influences the propagation of the particles and the thermal plume is completely destroyed due to the speed of the incoming wind. However, the presence of temperature at high ejection velocities transport particles over a much greater distance.

It can be seen, even with simple breathing and taking into account the body temperature, there is a risk of infection. Thus, concluding it was vital to keep a distance between people in the open air in order to reduce the risk of infection. According to the results of the study, it is recommended not to stand or talk to people face to face in the area in the direction of the wind in order to reduce the risk of infection, to comply with quarantine measures and at the same time maintain social distance. At the initial time, the distance of particle propagation depends on the mode of breathing, since after the process of coughing or sneezing in 2 s, the particles can spread in different ways, so the distance for simple breathing can be noted 0.65 m, the distance for coughing is 1.63 m, the distance for sneezing is 2.86 m. As can be seen by taking into account the effect of temperature of human and the heating of the ground surface from the sun's rays in an open space for the process of sneezing, a 2-m social distance may not be sufficient. It should be added that the obtained results do not take into account some influencing factors, such as humidity, evaporation of droplets, etc. Despite this study considered complex phenomena, such as the transfer of a particle in open space, taking into account the temperature of the body and the surface of the ground prevent the transmission of infectious diseases more realistic conditions.

Author contribution

Alibek Issakhov has made the conception, designs of the study, writing the manuscript and interpretation of data. Perizat Omarova and Aizhan Abylkassyova have made simulation, visualization, analysis, and interpretation of data.

Funding

This work is supported by the grant from the Ministry of Education and Science of the Republic of Kazakhstan (AP09259783).

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Consent to participate

Not applicable.

Consent for publication

All authors agree to publish.

Conflict of interest

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Alibek Issakhov, Email: alibek.issakhov@gmail.com.

Perizat Omarova, Email: omarova.perizat2@gmail.com.

Aizhan Abylkassymova, Email: abylkassymova.aizhan@gmail.com.

References

  1. Alexei Pichardo-Orta F, Patiño-Luna AO, Vélez-Cordero JR (2022) Natural ventilation in urban buses: from negative pressure to velocity-driven dispersion of aerosols.10.21203/rs.3.rs-1308008/v1
  2. Birgand G, Peiffer-Smadja N, Fournier S, Kerneis S, Lescure F-X, Lucet J-C. Assessment of air contamination by SARS-CoV-1 in hospital settings. J Am Med Assoc. 2020;3(12):e20333232. doi: 10.1001/jamaetworkopen.2020.33232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busco G, Yang SR, Seo J, Hassan YA. Sneezing and asymptomatic virus transmission. Phys Fluids. 2020;32(7):073309. doi: 10.1063/5.0019090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, et al. Presumed asymptomatic carrier transmission of COVID-19. J Am Med Assoc. 2020;323:1406–1407. doi: 10.1001/jama.2020.2565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bartzis J, Efthimiou G, Andronopoulos S. Modelling short term individual exposure from airborne hazardous releases in urban environments. J Hazard Mater. 2015;300:182–188. doi: 10.1016/j.jhazmat.2015.06.057. [DOI] [PubMed] [Google Scholar]
  6. Chan JFW, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CCY, Poon RWS, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cai J, Sun W, Huang J, Gamber M, Wu J, He G (2020) Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerging Infect Dis 26(6). 10.3201/eid2606.200412 [DOI] [PMC free article] [PubMed]
  8. Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, Sutjipto S, Lee PH, Son TT, Young BE, et al. Detection of air and surface contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in hospital rooms of infected patients. Nat Commun. 2020;11:1–7. doi: 10.1038/s41467-020-16670-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, Corbett S, Li Y, Xie X, Katoshevski D. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci. 2009;40:122–133. doi: 10.1016/j.jaerosci.2008.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cole EC, Cook CE. Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies. Am J Infect Control. 1998;26(4):453–464. doi: 10.1016/s0196-6553(98)70046-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen L, Hang J, Sandberg M, Claesson L, Di Sabatino S, Wigo H. The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Build Environ. 2017;118:344–361. doi: 10.1016/j.buildenv.2017.03.042. [DOI] [Google Scholar]
  12. Duguid JP. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. J Hyg. 1945;54:471–479. doi: 10.1017/s0022172400019288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dbouk T, Drikakis D (2020) On coughing and airborne droplet transmission to humans. Phys Fluids 32:053310–1–053310–10. 10.1063/5.0011960 [DOI] [PMC free article] [PubMed]
  14. Escombe AR, Oeser C, Gilman RH, Navincopa M, Ticona E, Martinez C, …, Evans CA (2007) The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model. Clin Infect Dis 44(10):1349–1357.10.1086/515397 [DOI] [PMC free article] [PubMed]
  15. Feng Y, Marchal T, Sperry T, Yi H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: a numerical study. J Aerosol Sci. 2020;147:105585. doi: 10.1016/j.jaerosci.2020.105585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grimalt JO, Vílchez H, Fraile-Ribotc PA, Marco E, Campins A, Orfila J, van Drooge BL, Fanjul F. Spread of SARS-CoV-2 in hospital areas. Environ Res. 2022;204(Part B, March 2022):112074. doi: 10.1016/j.envres.2021.112074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gupta JK, Lin C-H, Chen Q. Flow dynamics and characterization of a cough. Indoor Air. 2009;19(6):517–525. doi: 10.1111/j.1600-0668.2009.00619.x. [DOI] [PubMed] [Google Scholar]
  18. Gao C, Li Y, Wei J, Cotton S, Hamilton M, Wang L, Cowling B. Multi-route respiratory infection: when a transmission route may dominate. Sci Total Environ. 2021;752:141856. doi: 10.1016/j.scitotenv.2020.141856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York, p. 504.
  20. Holmes NS, Morawska L. A review of dispersion modelling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos Environ. 2006;40(30):5902–5928. doi: 10.1016/j.atmosenv.2006.06.00. [DOI] [Google Scholar]
  21. Hasan A. Tracking the flu virus in a room mechanical ventilation using CFD tools and effective disinfection of an HVAC system. Int J Air-Cond Refrig. 2020 doi: 10.1142/s2010132520500194. [DOI] [Google Scholar]
  22. He L, Hang J, Wang X, Lin B, Li X, Lan G. Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Sci Total Environ. 2017;584–585:189–206. doi: 10.1016/j.scitotenv.2017.01.138. [DOI] [PubMed] [Google Scholar]
  23. Issakhov A, Mashenkova A. Numerical study for the assessment of pollutant dispersion from a thermal power plant under the different temperature regimes. Int J Environ Sci Technol. 2019 doi: 10.1007/s13762-019-02211-y. [DOI] [Google Scholar]
  24. Issakhov A, Omarova P. Numerical simulation of pollutant dispersion in the residential areas with continuous grass barriers. Int J Environ Sci Technol. 2019 doi: 10.1007/s13762-019-02517-x. [DOI] [Google Scholar]
  25. Issakhov A, Omarova P, Issakhov As. Numerical study of thermal influence to pollutant dispersion in the idealized urban street road. Air Qual Atmos Health. 2020 doi: 10.1007/s11869-020-00856-0. [DOI] [Google Scholar]
  26. Issakhov A, Alimbek A, Issakhov As. A numerical study for the assessment of air pollutant dispersion with chemical reactions from a thermal power plant. Eng Appl Comput Fluid Mech. 2020 doi: 10.1080/19942060.2020.1800515. [DOI] [Google Scholar]
  27. Issakhov A, Alimbek A, Zhandaulet Y. The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study. J Clean Prod. 2021;282:125239. doi: 10.1016/j.jclepro.2020.125239. [DOI] [Google Scholar]
  28. Issakhov A, Zhandaulet Y, Omarova P, Alimbek A, Borsikbayeva A, Mustafayeva A. A numerical assessment of social distancing of preventing airborne transmission of COVID-19 during different breathing and coughing processes. Sci Rep. 2021;11:9412. doi: 10.1038/s41598-021-88645-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Issakhov A, Omarova P. Modelling and analysis of the effects of barrier height on automobiles emission dispersion. J Clean Prod. 2021 doi: 10.1016/j.jclepro.2021.126450. [DOI] [Google Scholar]
  30. Issakhov A, Zhandaulet Y. Numerical simulation of thermal pollution zones’ formations in the water environment from the activities of the power plant. Eng Appl Comput Fluid Mech. 2019 doi: 10.1080/19942060.2019.1584126. [DOI] [Google Scholar]
  31. Issakhov A, Borsikbayeva A. The impact of a multilevel protection column on the propagation of a water wave and pressure distribution during a dam break: numerical simulation. J Hydrol. 2021 doi: 10.1016/j.jhydrol.2021.126212. [DOI] [Google Scholar]
  32. Issakhov A, Abylkassymova A, Issakhov A. Assessment of the influence of the barriers height and trees with porosity properties on the dispersion of emissions from vehicles in a residential area with various types of building developments. J Clean Prod. 2022;366:132581. doi: 10.1016/j.jclepro.2022.132581. [DOI] [Google Scholar]
  33. Issakhov A, Tursynzhanova A, Abylkassymova A. Numerical study of air pollution exposure in idealized urban street canyons: porous and solid barriers. Urban Climate. 2022;43:101112. doi: 10.1016/j.uclim.2022.101112. [DOI] [PubMed] [Google Scholar]
  34. Issakhov A, Omarova P, Borsikbayeva A. Assessment of airborne transmission from coughing processes with thermal plume adjacent to body and radiators on effectiveness of social distancing. Environ Sci Pollut Res. 2022 doi: 10.1007/s11356-022-18713-1. [DOI] [PubMed] [Google Scholar]
  35. Issakhov A, Alimbek A, Abylkassymova A(2022) Numerical modeling of water pollution by products of chemical reactions from the activities of industrial facilities at variable and constant temperatures of the environment. J Contamin Hydrol 104116–S0169772222001644 104116. 10.1016/j.jconhyd.2022.104116 [DOI] [PubMed]
  36. Jones WP and Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Trans 15(2):301–314 0017931072900762. 10.1016/0017-9310(72)90076-2
  37. Kissler S, Tedijanto C, Goldstein E, Grad Y, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the post pandemic period. Science. 2020;368(6493):860–868. doi: 10.1126/science.abb5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect. 2020 doi: 10.1016/j.jhin.2020.01.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Li H, Leong FY, Xu G, Ge Z, Kang CW, Lim KH. Dispersion of evaporating cough droplets in tropical outdoor environment. Phys Fluids. 2020;32:113301. doi: 10.1063/5.0026360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Li Y, Wang J-X, Chen X. Can a toilet promote virus transmission? From a fluid dynamics perspective. Phys Fluids. 2020;32(6):065107. doi: 10.1063/5.0013318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Leclair JM, Zaia JA, Levin MJ, Congdon RG, Goldmann DA. Airborne transmission of chickenpox in a hospital. N Engl J Med. 1980;302(8):450–453. doi: 10.1056/nejm198002213020807. [DOI] [PubMed] [Google Scholar]
  42. Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3(10):e151. doi: 10.1371/journal.ppat.0030151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Li F, Liu J, Ren J, Cao X, Zhu Y. Numerical investigation of airborne contaminant transport under different vortex structures in the aircraft cabin. Int J Heat Mass Transf. 2016;96:287–295. doi: 10.1016/j.ijheatmasstransfer.2016.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Liu C, Ng C, Wong C. A theory of ventilation estimate over hypothetical urban areas. J Hazard Mater. 2015;296:9–16. doi: 10.1016/j.jhazmat.2015.04.018. [DOI] [PubMed] [Google Scholar]
  45. Li X, Shang Y, Yan Y, Yang L, Tu J. Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Build Environ. 2018;128:68–76. doi: 10.1016/j.buildenv.2017.11.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Memarzadeh F. Literature review of the effect of temperature and humidity on viruses. Ashrae Trans. 2012;118:1049–1060. [Google Scholar]
  47. Menter FR (1994) Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J 32(8):1598–1605
  48. Menter FR and Kuntz M (2003) Development and Application of a Zonal DES Turbulence Model for CFX-5, CFX-Validation Report, CFX-VAL17/0503
  49. Morawska L, Tang JW, Bahnfleth W, Bluyssend PM, Boerstrae A, Buonanno G, et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int. 2020;142:105832. doi: 10.1016/j.envint.2020.105832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Mizukoshi A, Nakama C, Okumura J, Azuma K. Assessing the risk of COVID-19 from multiple pathways of exposure to SARS-CoV-2: Modeling in health-care settings and effectiveness of nonpharmaceutical interventions. Environ Int. 2021;147:106338. doi: 10.1016/j.envint.2020.106338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Morawska L, Johnson GR, Ristovski Z, Hargreaves M, Mengersen K, Chao CYH, Li Y, Katoshevski D. Size distribution and sites of origins of droplets expelled from the human respiratory tract during expiratory activities. J Aerosol Sci. 2009;40:256–269. doi: 10.1016/j.jaerosci.2008.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Park S, Choi Y, Song D, Kim EK. Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Sci Total Environ. 2021;789:147764. doi: 10.1016/j.scitotenv.2021.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Papineni RS, Rosenthal FS. The size distribution of droplets in the exhaled breath of healthy human subjects. J Aerosol Med. 1997;10:105–116. doi: 10.1089/jam.1997.10.105. [DOI] [PubMed] [Google Scholar]
  54. Pendar M-R, Páscoa JC (2020) Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough. Phys Fluids 32:083305–1–083305–18. 10.1063/5.0018432 [DOI] [PMC free article] [PubMed]
  55. Psikuta A, Allegrini J, Koelblen B, Bogdan A, Annaheim S, Martínez N, Derome D, Carmeliet J, Rossi RM (2017) Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research – A review. Renew Sustain Energy Rev 78:1315–1330
  56. Redrow J, Mao S, Celik I, Posada JA, Feng Z. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Build Environ. 2011;46(10):2042–2051. doi: 10.1016/j.buildenv.2011.04.011. [DOI] [Google Scholar]
  57. Rencken GK, Rutherford EK, Ghanta N, Kongoletos J, Glicksman L. Patterns of SARS-CoV-2 aerosol spread in typical classrooms. Build Environ. 2021;204:108167. doi: 10.1016/j.buildenv.2021.10816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Roy CJ, Milton DK. Airborne transmission of communicable infection — the elusive pathway. N Engl J Med. 2004;350(17):1710–1712. doi: 10.1056/nejmp048051. [DOI] [PubMed] [Google Scholar]
  59. Smieszek T, Lazzari G, Salathé M. Assessing the dynamics and control of droplet and aerosol-transmitted influenza using an indoor positioning system. Nat Sci Rep. 2019;9:2185. doi: 10.1038/s41598-019-38825-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sattar SA, Ijaz MK, Gerba CP. Spread of viral infections by aerosols. Crit Rev Environ Control. 1987;17(2):89–131. doi: 10.1080/10643388709388331. [DOI] [Google Scholar]
  61. Schaffer FL, Soergel ME, Straube DC. Survival of airborne influenza virus: Effects of propagating host, relative humidity, and composition of spray fluids. Adv Virol. 1976;51(4):263–273. doi: 10.1007/bf01317930. [DOI] [PubMed] [Google Scholar]
  62. Scungio M, Stabile L, Rizza V, Pacitto A, Russi A, Buonanno G. Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: a numerical modelling approach. Sci Total Environ. 2018;631–632:1109–1116. doi: 10.1016/j.scitotenv.2018.03.093. [DOI] [PubMed] [Google Scholar]
  63. Spalart PR (1997) Comments on the feasibility of LES for wing and on a hybrid RANS/LES approach. 1st ASOSR CONFERENCE on DNS/LES. Arlington
  64. Takanabe Y, Maruoka Y, Kondo J, Yagi S, Chikazu D, Okamoto R, Saitoh M. Dispersion of aerosols generated during dental therapy. Int J Environ Res Public Health. 2021;18(21):11279. doi: 10.3390/ijerph182111279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J Royal Soc Interface. 2009;6(Suppl_6):S737–S746. doi: 10.1098/rsif.2009.0227.focus. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tung N, Cheng P, Chi K, Hsiao T, Jones T, BéruBé K, Ho KF, Chuang H. Particulate matter and SARS-CoV-2: a possible model of COVID-19 transmission. Sci Total Environ. 2021;750:141532. doi: 10.1016/j.scitotenv.2020.141532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Verma TN, Sahu AK, Sinha SL. Numerical simulation of air pollution control in hospital. Air Pollut Control. 2017 doi: 10.1007/978-981-10-7185-0_11. [DOI] [Google Scholar]
  68. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–1567. doi: 10.1056/nejmc2004973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Weissberg D, Böni J, Rampini SK, Kufner V, Zaheri M, Schreiber PW, …, Wolfensberger A (2020) Does respiratory co-infection facilitate dispersal of SARS-CoV-2? investigation of a super-spreading event in an open-space office. Antimicrob Resist Infect Control 9(1). 10.1186/s13756-020-00861-z [DOI] [PMC free article] [PubMed]
  70. Wang J, Yang W, Pan L, Ji J, Shen J, Zhao K, Ying B, Wang X, Zhang L, Wang L, Shi X. Prevention and control of COVID-19 in nursing homes, orphanages, and prisons. Environ Pollut. 2020;266:115161. doi: 10.1016/j.envpol.2020.115161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Wang W, Yao X, Shu J. Air advection induced differences between canopy and surface heat islands. Sci Total Environ. 2020;725:138120. doi: 10.1016/j.scitotenv.2020.138120. [DOI] [PubMed] [Google Scholar]
  72. Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016;44(9):S102–S108. doi: 10.1016/j.ajic.2016.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. World Health Organization (2020) Coronavirus disease (COVID-19) advice for the public. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-forpublic. Accessed 15 Nov 2020
  74. Xian P, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020;12:9. doi: 10.1038/s41368-020-0075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Xu X, Shang Y, Tian L, Weng W, Tu J. A numerical study on firefighter nasal airway dosimetry of smoke particles from a realistic composite deck fire. J Aerosol Sci. 2018;123:91–104. doi: 10.1016/j.jaerosci.2018.06.006. [DOI] [Google Scholar]
  76. Xu X, Zhang J, Zhu L, Huang Q. Settings open access review transmission of SARS-CoV-2 indoor and outdoor environments. Atmosphere. 2021;12(12):1640. doi: 10.3390/atmos12121640. [DOI] [Google Scholar]
  77. Ye F, Xu S, Zhihua R, Xu R, Liu X, Deng P, et al. Delivery of infection from asymptomatic carriers of COVID-19 in a familial cluster Int. J Infect Dis. 2020;94:133–138. doi: 10.1016/j.ijid.2020.03.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Yang H, Chen T, Lin Y, Buccolieri R, Mattsson M, Zhang M, Hang J, Wang Q. Integrated impacts of tree planting and street aspect ratios on CO dispersion and personal exposure in full-scale street canyons. Build Environ. 2020;169:106529. doi: 10.1016/j.buildenv.2019.106529. [DOI] [Google Scholar]
  79. Yao Y, Pan J, Wang W, Liu Z, Kan H, Qiu Y, Meng X, Wang W. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities. Sci Total Environ. 2020;741:140396. doi: 10.1016/j.scitotenv.2020.140396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Zhao B, Zhang Z, Li X. Numerical study of the transport of droplets or particles generated by respiratory system indoors. Build Environ. 2005;40(8):1032–1039. doi: 10.1016/j.buildenv.2004.09.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Zee M et al (2021) Computational fluid dynamics modeling of cough transport in an aircraft cabin. Sci Rep 11:23329–10. 10.1038/s41598-021-02663-8 [DOI] [PMC free article] [PubMed]
  82. Zhang H, Li D, Xie L, Xiao Y. Documentary research of human respiratory droplet characteristics. Procedia Eng. 2015;121:1365–1374. doi: 10.1016/j.proeng.2015.09.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Zhang L, Li Y. Dispersion of coughed droplets in a fully-occupied high-speed rail cabin. Build Environ. 2012;47:58–66. doi: 10.1016/j.buildenv.2011.03.015. [DOI] [Google Scholar]
  84. Zhang X, Weerasuriya A, Tse K. CFD simulation of natural ventilation of a generic building in various incident wind directions: comparison of turbulence modelling, evaluation methods, and ventilation mechanisms. Energy Build. 2020;229:110516. doi: 10.1016/j.enbuild.2020.110516. [DOI] [Google Scholar]
  85. Zhang K, Chen G, Zhang Y, Liu S, Wang X, Wang B, Hang J. Integrated impacts of turbulent mixing and NOx-O3 photochemistry on reactive pollutant dispersion and intake fraction in shallow and deep street canyons. Sci Total Environ. 2020;712:135553. doi: 10.1016/j.scitotenv.2019.135553. [DOI] [PubMed] [Google Scholar]
  86. Zhang X, Ji Y, Yue Y, Liu H, Wang J (2020c) Infection risk assessment of COVID-19 through aerosol transmission: a case study of south China seafood market. Environ Sci Technol [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.


Articles from Environmental Science and Pollution Research International are provided here courtesy of Nature Publishing Group

RESOURCES