Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Nov 20;42(11):1646–1654. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.11.08

经导管主动脉瓣置换术前测量主动脉根部参数的一致性及与短期预后的关联性:基于Anythink和3mensio CT软件比较

Anythink for CT-based aorta root measurements before transcatheter aortic valve replacement: measurement consistency with 3mensio and impact on short-term prognosis

刘 长福 1,3, 孙 泽瑜 1,2,3, 王 晶 1, 王 民汉 3, 辛 然 1,2, 丁 熠璞 1,2, 王 玺 1, 穆 洋 1, 陈 韬 1, 蒋 博 1, 王 琳 1, 章 明 1, 单 冬凯 1,*, 陈 韵岱 1,*
PMCID: PMC9742784  PMID: 36504057

Abstract

目的

通过对比国产半自动术前CT分析软件Anythink与3mensio应用于经导管主动脉瓣置换术前测量的数据,评价Anythink软件测量主动脉根部参数的一致性与短期预后间的关联性。

方法

回顾性纳入2016年12月~2022年2月于中国人民解放军总医院行TAVR手术的67例患者,由一名完成专业培训的心内科医生分别使用新型半自动分析软件Anythink与“金标准”3mensio软件同步重建主动脉根部模型,测量主动脉瓣环及周围结构,分析两种软件结果的相关性及一致性;由两名独立医生应用Anythink软件重复测量,评价Anythink对于同一研究对象测量的可重复性;依据Anythink和3mensio软件测量结果选取瓣膜型号,分析两软件在实际用于指导临床瓣膜选择时的异同。

结果

Anythink与3mensio测量的左冠脉开口高度(13.37±3.35 mm vs 13.19±3.19 mm)、右冠脉开口高度(15.45±2.89 mm vs 15.75±2.93mm)、瓣环直径(24.0±2.2 mm vs 23.9±2.3 mm)、瓣环面积(450.6±88.3 mm2 vs 447.5±90.0 mm2)、瓣环周长(76.5±7.2 mm vs 76.1±7.6 mm)、主动脉瓣环与水平面夹角(53.5°±10.0°vs 51.1°±9.7°)差异均无统计学意义(P > 0.05)。Pearson相关分析结果显示,两软件测量数据呈正相关(r=0.884~0.981,P < 0.01);Anythink测量瓣环数据组内相关系数ICC=0.894~0.992,组间相关系数ICC=0.651~0.954;Anythink与3mensio依据平均直径、面积直径、周长直径的选取瓣膜型号Kappa检验值分别为0.886、0.796、0.775;依据两次Anythink测量的平均直径、面积直径、周长直径选取瓣膜型号组内Kappa值为0.819、0.841、0.795,组间Kappa值为0.812、0.812、0.768。与患者短期预后关联性部分,在出现术后瓣周漏的患者中,Anythink测量面积直径相较于3mensio软件推荐的瓣膜型号略大,而在出现术后新发传导阻滞的患者中,Anythink推荐的瓣膜型号略小。

结论

国产半自动TAVR术前CT分析软件Anythink与3mensio软件在主动脉根部参数测量方面具有较好的一致性与较高的可重复性。经过专业训练的心内科医生可运用Anythink软件来获得相对准确的主动脉根部数据,为TAVR术前瓣膜型号的选择提供指导和参考。

Keywords: 主动脉瓣膜病, 经导管主动脉瓣置换术, 计算机断层扫描, 瓣环大小


经导管主动脉瓣置换术(TAVR)是重度有症状主动脉瓣膜病的一种重要的介入治疗手段[1, 2]。人工瓣膜型号的匹配影响着TAVR患者术后生存率和长期预后,选择瓣膜小于最佳尺寸会导致患者术后瓣周漏、瓣膜的移位和潜在冠脉栓塞的发生[3, 4],而大于最佳尺寸则可能导致主动脉壁局部压力增高,增加新发传导阻滞的风险,甚至可能导致瓣环破裂[5]。术前准确测量主动根部参数对于准确选择瓣环型号和锚定放置深度至关重要,可显著减少围手术期并发症的风险[6]。目前,指南推荐使用基于多排计算机断层扫描(MDCT)的三维建模测量主动脉根部参数[7, 8]

术前主动脉根部结构的分析需要应用以收缩期CT图像为基础的三维重建模型进行准确测量[9, 10]。然而,主动脉瓣根部结构在整个心脏周期中不断变化[11],识别勾画结构轮廓相对较复杂,测量参数较多,需要专业软件来完成。目前国内外公认的“金标准”测量软件以3mensio(Pie Medical Imaging,Workstation 10.0 module Structural Heart,Netherlands)最具代表性,但其价格高昂、操作勾画相对复杂。国外已开发出全自动或半自动测量分析软件,其效能也通过相关研究得到证实[12, 13],但国内仍缺乏被广泛认可的替代软件,不同软件间测量结果与患者短期预后间的关联性也尚不明确。Anythink(CREALIFE,Structural heart & vessel 3.0,China)是最新研发的国产半自动术前TAVR测量分析软件,操作使用更加快捷,界面更加友好,有希望弥补国内自动化测量领域的空白,但其准确性和可重复性未被验证,临床应用价值尚不明确。因此,本研究旨在应用新型国产半自动分析软件Anythink测量行TAVR手术患者的主动脉根部数据,与3mensio测量结果比较,分析二者的相关性及一致性,验证新软件的可重复性,并进一步评估依据两种软件测量结果选择瓣膜型号的差异,发现和推测这种差异与患者短期预后之间的潜在关联。

1. 资料和方法

1.1. 一般资料

回顾性纳入2016年12月~2022年1月行TAVR手术的主动脉瓣膜病患者(包括主动脉瓣狭窄和主动脉瓣反流)。纳入标准:经胸超声心动图诊断为重度主动脉瓣疾病的患者(重度主动脉瓣狭窄:主动脉瓣平均梯度≥40 mmHg或主动脉瓣面积≤1 cm2;重度主动脉瓣反流:反流容积≥60 mL/搏或反流分数≥50%)[7, 8];接受术前MDCT检查,同一病例如果存在多次符合条件的心脏增强MDCT检查,入组回溯时间为主动脉瓣术前最近一次检查,不重复入组。排除标准:因各种原因未行TAVR手术;TAVR的图像采集由工作经验超过5年的心血管影像技师完成。本研究通过解放军总医院伦理委员会批准。

1.2. CT扫描流程

所有患者均在解放军总医院接受术前心脏增强MDCT检查。扫描设备为西门子第二代双源螺旋CT(Definition Flash,Siemens Healthcare),机架旋转速度为280 ms,探测器准直为2 mm×64 mm×0.6 mm。增强扫描方案选择心电门控螺旋扫描。患者在检查前接受屏气训练,并于扫描前3 min舌下含服硝酸甘油片。扫描开始后采用团注追踪法经肘前静脉预置套管针,由双筒高压注射器以5.0 mL/s的速率注射碘对比剂[37 g(I)/100 mL,碘帕醇注射液,博莱科信谊药业有限公司,上海]。当升主动脉感兴趣区的CT阈值达到预设的100 HU时触发扫描。外周股动脉入路血管评估采用容积增强扫描,通过手动方式扫描触发,扫描范围为升主动脉根部至两侧股动脉近端。

1.3. Anythink和3mensio分析软件测量

在分析过程中应用收缩期末期数据集(由心电图上连续R波之间的周期百分比定义,R-R间期的40%~ 60%)进行三维重建,除非收缩期数据因伪影或其他原因导致不可分析,则采用舒张期数据。Anythink软件基于MDCT重建三维模型的测量过程与3mensio软件相似。根据共识建议[14],重建三维模型后,由操作者人工确定各冠状动脉窦最低点,软件自动将其连接并确定为瓣环平面,并勾画出主动脉瓣环。与3mensio手动绘制的测量方法不同,Anythink采用自动化勾画测量,经有限的人工校正后,自动获得瓣环的最大直径、最小直径、平均直径、面积及周长(图 1)。在纵轴平面显示图中,操作者识别确定左、右冠脉开口,自动计算左、右冠脉开口距瓣环平面的距离。依据瓣环平面和主动脉根部的中心轴,分别定义左室流出道平面(瓣环下4 mm),冠状动脉窦平面(冠状动脉窦横截面积最大处)、窦管交界平面(冠状动脉窦平面以上横截面积最小处)、升主动脉平面(瓣环上40 mm),并测量相关参数,必要时进行人工校正。测量参数包括:左室流出道平面最大直径、最小直径、面积、周长;窦管交界平面最大直径、最小直径;3个冠状动脉窦距对侧结合部的距离;升主动脉平面最大直径、最小直径;瓣环平面与水平面间的夹角。从软件导入图像开始测量计时,记录测量耗时。

1.

1

基于MDCT的Anythink软件操作流程

Operation of Anythink software based on MDCT. A: Three-dimensional volume imaging of the aortic root. B: Simulation of intraoperative angiographic imaging. C: Measurement of horizontal angulation of the aortic annulus. D: MIP images showed the lowest points of the coronary sinus and annulus plane. E, F: Measurement of the distances from anulus plane to the left coronary ostium (E) and right coronary ostium (F).

3mensio和Anythink软件的测量操作由一名经过专业培训的心血管内科医生完成。首次测量完成后,同一名医生再次应用Anythink软件对所有患者参数重新测量,计算测量的组内一致性。随机抽取30例患者图像,由另一名心血管医生应用Anythink软件完成上述参数的测量,计算测量的组间一致性。所有医生对患者临床数据均未知。

1.4. TAVR人工瓣膜型号的选择

TAVR术前人工瓣膜型号的选择需综合考虑多种因素,包括瓣环的大小及形态、钙化结节的大小及位置、外周血管的狭窄程度等,其中最关键的指标是瓣环大小[15-17]。为分析两软件在瓣膜型号选择方面的异同,我们根据Anythink和3mensio软件测量的瓣环平均直径、面积直径、周长直径等参数,应用人工瓣膜尺寸图推测各直径推荐的瓣膜型号。平均直径、周长直径、面积直径的计算公式如下:

平均直径=(瓣环最大直径+最小直径)/2;周长直径=瓣环周长/π;面积直径=2× Inline graphic

现实情况中,人工瓣膜型号的选择主要基于3mensio软件的测量值,以Anythink测量值推荐的瓣膜型号作为观察指标,与3mensio比较分析。此外,研究也包括了Anythink多次测量推荐瓣膜型号的一致性分析。

1.5. 经导管主动脉瓣置换术

术前评估及决策由专业心血管介入团队综合临床表现、影像特征等共同完成。所有TAVR均在介入导管手术室中完成。进行全身麻醉后,经患者两侧股动脉分别置入动脉鞘,由辅入路置入Performa血管内造影导管于无冠窦底部。应用直头导丝跨主动脉瓣后,置入ALⅠ/Ⅱ导管于左心室并置换Lunderquist超硬导丝塑形以建立轨道。在心室快速起搏下(心室率160~200 bpm),应用Numed/TAV8扩张球囊预扩张主动脉瓣,应用主动脉根部造影将人工瓣膜(自膨胀瓣膜)精准定位,在临时起搏器快速起搏下释放瓣膜。回撤释放系统并进行主动脉瓣两侧测压以评估手术效果,应用造影及经食管心动图评估瓣膜位置、功能及主动脉瓣反流情况。术毕采用Proglide血管缝合器缝合两侧股动脉。

1.6. 短期预后评估

评估并记录TAVR手术后30 d内的不良事件,包括:术后心电图示新发心脏传导阻滞(左束支传导阻滞、二度二型传导阻滞或三度传导阻滞);经胸超声心动图示瓣周漏及程度;主动脉瓣环破裂。由于不同的瓣膜类型对患者术后短期预后存在潜在影响,我们仅纳入应用Venus-A瓣膜(Venus Medtech A Valve)的患者(n=57)进行分析。将患者依据术后短期预后分组,对比不同组间Anythink与3mensio依据直径推荐的型号差异,观察和推测依据Anythink测量值选择的瓣膜型号是否会给患者带来潜在获益。

1.7. 统计学分析

采用IBM SPSS statistics 25进行分析。计量资料以均数±标准差表示,计数资料采用n(%)表示。采用配对t检验和Bland-Altman图对Anythink和3mensio数据进行一致性检验,以P < 0.05为差异有统计学意义。采用Pearson检验对Anythink和3mensio测量数据进行相关性分析。瓣膜型号推荐的一致性采用Kappa检验评价,型号选择差异和患者短期预后之间的关系采用柱状图进行展示。

2. 结果

2.1. 基本情况

共纳入67例重度主动脉瓣膜病患者,其中女性40例、男性27例,年龄76.3±7.9岁(表 1)。病例中包括65例重度主动脉瓣狭窄和2名重度主动脉瓣反流的患者。经胸超声心动图检查发现三叶瓣共40例,type1型二叶瓣13例,type0型二叶瓣13例,既往外科主动脉瓣置换术后1例,跨瓣压差为58.6±19.5 mmHg,跨瓣流速为4.7±0.7 m/s。临床风险评价STS评分和EuroScore Ⅱ评分分别为4.71±2.39和5.50±2.38。最终57例患者植入Venus-A瓣膜,7例患者植入VitaFlow瓣膜(Microplot,Shanghai),2例植入Evolute-R瓣膜(Medtronic,America),1例植入Sapien3瓣膜(Edwards Lifesciences,America)。

1.

患者临床和短期预后(30 d内)的特征

Clinical and short-term outcome (within 30 days) of the patients

Patient characteristic Clinical characteristics
STS: Society of thoracic surgeon risk of mortality; EuroSCORE Ⅱ: European system for cardiac operative risk evaluation.
Age (year, Mean±SD) 76.3±7.9
Height (cm, Mean±SD) 165±8
Weight (kg, Mean±SD) 66±12
Gender[n (%)]
  Male 27 (40%)
  Female 40 (60%)
Mean gradient (mmHg, Mean±SD) 58.55±19.44
Maximum velocity (m/s, Mean±SD) 4.70±0.74
STS score(Mean±SD) 4.71±2.39
EuroSCORE Ⅱ(Mean±SD) 5.50±2.38
Paravalvular leakage[n (%)]
  None 26 (38%)
  Mild 29 (43%)
  Moderate 11 (16%)
New-onset conduction block[n (%)] 17 (25%)
Annular rupture[n (%)] 1 (1.5%)

2.2. Anythink和3mensio测量数据一致性分析

Anythink测量左、右冠脉开口高度分别为13.37± 3.35 mm、15.45±2.89 mm;主动脉瓣环平均直径、面积、周长、与水平面的夹角分别为24.0±2.2 mm,450.6± 88.3 mm2,76.5±7.2 mm、53.5°±10.0°;测量平均耗时为4.6 ± 0.6 min。3mensio测量左、右冠脉高度分别为13.19±3.19 mm、15.75±2.93 mm;主动脉瓣环平均直径、面积、周长、与水平面的夹角分别为23.9±2.3 mm,447.5±90.0 mm2,76.1±7.6 mm、51.1°±9.7°;测量平均耗时为4.4±0.7 min(表 2)。

2.

Anythink与3mensio各平面测量值的相关性和差异

Correlations and differences of values measured byAnythink and 3mensio in other planes

Parameter Anythink 3mensio r P
Left ventricular outflow tract (4 mm below annulus)
            Average diameter (mm) 24.8±3.1 24.8±3.5 0.966 0.482
            Area (mm2) 476.0±122.4 471.6±138.5 0.975 0.070
            Perimeter (mm) 79.8±9.7 79.9±12.2 0.884 0.567
Sinotubular junction(mm)
            Minimum diameter 33.5±4.2 29.4±3.9 0.879 0.226
            Maximum. diameter 30.0±3.4 31.2±4.3 0.912 0.249
            Average diameter 31.8±3.7 30.4±4.1 0.975 0.693
Ascending aorta (40 mm above annulus)
            Minimum diameter (mm) 38.4±3.8 36.6±4.7 0.973 0.625
            Maximum. diameter (mm) 40.2±4.5 37.9±4.7 0.981 0.071
            Average diameter (mm) 39.3±4.2 37.2±4.7 0.979 0.261
Tricuspid valve, type1 bicuspid valve (n=54)
            Distance from non-coronary sinus to the contralateral commissure 32.2±3.6 31.0±3.6 0.958 0.100
Coronary sinus (mm)
            Distance from right coronary sinus to the contralateral commissure 31.8±3.6 30.0±3.4 0.884 0.189
            Distance from left coronary sinus to the contralateral commissure 32.4±3.7 30.3±3.5 0.898 0.433
Type0 bicuspid valve (n=13)
            Maximum distance between two coronary sinus 33.5±4.3 36.6±4.2 0.980 0.468
Coronary sinus (mm)
            Distance between two commissures 30.0±3.4 28.0±3.7 0.963 0.064

Anythink和3mensio测量值一致性检验结果显示,两种软件耗时差异无统计学意义(P=0.524)。在左、右冠脉开口高度、主动脉瓣环平均直径、面积、周长、瓣环与水平面的夹角等测量值中,3mensio和Anythink测量结果差异无统计学意义(图 2)。线性相关及BlandAltman图显示两软件基本测量值一致性良好,Anythink测量的瓣环数据呈现更大的趋势,但差异无统计学意义(图 3表 2)。

2.

2

箱线图显示3mensio和Anythink瓣环的测量结果和冠状动脉开口高度的差异

Boxplot graph showing the difference between 3mensio and Anythink in the measurements of the annulus and the distances of the anulus plane to the coronary ostium.

3.

3

Anythink与3mensio瓣环测量结果和冠状动脉开口高度的线性相关图与Bland-Altman图

Linear correlation diagram and Bland-Altman diagram of 3mensio and Anythink measurements of the annulus and the distances of the anulus plane to the coronary ostium. A-F: Linear correlation diagram and Bland-Altman diagram of the average diameter (A), area (B), perimeter (C), distance to the LCO (D), distance to RCO (E) and horizontal angle of annulus. LCO: Left coronary ostium.

2.3. Anythink测量数据的可重复性分析

由同一名医生应用Anythink软件对瓣环参数、左、右冠脉开口高度、主动脉瓣环与水平面的成角等进行重复测量,分析67例患者测量的组内一致性,各测量参数的组内相关系数为0.894~0.992。随机选取30例患者由另一名医生对上述参数进行测量,分析组间一致性,组间相关系数为0.651~0.954(表 3)。

3.

Anythink软件的组内相关系数和组间相关系数

Intra-group and inter-group correlation coefficients ofAnythink software

Parameter Intra-group correlatiot (n=67) Inter-group correlation coefficient (n=30)
ICC 95% CI ICC 95% CI
LCO: Left coronary ostium. RCO: Right coronary ostium.
Annulus Minimum diameter (mm) 0.969 0.950-0.981 0.737 0.658-0.811
Maximum diameter (mm) 0.894 0.833-0.934 0.807 0.629-0.904
Area (mm2) 0.992 0.987-0.995 0.795 0.608-0.898
Perimeter (mm) 0.985 0.975-0.991 0.651 0.379-0.819
Distance to LCO (mm) 0.977 0.963-0.986 0.954 0.887-0.974
Distance to RCO (mm) 0.979 0.967-0.987 0.739 0.516-0.869
Horizontal angle of annulus (°) 0.980 0.968-0.988 0.939 0.874-0.971

2.4. 瓣膜型号选择和短期预后之间的关联

TAVR术后30 d内发生轻度以上瓣周漏共计40例,其中中度以上瓣周漏11例,出现新发传导阻滞患者17例,发生瓣环破裂1例(表 1)。依据Anythink与3mensio测得的平均直径、面积直径、周长直径,进行瓣膜型号的推荐,Kappa检验分析的结果分别为0.886、0.796、0.775。两次Anythink测量平均直径、面积直径、周长直径推荐瓣膜型号的组内Kappa值分别为0.819、0.841、0.795,组间Kappa值分别为0.812、0.812、0.768(表 4)。术后发生中度以上瓣周漏的患者中,依据Anythink测量的瓣环平均直径、面积直径和周长直径选择瓣膜时,分别推荐1例、1例和2例患者选择更大的瓣膜,同时均未推荐患者选择相较3mensio的更小型号的瓣膜。术后出现轻度以上瓣周漏的患者中,依据Anythink测量的瓣环平均直径、面积直径和周长直径选择瓣膜时,分别推荐3例、5例和2例患者选择更大的瓣膜;推荐2例、0例和1例患者选择更小的瓣膜。发生术后新发传导阻滞的患者中,依据Anythink测量的瓣环平均直径、面积直径选取瓣膜时,分别推荐2例、1例患者选择更小的瓣膜;仅在根据周长直径选取瓣膜时,推荐1例患者选择更大的瓣膜(图 4)。

4.

两软件依据不同直径选择瓣膜型号的Kappa检验

Kappa test of recommend valve models by the two software according to different diameters

Kappa value of recommendation 3mensio vs anythink(n=67) Intra-group consistencyof Anythink (n=67) Inter-group consistencyof Anythink (n=30)
Average diameter (mm) 0.886 0.819 0.812
Area diameter (mm) 0.796 0.841 0.812
Perimeter diameter (mm) 0.775 0.795 0.768

4.

4

Anythink与3mensio在短期预后评价中对术后并发症中瓣膜推荐的差异

Difference between Anythink and 3mensio for recommendation of valve models in short- term prognosis assessment in terms of moderate PVL (A), mild PVL (B) and PPI (C). The abscissa is defined as the average diameter, area diameter and perimeter diameter of annulus. Orange indicates that the valve model recommended by Anythink is smaller than 3mensio, while blue indicates the same and green indicates larger. The data on the histogram represents their percentage. PVL: Paravalvular leakage. Avg. diameter: Average diameter. Are. diameter: Diameter calculated by area. Per. diameter: Diameter calculated by perimeter.

3. 讨论

本研究聚焦新型国产软件Anythink,对比分析了其与3mensio在测量主动脉根部参数方面的一致性,结果显示Anythink在TAVR患者瓣环数据、左室流出道数据、窦管交界平面数据、升主动脉数据的术前测量方面与3mensio均具有良好的一致性;同时,应用Anythink进行多次测量结果分析也证实其具有较好的可重复性,可以提供稳定、准确的数据结果;此外,在术后出现瓣周漏患者中,应用Anythink软件有选择更多较大型号瓣膜的推荐倾向,而在术后出现新发传导阻滞的患者中则有选择更多较小型号瓣膜的推荐倾向,提示相较于3mensio,Anythink软件测量在推荐瓣膜选择方面可能对患者预后具有潜在获益。

3mensio软件测量的准确性和稳定性在国际上被广泛认可,然而,价格高昂、测量耗时长、操作复杂等因素限制了其进一步的推广应用,仅在极少数大型三甲医院中有一定配置。随着中国老龄化社会时代的到来,老年主动脉瓣膜病的发病率与日俱增,基层医院作为保障和诊疗老年心血管疾病的前沿阵地,在开展和推广TAVR手术方面首当其冲,而缺少安全有效、高性价比的国产术前CT测量软件成为亟待解决的问题。作为新近研发的国产半自动测量软件的代表,Anythink软件性价比高,操作简便,测量模式半自动化,在TAVR术前测量方面具有一定的潜在应用价值。

本研究中,在主动脉瓣环平均直径、面积、周长、左、右冠脉开口高度的对比分析部分,Anythink与3mensio软件测量值之间未发现统计学差异,通过BlandAltman图分析,两软件测量数据一致性也较好。尽管Anythink部分测量值稍大于3mensio测量值,但这种差异非常小且无统计学意义,且与其他软件间对比研究结果类似[18, 19]。Anythink测量值偏大的原因可能是由于在自动处理环境中,对于部分瓣环大块钙化的病例轮廓识别较模糊,自动勾画上偏大造成。在主动脉根部的左室流出道平面、冠状动脉窦平面、窦管交界平面、升主动脉平面的测量参数对比中,Anythink与3mensio仍具有较好的一致性。可重复性分析方面,Anythink软件在主动脉瓣环参数和冠状动脉开口高度的组内ICC值均大于0.89,表明Anythink测量上存在较好的组内一致性;在组间一致性分析中,除瓣环周长的ICC值为0.651、左冠状动脉开口高度的ICC值为0.737,其余ICC值均大于0.75。实际测量过程中,由于部分病例存在主动脉根部造影剂充盈不佳、钙化晕状伪影影响,测量者对于冠状动脉窦最低点的确定、主动脉瓣环轮廓的识别可能存在一定差异。在本研究中,组间部分参数ICC略小可能是由上述原因造成,但综合来看,Anythink具有与3mensio较高的一致性和自身较好的可重复性,可视为一种理想的主动脉根部参数测量的备选软件。

在本研究的临床结果中,应用3mensio选取的瓣膜型号最终导致了一定比例的中度以上瓣周漏发生(16%)和新发传导阻滞(25%),此瓣周漏发生率[20, 21]和传导阻滞发生率[22]与既往研究结果一致,可能与瓣环的形态、钙化的分布、压力的分布不均相关[23, 24]。在分析两种软件测量差异对瓣膜选择产生的潜在影响方面,我们运用Kappa检验进行分析后发现,尽管最后的结果展现出了高度的一致性(Kappa值均大于0.75),但仍然存在部分差别。为明确这种差别是否存在潜在的正面或负面临床影响,我们将预测人工瓣膜型号差异与患者短期预后之间的情况进行了分析:在出现术后瓣周漏的患者中,相比于3mensio软件,Anythink测量面积直径推荐的瓣膜型号较大。在出现术后新发传导阻滞的患者中,Anythink推荐的瓣膜型号较小。这种结果可能意味着依据Anythink软件测量值选择人工瓣膜型号,可能可减少瓣周漏与传导阻滞的发生率,对短期预后产生潜在的有益影响[4]。然而,由于本研究病例较少且为回顾性研究,实际中手术均以3mensio测量值作为人工瓣膜推荐的“金标准”,这部分研究结论仅仅停留在推测层面,在分析术后并发症的具体关联因素方面,需要进行前瞻性的队列研究来进行病因分析。此外,导致TAVR术后并发症的因素很多,瓣膜型号的不匹配仅仅只是其中之一[25, 26],瓣膜的类型、钙化分布以及植入深度等均会对患者短期预后产生影响[27-30],各种原因对于预后的影响程度大小也需要进一步的前瞻性研究评估。

在本研究中,虽然相较3mensio,Anythink在操作耗时上并未表现出明显优势,但其在保证测量数据相对准确的前提下,操作简便,界面友好,测量过程和结果更易医生理解,在TAVR手术管理团队人才的培训和帮带方面具有积极的意义。除此之外,Anythink可同步集成冠状动脉分析平台和本地数据存储中心,便于TAVR患者术前综合评估和资料整合保存,具有较强的本地化优势,同时软件研发和推广成本较低,可作为备选方案在国内广大基层医院推广,为更多主动脉瓣膜病患者提供健康服务。

综上所述,国产半自动TAVR术前CT分析软件Anythink与3mensio软件在主动脉根部参数测量方面具有较好的一致性与较高的可重复性。经过专业训练的心内科医生可运用Anythink软件来获得相对准确的主动脉根部数据,为TAVR术前瓣膜型号的选择提供指导和参考。

Biographies

刘长福,副主任医师,E-mail: liucf301@126.com

孙泽瑜,医师,在读硕士研究生,E-mail: zysun1106@163.com

Funding Statement

军委后勤保障部保健专项(21BJZ33)

Contributor Information

刘 长福 (Changfu LIU), Email: liucf301@126.com.

孙 泽瑜 (Zeyu SUN), Email: zysun1106@163.com.

单 冬凯 (Dongkai SHAN), Email: shandongkai1234@163.com.

陈 韵岱 (Yundai CHEN), Email: cyundai@vip.163.com.

References

  • 1.Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20. doi: 10.1056/NEJMoa1514616. [Leon MB, Smith CR, Mack MJ, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients[J]. N Engl J Med, 2016, 374(17): 1609-20.] [DOI] [PubMed] [Google Scholar]
  • 2.Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15. doi: 10.1056/NEJMoa1816885. [Popma JJ, Deeb GM, Yakubov SJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients[J]. N Engl J Med, 2019, 380(18): 1706-15.] [DOI] [PubMed] [Google Scholar]
  • 3.Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705. doi: 10.1056/NEJMoa1814052. [Mack MJ, Leon MB, Thourani VH, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients [J]. N Engl J Med, 2019, 380(18): 1695-705.] [DOI] [PubMed] [Google Scholar]
  • 4.Patsalis PC, Kloppe A, Plicht B, et al. Undersizing but overfilling eliminates the gray zones of sizing for transcatheter aortic valve replacement with the balloon-expandable bioprosthesis. IJC Heart Vasc. 2020;30:100593–605. doi: 10.1016/j.ijcha.2020.100593. [Patsalis PC, Kloppe A, Plicht B, et al. Undersizing but overfilling eliminates the gray zones of sizing for transcatheter aortic valve replacement with the balloon-expandable bioprosthesis[J]. IJC Heart Vasc, 2020, 30: 100593-605.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Foldyna B, Jungert C, Luecke C, et al. CT evaluation prior to transapical aortic valve replacement: semi-automatic versus manual image segmentation. Int J Cardiovasc Imaging. 2015;31(6):1233–42. doi: 10.1007/s10554-015-0662-6. [Foldyna B, Jungert C, Luecke C, et al. CT evaluation prior to transapical aortic valve replacement: semi-automatic versus manual image segmentation[J]. Int J Cardiovasc Imaging, 2015, 31(6): 1233-42.] [DOI] [PubMed] [Google Scholar]
  • 6.Auffret V, Puri R, Urena M, et al. Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives. Circulation. 2017;136(11):1049–69. doi: 10.1161/CIRCULATIONAHA.117.028352. [Auffret V, Puri R, Urena M, et al. Conduction disturbances after transcatheter aortic valve replacement: current status and future perspectives[J]. Circulation, 2017, 136(11): 1049-69.] [DOI] [PubMed] [Google Scholar]
  • 7.VahanianA, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632. doi: 10.1093/eurheartj/ehab395. [VahanianA, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease[J]. Eur Heart J, 2022, 43(7): 561-632.] [DOI] [PubMed] [Google Scholar]
  • 8.Writing Committee Members, Otto CM, Nishimura RA, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. JAm Coll Cardiol. 2021;77(4):e25–e34. doi: 10.1016/j.jacc.2020.11.018. [Writing Committee Members, Otto CM, Nishimura RA, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines[J]. JAm Coll Cardiol, 2021, 77(4): e25-37.] [DOI] [PubMed] [Google Scholar]
  • 9.Capilli F, Benndorf M, Soschynski M, et al. Assessment of aortic annulus dimensions for transcatheter aortic valve replacement (TAVR) with high-pitch dual-source CT: comparison of systolic high-pitch vs. Multiphasic data acquisition. Eur J Radiol. 2020;133:109366–75. doi: 10.1016/j.ejrad.2020.109366. [Capilli F, Benndorf M, Soschynski M, et al. Assessment of aortic annulus dimensions for transcatheter aortic valve replacement (TAVR) with high-pitch dual-source CT: comparison of systolic high-pitch vs. Multiphasic data acquisition[J]. Eur J Radiol, 2020, 133: 109366-75.] [DOI] [PubMed] [Google Scholar]
  • 10.Saadi RP, Tagliari AP, Saadi EK, et al. Preoperative TAVR planning: how to do it. J Clin Med. 2022;11(9):2582–9. doi: 10.3390/jcm11092582. [Saadi RP, Tagliari AP, Saadi EK, et al. Preoperative TAVR planning: how to do it[J]. J Clin Med, 2022, 11(9): 2582-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Queirós S, Morais P, Fehske W, et al. Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images. Int J Cardiovasc Imaging. 2019;35(5):881–95. doi: 10.1007/s10554-019-01532-w. [Queirós S, Morais P, Fehske W, et al. Assessment of aortic valve tract dynamics using automatic tracking of 3D transesophageal echocardiographic images[J]. Int J Cardiovasc Imaging, 2019, 35 (5): 881-95.] [DOI] [PubMed] [Google Scholar]
  • 12.Truong QA, Legasto AC, Deaño RC, et al. Performance of dynamic automated CT annular measurements compared to standard manual measurements for transcatheter aortic valve replacement sizing. Radiol Cardiothorac Imaging. 2019;1(3):e180025–33. doi: 10.1148/ryct.2019180025. [Truong QA, Legasto AC, Deaño RC, et al. Performance of dynamic automated CT annular measurements compared to standard manual measurements for transcatheter aortic valve replacement sizing[J]. Radiol Cardiothorac Imaging, 2019, 1(3): e180025-33.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Baeßler B, Mauri V, Bunck AC, et al. Software-automated multidetector computed tomography-based prosthesis-sizing in transcatheter aortic valve replacement: Inter-vendor comparison and relation to patient outcome. Int J Cardiol. 2018;272:267–72. doi: 10.1016/j.ijcard.2018.07.008. [Baeßler B, Mauri V, Bunck AC, et al. Software-automated multidetector computed tomography-based prosthesis-sizing in transcatheter aortic valve replacement: Inter-vendor comparison and relation to patient outcome[J]. Int J Cardiol, 2018, 272: 267-72.] [DOI] [PubMed] [Google Scholar]
  • 14.Achenbach S, Delgado V, Hausleiter J, et al. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR) Cardiovasc Comput Tomogr. 2012;57(6):366–80. doi: 10.1016/j.jcct.2012.11.002. [Achenbach S, Delgado V, Hausleiter J, et al. SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR)[J]. Cardiovasc Comput Tomogr, 2012, 57(6): 366-80.] [DOI] [PubMed] [Google Scholar]
  • 15.Horehledova B, Mihl C, Hendriks BMF, et al. Do CTA measurements of annular diameter, perimeter and area result in different TAVI prosthesis sizes? Int J Cardiovasc Imaging. 2018;34(11):1819–29. doi: 10.1007/s10554-018-1394-1. [Horehledova B, Mihl C, Hendriks BMF, et al. Do CTA measurements of annular diameter, perimeter and area result in different TAVI prosthesis sizes[J]? Int J Cardiovasc Imaging, 2018, 34(11): 1819-29.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Wang Y, Wang M, Song G, et al. Optimal pre-TAVR annulus sizing in patients with bicuspid aortic valve: area-derived perimeter by CT is the best-correlated measure with intraoperative sizing. Eur Radiol. 2019;29(1):259–69. doi: 10.1007/s00330-018-5592-y. [Wang Y, Wang M, Song G, et al. Optimal pre-TAVR annulus sizing in patients with bicuspid aortic valve: area-derived perimeter by CT is the best-correlated measure with intraoperative sizing[J]. Eur Radiol, 2019, 29(1): 259-69.] [DOI] [PubMed] [Google Scholar]
  • 17.Liu JD, Luo XD, Zhou ZP, et al. Annular and supra-annular structure assessments for transcatheter aortic valve replacement in patients with bicuspid aortic Stenosis. Rev Cardiovasc Med. 2021;22(4):1157–66. doi: 10.31083/j.rcm2204124. [Liu JD, Luo XD, Zhou ZP, et al. Annular and supra-annular structure assessments for transcatheter aortic valve replacement in patients with bicuspid aortic Stenosis[J]. Rev Cardiovasc Med, 2021, 22(4): 1157-66.] [DOI] [PubMed] [Google Scholar]
  • 18.Zinsser D, Baumann AB, Winter KS, et al. Semi-automatic CTangiography based evaluation of the aortic annulus in patients prior to TAVR: interchangeability with manual measurements. Int J Cardiovasc Imaging. 2018;34(10):1657–67. doi: 10.1007/s10554-018-1377-2. [Zinsser D, Baumann AB, Winter KS, et al. Semi-automatic CTangiography based evaluation of the aortic annulus in patients prior to TAVR: interchangeability with manual measurements[J]. Int J Cardiovasc Imaging, 2018, 34(10): 1657-67.] [DOI] [PubMed] [Google Scholar]
  • 19.Gao XP, Boccalini S, Kitslaar PH, et al. Quantification of aortic annulus in computed tomography angiography: validation of a fully automatic methodology. Eur J Radiol. 2017;93:1–8. doi: 10.1016/j.ejrad.2017.04.020. [Gao XP, Boccalini S, Kitslaar PH, et al. Quantification of aortic annulus in computed tomography angiography: validation of a fully automatic methodology[J]. Eur J Radiol, 2017, 93: 1-8.] [DOI] [PubMed] [Google Scholar]
  • 20.Fanous EJ, Mukku RB, Dave P, et al. Paravalvular leak assessment: challenges in assessing severity and interventional approaches. Curr Cardiol Rep. 2020;22(12):166–75. doi: 10.1007/s11886-020-01418-7. [Fanous EJ, Mukku RB, Dave P, et al. Paravalvular leak assessment: challenges in assessing severity and interventional approaches[J]. Curr Cardiol Rep, 2020, 22(12): 166-75.] [DOI] [PubMed] [Google Scholar]
  • 21.Ko TY, Kao HL, Chen YC, et al. Temporal change in paravalvular leakage after transcatheter aortic valve replacement with a selfexpanding valve: impact of aortic valve calcification. Acta Cardiol Sin. 2020;36(2):140–7. doi: 10.6515/ACS.202003_36(2).20190709B. [Ko TY, Kao HL, Chen YC, et al. Temporal change in paravalvular leakage after transcatheter aortic valve replacement with a selfexpanding valve: impact of aortic valve calcification[J]. Acta Cardiol Sin, 2020, 36(2): 140-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Faroux L, Chen S, Muntané-Carol G, et al. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis. Eur Heart J. 2020;41(29):2771–81. doi: 10.1093/eurheartj/ehz924. [Faroux L, Chen S, Muntané-Carol G, et al. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis[J]. Eur Heart J, 2020, 41(29): 2771-81.] [DOI] [PubMed] [Google Scholar]
  • 23.Aalaei-Andabili SH, Lee TC, Waheed N, et al. Impact of valve size on prosthesis-patient mismatch and aortic valve gradient after transcatheter versus surgical aortic valve replacement. Innovations: Phila. 2019;14(3):243–50. doi: 10.1177/1556984519838706. [Aalaei-Andabili SH, Lee TC, Waheed N, et al. Impact of valve size on prosthesis-patient mismatch and aortic valve gradient after transcatheter versus surgical aortic valve replacement[J]. Innovations: Phila, 2019, 14(3): 243-50.] [DOI] [PubMed] [Google Scholar]
  • 24.Abu Rmilah AA, Al-Zu'bi H, Haq IU, et al. Predicting permanent pacemaker implantation following transcatheter aortic valve replacement: a contemporary meta-analysis of 981, 168 patients. Heart Rhythm O2. 2022;3(4):385–92. doi: 10.1016/j.hroo.2022.05.001. [Abu Rmilah AA, Al-Zu'bi H, Haq IU, et al. Predicting permanent pacemaker implantation following transcatheter aortic valve replacement: a contemporary meta-analysis of 981, 168 patients[J]. Heart Rhythm O2, 2022, 3(4): 385-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Du F, Zhu Q, Jiang J, et al. Incidence and predictors of permanent pacemaker implantation in patients who underwent transcatheter aortic valve replacement: observation of a Chinese population. Cardiology. 2020;145(1):27–34. doi: 10.1159/000502792. [Du F, Zhu Q, Jiang J, et al. Incidence and predictors of permanent pacemaker implantation in patients who underwent transcatheter aortic valve replacement: observation of a Chinese population[J]. Cardiology, 2020, 145(1): 27-34.] [DOI] [PubMed] [Google Scholar]
  • 26.Maeda K, Kuratani T, Yoshioka D, et al. Predicting patient-prosthesis mismatch by aortic root evaluation before aortic valve replacement. J Thorac Cardiovasc Surg. 2019;158(1):61–9. doi: 10.1016/j.jtcvs.2018.11.103. [Maeda K, Kuratani T, Yoshioka D, et al. Predicting patient-prosthesis mismatch by aortic root evaluation before aortic valve replacement [J]. J Thorac Cardiovasc Surg, 2019, 158(1): 61-9.] [DOI] [PubMed] [Google Scholar]
  • 27.Pollari F, Hitzl W, Vogt F, et al. Aortic valve calcification as a risk factor for major complications and reduced survival after transcatheter replacement. J Cardiovasc Comput Tomogr. 2020;14(4):307–13. doi: 10.1016/j.jcct.2019.12.001. [Pollari F, Hitzl W, Vogt F, et al. Aortic valve calcification as a risk factor for major complications and reduced survival after transcatheter replacement[J]. J Cardiovasc Comput Tomogr, 2020, 14(4): 307-13.] [DOI] [PubMed] [Google Scholar]
  • 28.Kim WK, Liebetrau C, Fischer-Rasokat U, et al. Challenges of recognizing bicuspid aortic valve in elderly patients undergoing TAVR. Int J Cardiovasc Imaging. 2020;36(2):251–6. doi: 10.1007/s10554-019-01704-8. [Kim WK, Liebetrau C, Fischer-Rasokat U, et al. Challenges of recognizing bicuspid aortic valve in elderly patients undergoing TAVR[J]. Int J Cardiovasc Imaging, 2020, 36(2): 251-6.] [DOI] [PubMed] [Google Scholar]
  • 29.Gegenava T, Vollema EM, van Rosendael A, et al. Changes in left ventricular global longitudinal strain after transcatheter aortic valve implantation according to calcification burden of the thoracic aorta. JAm Soc Echocardiogr. 2019;32(9):1058–66. doi: 10.1016/j.echo.2019.05.011. [Gegenava T, Vollema EM, van Rosendael A, et al. Changes in left ventricular global longitudinal strain after transcatheter aortic valve implantation according to calcification burden of the thoracic aorta [J]. JAm Soc Echocardiogr, 2019, 32(9): 1058-66.] [DOI] [PubMed] [Google Scholar]
  • 30.Castro-Mejía AF, Amat-Santos I, Ortega-Armas ME, et al. Development of atrioventricular and intraventricular conduction disturbances in patients undergoing transcatheter aortic valve replacement with new generation self-expanding valves: a real world multicenter analysis. Int J Cardiol. 2022;362:128–36. doi: 10.1016/j.ijcard.2022.05.014. [Castro-Mejía AF, Amat-Santos I, Ortega-Armas ME, et al. Development of atrioventricular and intraventricular conduction disturbances in patients undergoing transcatheter aortic valve replacement with new generation self-expanding valves: a real world multicenter analysis[J]. Int J Cardiol, 2022, 362: 128-36.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES