Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Nov 20;42(11):1720–1725. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.11.17

Wilson病脂代谢异常患者发生肝纤维化的列线图预测模型的建立与验证

Establishment and validation of a predictive nomogram for liver fibrosis in patients with Wilson disease and abnormal lipid metabolism

赵 晨玲 1, 董 婷 2,*, 孙 伦燕 2, 胡 慧冰 2, 王 琼 1, 田 丽伟 1, 江 张胜 1
PMCID: PMC9742779  PMID: 36504066

Abstract

目的

建立并验证Wilson病(WD)脂代谢异常患者发生肝纤维化的列线图预测模型。

方法

回顾性收集2018年12月~2021年12月就诊于安徽中医药大学第一附属医院脑病科的500例WD脂代谢异常患者的临床资料,并将其分为建模人群和验证人群。在建模人群中通过LASSO回归、多因素Logistic回归分析筛选出WD脂代谢异常患者发生肝纤维化的独立危险因素,并对其建立列线图预测模型。采用受试者工作特征曲线(ROC)的曲线下面积(AUC)、校准曲线和决策曲线分别在建模人群和验证人群中对列线图预测模型进行内外部验证以判断其区分度、校准度和临床实用性。

结果

甘油三酯、总胆固醇、低密度脂蛋白胆固醇和载脂蛋白B为WD脂代谢异常患者发生肝纤维化的独立危险因素(P<0.05)。列线图预测模型在建模人群和验证人群中均具有良好的区分度、校准度和临床实用性。

结论

本研究所建立的列线图预测模型具有较高的准确性,可方便地用于WD脂代谢异常患者发生肝纤维化的早期识别和风险预测。

Keywords: Wilson病, 脂代谢, 肝纤维化, 列线图, 预测模型


Wilson病(WD),又名肝豆状核变性,是一种ATP7B基因突变所致的慢性进行性铜代谢障碍性疾病[1]。肝脏是WD最早、最主要的受累器官,其早期的病理改变可表现为肝细胞脂滴沉积和肝脏脂肪变性,随病灶扩展,可引起肝脏炎症反应,导致肝纤维化,甚至肝硬化,而肝硬化及其并发症是目前WD患者最主要的死亡原因[2]。进一步研究证实,脂代谢异常所造成的大量游离脂肪酸涌入,是导致肝细胞脂滴沉积和肝脏脂肪变性的直接原因[3]。因此,及早发现WD患者脂代谢相关指标的异常变化并进行有效干预,可阻止肝纤维化的病理进程,预防肝硬化及其并发症的发生。

课题组前期研究发现,WD脂代谢异常患者更容易引起肝纤维化[4-6],但脂代谢相关指标的异常变化是否能够作为WD肝纤维化的独立危险因素目前尚未达成统一共识,也缺乏相关临床指南的指导。列线图预测模型是一种可靠的风险评价方法,可直观地反映出患者发生某种疾病的概率,对辅助临床医生进行决策具有重要的指导价值,其广泛应用于癌症相关领域的研究中[7-9],目前国内外尚未见关于WD脂代谢异常患者发生肝纤维化的列线图预测模型的相关报道。

为深入了解安徽中医药大学第一附属医院脑病科WD脂代谢异常患者的临床资料特征,探索导致WD肝纤维化的独立危险因素,建立可靠的WD肝纤维化列线图预测模型,为临床医生和WD脂代谢异常患者在医疗措施干预和生活方式监测方面提供有利指导,故开展本研究。

1. 资料和方法

1.1. 研究对象

回顾性收集2018年12月~2021年12月就诊于安徽中医药大学第一附属医院脑病科的WD脂代谢异常患者的临床资料,应用随机数字表法,按照7∶3的比例将其划分为建模人群和验证人群,并依据是否发生肝纤维化(《肝纤维化中西医结合诊疗指南》[10])对建模人群再分组。本研究已获得医院医学伦理委员会批准(批准号:2018AH-08),可确保所有操作流程符合相关伦理学规定。

1.2. 纳入和排除标准

纳入标准:符合《肝豆状核变性的诊断与治疗指南》中WD的临床诊断标准[11];至少满足《中国成人血脂异常防治指南(2016年修订版)》中脂代谢异常临床诊断标准中的其中任意一条[12];近期未使用调脂或者影响脂代谢的药物;18岁≤年龄≤55岁;临床资料完整。

排除标准:其他原因导致的肝脏疾病;肝硬化失代偿期;近期正在使用调脂或者影响脂代谢的药物;年龄<18岁,或者>55岁;妊娠及哺乳期妇女;合并恶性肿瘤或者自身免疫性疾病;临床资料不完整。

1.3. 临床资料收集及检验方法

一般资料收集包括性别、年龄;生化资料收集包括甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、载脂蛋白A1(Apo-A1)、载脂蛋白B(Apo-B)、脂蛋白A(Lpa)和同型半胱氨酸(Hcy),检验方法为在入院次日清晨利用真空枸橼酸钠抗凝管对空腹状态下的患者进行静脉采血,并交由医院检验中心专业技术检验人员使用全自动生化分析仪完成对上述生化指标的检测。

1.4. 统计学分析

基于SPSS(v.26.0)软件和R(v.4.0.3)软件进行统计学分析。计量资料用中位数(四分位数间距)表示,分析采用Man-Whitney U检验;计数资料用频数(%)表示,组间比较采用χ2检验。P<0.05时认为差异具有统计学意义。LASSO回归模型适用于临床资料特征的缩减,以获取WD脂代谢异常患者发生肝纤维化的危险因素(非零系数);多因素Logistic回归方法适用于独立危险因素的进一步筛选;列线图预测模型适用于个体化患病风险的预测;受试者工作特征曲线(ROC)的曲线下面积(AUC)、校准曲线和决策曲线适用于列线图预测模型的内外部验证,以判断其区分度、校准度和临床实用性。

2. 结果

2.1. 研究对象的临床资料

本研究共纳入500例WD脂代谢异常患者,包括建模人群350例和验证人群150例,两组人群在临床资料(包括一般资料和生化资料)比较方面,差异均无统计学意义(P>0.05,表 1),具有可比性。在建模人群中,根据是否发生肝纤维化可分为肝纤维化组62例和非肝纤维化组288例,两组人群在生化资料比较方面,差异均有统计学意义(P<0.001,表 2)。

1.

建模人群和验证人群的临床资料比较

Comparison of clinical data between the modeling group and validation group

Characteristics Modeling group (n=350) Validation group (n=150) t/Z2 P
TG: Triglycerides; TC: Total cholesterol; LDL-C: Low density lipoprotein cholesterol; HDL-C: High density lipoprotein cholesterol; Apo-A1: Apolipoprotein A1; Apo-B: Apolipoprotein B; Lpa: Lipoprotein a; Hcy: Homocysteine.
Gender [n (%)] 1.921a 0.166
  Male 180 (51.43) 67 (44.67)
  Female 170 (48.57) 83 (55.33)
Age (year) 28 (23, 36) 27 (23, 31) 1.919 0.055
TG (mmol/L) 0.84 (0.67, 1.18) 0.80 (0.62, 2.03) 0.585 0.559
TC (mmol/L) 4.92 (4.26, 5.37) 4.84 (4.26, 5.39) 0.097 0.923
LDL-C (mmol/L) 2.90 (2.40, 3.65) 2.83 (2.27, 4.22) 0.062 0.951
HDL-C (mmol/L) 1.18 (1.07, 1.31) 1.24 (1.00, 1.38) 0.975 0.330
Apo-A1 (g/L) 1.37 (1.10, 1.77) 1.38 (1.07, 1.70) 1.289 0.197
Apo-B (g/L) 0.99 (0.74, 1.30) 1.07 (0.82, 1.28) 1.206 0.228
Lpa (mg/L) 140.8 (109.50, 238.03) 159.55 (128.9, 236.2) 1.662 0.096
Hcy (μmol/L) 7.50 (6.10, 9.80) 7.85 (5.60, 10.03) 0.075 0.940

2.

肝纤维化组与非肝纤维化组的临床资料比较

Comparison of clinical data between the patients with and without hepatic fibrosis

Characteristics HF group (n=62) Non-HF group (n=288) t/Z2 P
HF: Hepatic fibrosis.
Gender [n (%)] 0.761a 0.383
  Male 35 (56.45) 145 (50.35)
  Female 27 (43.55) 143 (49.65)
Age (year) 31 (27, 36) 29 (23, 36) 1.852 0.064
TG (mmol/L) 1.71 (0.77, 3.27) 0.79 (0.66, 1.02) 5.267 <0.001
TC (mmol/L) 6.24 (4.66, 6.68) 4.86 (4.15, 5.24) 4.708 <0.001
LDL-C (mmol/L) 3.68 (2.42, 4.48) 2.83 (2.40, 3.55) 3.926 <0.001
HDL-C (mmol/L) 1.04 (0.98, 1.23) 1.21 (1.09, 1.32) 4.361 <0.001
Apo-A1 (g/L) 1.14 (0.76, 1.39) 1.42 (1.14, 1.79) 5.618 <0.001
Apo-B (g/L) 1.40 (0.95, 2.12) 0.96 (0.72, 1.21) 5.829 <0.001
Lpa (mg/L) 307.60 (136.98, 432.95) 135.4 (108, 219.5) 5.603 <0.001
Hcy (μmol/L) 9.70 (6.60, 27.6) 7.35 (5.83, 8.98) 4.003 <0.001

2.2. LASSO回归和多因素Logistic回归分析

在建模人群中,通过LASSO回归分析,共获得6个危险因素(非零系数),分别为TG、TC、LDL-C、HDL-C、Apo-A1和Apo-B(图 1)。应用多因素Logistic回归方法分析上述危险因素,结果显示TG、TC、LDL-C和Apo-B为WD脂代谢异常患者发生肝纤维化的独立危险因素(表 3)。

1.

1

建模人群的LASSO回归模型危险因素筛选

Screening for risk factors in the modeling group using the LASSO binary logistic regression model. A: Selection of the optimal parameters in the LASSO model. The abscissa represents the optimal parameters log(λ), the ordinate represents the regression coefficients, and the curves numbered 1-8 represent TG, TC, LDL-C, HDL-C, Apo-B, Apo-A1, Lpa and Hcy, respectively; B : LASSO coefficient profiles of the 8 features. The abscissa represents the optimal parameters log(λ), and the ordinate represents binomial deviation.

3.

建模人群的多因素的Logistic回归分析

Result of multivariate logistic regression analysis in the modeling group

Intercept and variable Prediction model
β Odds ratio (95% CI) P
β: Regression coefficient; CI: Confidence interval.
Intercept -3.9212 0.0198 (0.0085-0.0404) <0.001
TG 1.7736 5.8918 (2.4113-14.7350) <0.001
TC 1.3468 3.8453 (1.5906-9.3648) <0.01
LDL-C 2.3217 10.1928 (4.6600-23.2254) <0.001
HDL-C 0.8843 2.4214 (0.9656-6.0081) 0.0564
Apo-A1 0.2794 1.3224 (0.4194-4.0726) 0.6282
Apo-B 1.7466 5.7352 (2.1642-15.6354) <0.001

2.3. 列线图预测模型的建立

将上述4个独立危险因素纳入,并成功建立WD脂代谢异常患者发生肝纤维化风险的个体化列线图预测模型(图 2)。通过模型上方的标尺,可以获得4个独立危险因素所对应的单项得分,将各单项得分相加即为总得分,与总得分相对应的预测概率就是WD脂代谢异常患者发生肝纤维化的风险。

2.

2

WD脂代谢异常患者发生肝纤维化的风险列线图预测模型

Nomogram for risk prediction of liver fibrosis in patients with WD and abnormal lipid metabolism.

2.4. 列线图预测模型的内外部验证

2.4.1. 区分度

通过绘制两组人群的ROC曲线,得到AUC分别为0.9055(95%CI:0.8614~0.9506)和0.9149(95%CI:0.8621~0.9679),AUC值均大于0.9,表明预测模型具有良好的区分度(图 3)。

3.

3

预测模型在建模和验证人群中的ROC

ROC of the prediction model in the modeling and validation groups.

2.4.2. 校准度

校准曲线结果显示,两组人群的平均绝对误差(MAE)分别为0.0220和0.0250,均方误差(MMSE)分别为0.0012和0.0011(MAE和MSE值越小,说明校准度越高),表明预测模型具有较高的校准度(图 4)。

4.

4

预测模型在建模和验证人群中的校准曲线

Calibration curve of the prediction model in the modeling and validation groups.

2.4.3. 临床实用性

当两组人群决策曲线中的阈概率值分别在3%~90%和1%~99%范围内时,使用该列线图预测肝纤维化发生风险的净获益较高,表明预测模型具有良好的临床实用性(图 5)。

5.

5

预测模型在建模和验证人群中的决策曲线

Decision curve of the prediction model in the modeling and validation groups.

3. 讨论

流行病学研究结果显示,我国WD的发病率(1/30000)远高于世界平均水平(5.87/100 000)[13-15]。肝纤维化作为WD最重要的病理改变之一,若延误治疗,将导致约34%的患者进展为肝硬化,甚至出现严重并发症[16, 17],而对其进行早期识别及风险预测则有助于指导临床医生制订更为积极的防范措施和治疗策略。进一步研究发现,脂代谢异常是肝纤维化的关键驱动因素[18],其相关指标的变化,甚至可以对WD患者的临床结局产生重要影响。

对于脂代谢异常患者发生肝纤维化的相关危险因素研究中,报道较多的是TG、TC、LDL-C、HDL-C、Apo-A1、Apo-B、Lpa和Hcy等[19-23],但尚未达成统一共识,且目前尚未见关于WD脂代谢异常患者发生肝纤维化相关危险因素的报道。基于此,本研究通过LASSO回归、多因素Logistic回归分析筛选出WD脂代谢异常患者发生肝纤维化的独立危险因素包括TG、TC、LDL-C和Apo-B。研究表明,脂代谢异常是导致肝内脂质过度沉积的重要原因,其过程可能与TG、LDL-C合成分泌增高致胆固醇转运受限有关[24]。相较于传统的脂代谢指标,Apo-B因其独特的分子结构和理化特性不仅能够更加真实地反映出机体脂代谢的内在变化情况,还可以通过增加低密度脂蛋白的颗粒数量诱发氧化应激和炎症反应[25]。由此可见,TG、TC、LDL-C和Apo-B的高低,与机体脂代谢水平密切相关。

文献表明,WD脂代谢异常所造成的肝细胞脂滴沉积和肝脏脂肪变性不是一般性肝功能不全的结果,而是由肝细胞内铜过量蓄积所引起的[26]。在此基础上所诱发的炎症反应,可释放大量的炎症因子(如TNF-α、IL-6等)[27],炎症因子不仅能够对存在于乳糜微粒和LDL中的TG水解过程产生影响,导致其清除受损,还能够抑制肝细胞内Apo-A1的合成和分泌,降低肝脏胆固醇的分解代谢,增加肝脏CH的含量。进一步研究发现,持续的炎症刺激还可活化肝星状细胞,进而促使细胞外基质分泌过多并沉积于肝脏[28, 29]。HSC是肝纤维化发生的核心环节[30],能够协同肝细胞代谢和转运脂质,当其发生异常时,便会导致TG、TC、LDL-C和Apo-B在肝内过度蓄积,诱发肝细胞线粒体损伤,进而导致肝纤维化乃至肝硬化。由此可见,脂代谢相关指标的异常变化在WD肝纤维化的形成和演变过程中发挥了极其重要的作用。

本研究所建立的列线图预测模型具有较高的准确性,可在WD脂代谢异常患者发生肝纤维化的早期识别及风险预测中发挥重要价值,并为临床医生和WD脂代谢异常患者在医疗措施干预和生活方式监测方面提供更加有利的临床指导。该预测模型虽具有较大的创新意义,但亦存在研究对象和观察变量纳入数量不足等局限,可对研究结果产生一定影响,因此有待于后续临床的进一步验证。

Biography

赵晨玲,在读硕士研究生,E-mail: 1119489148@qq.com

Funding Statement

安徽高校自然科学研究重点项目(KJ2021A0547);国家中医药考试基金(TC2021023);安徽省自然科学基金(2208085MH270);安徽省西学中高级人才研修项目(2019qgxxzggrcpxxm20220104);安徽中医药大学第一附属医院临床科学研究项目(2020yfyzc01);新安医学教育部重点实验室;国家中医药管理局中医药循证能力建设项目:中医药脑病循证能力提升及平台建设(2019XZZX-NB001)

Contributor Information

赵 晨玲 (Chenling ZHAO), Email: 1119489148@qq.com.

董 婷 (Ting DONG), Email: 876786557@qq.com.

References

  • 1.Mulligan C, Bronstein JM. Wilson disease: an overview and approach to management. Neurol Clin. 2020;38(2):417–32. doi: 10.1016/j.ncl.2020.01.005. [Mulligan C, Bronstein JM. Wilson disease: an overview and approach to management[J]. Neurol Clin, 2020, 38(2): 417-32.] [DOI] [PubMed] [Google Scholar]
  • 2.Gerosa C, Fanni D, Congiu T, et al. Liver pathology in Wilson's disease: from copper overload to cirrhosis. J Inorg Biochem. 2019;193(6):106–11. doi: 10.1016/j.jinorgbio.2019.01.008. [Gerosa C, Fanni D, Congiu T, et al. Liver pathology in Wilson's disease: from copper overload to cirrhosis[J]. J Inorg Biochem, 2019, 193(6): 106-11.] [DOI] [PubMed] [Google Scholar]
  • 3.Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology. 1998;114(4):842–5. doi: 10.1016/S0016-5085(98)70599-2. [Day CP, James OF. Steatohepatitis: a tale of two "hits"[J]? Gastroenterology, 1998, 114(4): 842-5.] [DOI] [PubMed] [Google Scholar]
  • 4.刘 佳萱, 李 彬彬, 张 利芬, et al. 脂质代谢和肝纤维化关系的研究进展. https://www.cnki.com.cn/Article/CJFDTOTAL-DEJD201805014.htm. 第二军医大学学报. 2018;39(5):531–4. [刘佳萱, 李彬彬, 张利芬, 等. 脂质代谢和肝纤维化关系的研究进展[J]. 第二军医大学学报, 2018, 39(5): 531-4.] [Google Scholar]
  • 5.Seessle J, Gohdes A, Gotthardt DN, et al. Alterations of lipid metabolism in Wilson disease. Lipids Health Dis. 2011;10(4):83. doi: 10.1186/1476-511X-10-83. [Seessle J, Gohdes A, Gotthardt DN, et al. Alterations of lipid metabolism in Wilson disease[J]. Lipids Health Dis, 2011, 10(4): 83.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Blades B, Ayton S, Hung YH, et al. Copper and lipid metabolism: a reciprocal relationship. Biochim Biophys Acta Gen Subj. 2021;1865(11):129979. doi: 10.1016/j.bbagen.2021.129979. [Blades B, Ayton S, Hung YH, et al. Copper and lipid metabolism: a reciprocal relationship[J]. Biochim Biophys Acta Gen Subj, 2021, 1865(11): 129979.] [DOI] [PubMed] [Google Scholar]
  • 7.Yu CR, Zhang YJ. Development and validation of a prognostic nomogram for early-onset colon cancer. Biosci Rep. 2019;39(6):BSR20181781. doi: 10.1042/BSR20181781. [Yu CR, Zhang YJ. Development and validation of a prognostic nomogram for early-onset colon cancer[J]. Biosci Rep, 2019, 39(6): BSR20181781.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Deng W, Zhang WC, Yang JS, et al. Nomogram to predict overall survival for thoracic esophageal squamous cell carcinoma patients after radical esophagectomy. Ann Surg Oncol. 2019;26(9):2890–8. doi: 10.1245/s10434-019-07393-w. [Deng W, Zhang WC, Yang JS, et al. Nomogram to predict overall survival for thoracic esophageal squamous cell carcinoma patients after radical esophagectomy[J]. Ann Surg Oncol, 2019, 26(9): 2890-8.] [DOI] [PubMed] [Google Scholar]
  • 9.张 力苹, 刘 喜娟, 林 卉, et al. 晚期胃癌生存预后因素及列线图预测模型的建立与验证. https://www.j-smu.com/CN/10.12122/j.issn.1673-4254.2021.04.21. 南方医科大学学报. 2021;41(4):621–7. doi: 10.12122/j.issn.1673-4254.2021.04.21. [张力苹, 刘喜娟, 林卉, 等. 晚期胃癌生存预后因素及列线图预测模型的建立与验证[J]. 南方医科大学学报, 2021, 41(4): 621-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.中国中西医结合学会肝病专业委员会 肝纤维化中西医结合诊疗指南. 中国肝脏病杂志: 电子版. 2010;2(4):54–9. doi: 10.3969/j.issn.1674-7380.2010.04.015. [中国中西医结合学会肝病专业委员会. 肝纤维化中西医结合诊疗指南[J]. 中国肝脏病杂志: 电子版, 2010, 2(4): 54-9.] [DOI] [Google Scholar]
  • 11.梁 秀龄, 杨 任民, 吴 志英, et al. 肝豆状核变性的诊断与治疗指南. 中华神经科杂志. 2008;41(8):566–9. doi: 10.3321/j.issn:1006-7876.2008.08.022. [梁秀龄, 杨任民, 吴志英, 等. 肝豆状核变性的诊断与治疗指南[J]. 中华神经科杂志, 2008, 41(8): 566-9.] [DOI] [Google Scholar]
  • 12.诸 骏仁, 高 润霖, 赵 水平, et al. 中国成人血脂异常防治指南(2016年修订版. 中国循环杂志. 2016;31(10):937–53. doi: 10.3969/j.issn.1000-3614.2016.10.001. [诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版[)J]. 中国循环杂志, 2016, 31(10): 937-53.] [DOI] [Google Scholar]
  • 13.Xie JJ, Wu ZY. Wilson's disease in China. Neurosci Bull. 2017;33(3):323–30. doi: 10.1007/s12264-017-0107-4. [Xie JJ, Wu ZY. Wilson's disease in China[J]. Neurosci Bull, 2017, 33 (3): 323-30.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zhong HJ, Sun HH, Xue LF, et al. Differential hepatic features presenting in Wilson disease-associated cirrhosis and hepatitis B-associated cirrhosis. World J Gastroenterol. 2019;25(3):378–87. doi: 10.3748/wjg.v25.i3.378. [Zhong HJ, Sun HH, Xue LF, et al. Differential hepatic features presenting in Wilson disease-associated cirrhosis and hepatitis B-associated cirrhosis[J]. World J Gastroenterol, 2019, 25(3): 378-87.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sandahl TD, Laursen TL, Munk DE, et al. The prevalence of Wilson's disease: an update. Hepatology. 2020;71(2):722–32. doi: 10.1002/hep.30911. [Sandahl TD, Laursen TL, Munk DE, et al. The prevalence of Wilson's disease: an update[J]. Hepatology, 2020, 71(2): 722-32.] [DOI] [PubMed] [Google Scholar]
  • 16.Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med. 2016;67(3):103–17. doi: 10.1146/annurev-med-090514-013832. [Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis[J]. Annu Rev Med, 2016, 67(3): 103-17.] [DOI] [PubMed] [Google Scholar]
  • 17.Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71. doi: 10.1016/j.jhep.2018.09.014. [Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-71.] [DOI] [PubMed] [Google Scholar]
  • 18.郭 海燕, 杨 皓然, 崔 桂婷, et al. 健脾益肝方对非酒精性脂肪性肝病患者脂肪分布及脂代谢的影响. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXGB202201004.htm. 中西医结合肝病杂志. 2022;32(1):12–5. [郭海燕, 杨皓然, 崔桂婷, 等. 健脾益肝方对非酒精性脂肪性肝病患者脂肪分布及脂代谢的影响[J]. 中西医结合肝病杂志, 2022, 32(1): 12-5.] [Google Scholar]
  • 19.习 晓丽, 叶 美玲. 绞股蓝总苷胶囊对非酒精性脂肪性肝病病人糖脂代谢、氧化应激水平及肝纤维化指标的影响. 安徽医药. 2022;26(4):824–8. doi: 10.3969/j.issn.1009-6469.2022.04.042. [习晓丽, 叶美玲. 绞股蓝总苷胶囊对非酒精性脂肪性肝病病人糖脂代谢、氧化应激水平及肝纤维化指标的影响[J]. 安徽医药, 2022, 26(4): 824-8.] [DOI] [Google Scholar]
  • 20.Deckmyn O, Poynard T, Bedossa P, et al. Clinical interest of serum alpha-2 macroglobulin, apolipoprotein A1, and haptoglobin in patients with non-alcoholic fatty liver disease, with and without type 2 diabetes, before or during COVID-19. Biomedicines. 2022;10(3):699. doi: 10.3390/biomedicines10030699. [Deckmyn O, Poynard T, Bedossa P, et al. Clinical interest of serum alpha-2 macroglobulin, apolipoprotein A1, and haptoglobin in patients with non-alcoholic fatty liver disease, with and without type 2 diabetes, before or during COVID-19[J]. Biomedicines, 2022, 10 (3): 699.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Nass KJ, van den Berg EH, Faber KN, et al. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: the lifelines cohort study. Metabolism. 2017;72(11):37–46. doi: 10.1016/j.metabol.2017.04.004. [Nass KJ, van den Berg EH, Faber KN, et al. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: the lifelines cohort study[J]. Metabolism, 2017, 72(11): 37-46.] [DOI] [PubMed] [Google Scholar]
  • 22.Meroni M, Longo M, Lombardi R, et al. Low lipoprotein(a) levels predict hepatic fibrosis in patients with nonalcoholic fatty liver disease. Hepatol Commun. 2022;6(3):535–49. doi: 10.1002/hep4.1830. [Meroni M, Longo M, Lombardi R, et al. Low lipoprotein(a) levels predict hepatic fibrosis in patients with nonalcoholic fatty liver disease[J]. Hepatol Commun, 2022, 6(3): 535-49.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lv D, Wang ZP, Ji S, et al. Plasma levels of homocysteine is associated with liver fibrosis in health check-up population. Int J Gen Med. 2021;14(6):5175–81. doi: 10.2147/IJGM.S329863. [Lv D, Wang ZP, Ji S, et al. Plasma levels of homocysteine is associated with liver fibrosis in health check-up population[J]. Int J Gen Med, 2021, 14(6): 5175-81.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.赵 嘉晶, 岳 瑶函, 施 永美, et al. 茵陈蒿汤对脂代谢紊乱模型大鼠CH、LDL-C、TAG影响的实验研究. 中国中医急症. 2018;27(8):1387-90, 1395. doi: 10.3969/j.issn.1004-745X.2018.08.020. [赵嘉晶, 岳瑶函, 施永美, 等. 茵陈蒿汤对脂代谢紊乱模型大鼠CH、LDL-C、TAG影响的实验研究[J]. 中国中医急症, 2018, 27(8): 1387-90, 1395.] [DOI] [Google Scholar]
  • 25.Andrikoula M, McDowell IFW. The contribution of ApoB and ApoA1 measurements to cardiovascular risk assessment. Diabetes Obes Metab. 2008;10(4):271–8. doi: 10.1111/j.1463-1326.2007.00714.x. [Andrikoula M, McDowell IFW. The contribution of ApoB and ApoA1 measurements to cardiovascular risk assessment[J]. Diabetes Obes Metab, 2008, 10(4): 271-8.] [DOI] [PubMed] [Google Scholar]
  • 26.Liggi M, Murgia D, Civolani A, et al. The relationship between copper and steatosis in Wilson's disease. Clin Res Hepatol Gastroenterol. 2013;37(1):36–40. doi: 10.1016/j.clinre.2012.03.038. [Liggi M, Murgia D, Civolani A, et al. The relationship between copper and steatosis in Wilson's disease[J]. Clin Res Hepatol Gastroenterol, 2013, 37(1): 36-40.] [DOI] [PubMed] [Google Scholar]
  • 27.Wu P, Dong JJ, Cheng N, et al. Inflammatory cytokines expression in Wilson's disease. Neurol Sci. 2019;40(5):1059–66. doi: 10.1007/s10072-018-3680-z. [Wu P, Dong JJ, Cheng N, et al. Inflammatory cytokines expression in Wilson's disease[J]. Neurol Sci, 2019, 40(5): 1059-66.] [DOI] [PubMed] [Google Scholar]
  • 28.Gandhi CR. Oxidative stress and hepatic stellate cells: a paradoxical relationship. Trends Cell Mol Biol. 2012;7(3):1–10. [Gandhi CR. Oxidative stress and hepatic stellate cells: a paradoxical relationship[J]. Trends Cell Mol Biol, 2012, 7(3): 1-10.] [PMC free article] [PubMed] [Google Scholar]
  • 29.Carotti S, Aquilano K, Valentini F, et al. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am J Physiol Gastrointest Liver Physiol. 2020;319(4):G469–80. doi: 10.1152/ajpgi.00049.2020. [Carotti S, Aquilano K, Valentini F, et al. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 319(4): G469-80.] [DOI] [PubMed] [Google Scholar]
  • 30.Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121(4):27–42. doi: 10.1016/j.addr.2017.05.007. [Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121(4): 27-42.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES