Highlights
-
•
A reporter is a tool for the detection and quantification of a molecule of interest.
-
•
The main usage in Leishmania studies is for the subcellular localization of proteins.
-
•
Other usages are drug screening, gene expression, and disease progression studies.
-
•
GFP and its derivatives are the most popular used reporters in Leishmania studies.
-
•
Reporters may interfere with the native expression of the molecule.
Keywords: Enzymatic reporter, Fluorescent reporter, Epitope tag, Gene expression, Protein localization, Neglected tropical diseases
Abstract
Protozoan parasites of the genus Leishmania are responsible for leishmaniases, one of the most important anthropozoonotic diseases affecting millions of people worldwide. To date, there are no approved vaccines against leishmaniases for humans. At present, available treatment options lack specificity, which may lead to drug resistance and often cause adverse effects. Genomic analysis of Leishmania spp. revealed that most of the annotated genes encode hypothetical proteins, yet the functions of those proteins are still unknown. Characterization of these proteins is, hence, of utmost importance for the discovery of new therapeutic targets against leishmaniases. Reporter gene systems, or reporters, are powerful tools that enable the detection and measurement of targeted gene expression when introduced to a biological system. Over the years, numerous expression systems containing various reporters have been employed in characterizing several novel genes essential for parasite development. Such systems can be used to predict the subcellular localization of targeted proteins, screen antileishmanial drugs, and monitor the progression of infection within the vector and vertebrate hosts, among other uses. Therefore, it is critical to comprehend the available reporter gene expression systems to choose the most suitable for each study.
Graphical abstract
1. Introduction
1.1. Leishmania
Protozoan parasites of the genus Leishmania are causative agents of one of the most important vector-borne neglected tropical diseases known as leishmaniases. There are over 20 Leishmania species and 90 sandfly species involved in both zoonotic and anthroponotic transmissions (WHO, 2022). Leishmaniases are endemic in 98 countries, affecting more than 350 million people around the globe (Alvar et al., 2012; Burza et al., 2018). These diseases present a broad spectrum of clinical manifestations, ranging from self-healing cutaneous and mucocutaneous lesions to potentially fatal visceral forms (Hong et al., 2020).
The life cycle of Leishmania parasites alternates between two main distinct morphological forms within two different hosts, the obligate intracellular amastigote form in the mammalian host and the motile promastigote form in the invertebrate host. In brief, a phlebotomine sandfly acquires macrophages infected with Leishmania amastigotes during a blood meal. The amastigotes differentiate into procyclic promastigotes in the midgut of the sandfly, which then differentiate into infective metacyclic promastigotes. In the next blood meal, an infected sandfly regurgitates metacyclic promastigotes into the tegument of the mammalian host. The parasites are then internalized by various cell types, mainly by macrophages, where they differentiate into amastigotes, completing the life cycle of the parasites (Gossage et al., 2003; Teixeira et al., 2013).
During its life cycle, parasites are exposed to several stressors including acidic pH, increased temperature, and changes in nutrient availability, which may affect both mRNA and protein expression levels (Zilberstein, 2021). In particular, the expression of proteins involved in stress response is crucial for the parasites to overcome these environmental changes and for the regulation of parasite differentiation (Cloutier et al., 2012). Furthermore, the regulation of mRNA levels was found to have a pivotal role at the beginning of the differentiation process, whereas translation and post-translational regulations seem to be more important in later stages (Lahav et al., 2011).
In most eukaryotes, gene expression is controlled at the transcription level by cis-acting promoters and trans-acting transcription factors. Nonetheless, Leishmania lacks the regulation of transcription, so as the canonical core promoter elements and transcription factors. Instead, the parasites’ protein-coding genes are arranged and transcribed into long polycistronic transcription units (PTUs) of functionally unrelated genes (Clayton, 2002). In Leishmania, gene transcription is initiated by RNA polymerase II and the maturation of mRNA occurs by coupled trans-splicing and polyadenylation (Ullu et al., 1993; Mair et al., 2000; Liang et al., 2003). In the absence of transcriptional control, Leishmania regulates its gene expression by post-transcriptional and post-translational modifications, with the involvement of RNA-binding proteins which regulate splicing, mRNA transport, and modulation of mRNA translation and decay (Clayton, 2019).
1.2. Reporter gene expression system
A reporter gene expression system, or reporter, encodes a protein or a peptide tag that can be distinguished and measured readily over a host cell background (Alam & Cook, 1990). When reporters are introduced into a host cell, they provide easily measurable signals upon expression (Wood, 1995). Depending on the nature of the experiment and adaptability of the assay to the appropriate detection tools, a reporter system should 1) be absent from the host cell, 2) be easily distinguishable from the endogenous cell background, 3) not affect the physiology of the host cell, and 4) the detection and quantification should be ideally effortless, sensitive, and cost-effective.
Reporters can either be detected indirectly or directly. In general, indirect methods involve intermediate detection steps, which could be advantageous in many cases if such steps result in an increased detection sensitivity. However, indirect methods are usually slower and less reproducible when compared to direct methods, which are faster and more robust.
A required step for implementing reporters in any living system is to introduce exogenous genetic materials into the targeted cells by either transient or stable DNA transfection. Stable transfection refers to a DNA construct that is integrated into the genome of the host cell and does not require the continuous application of drug pressure for maintenance. Transient transfection is referred to as an extrachromosomal circular DNA, or episome, that is maintained at a high copy number in the presence of drug pressure but may be lost in the absence of the drug (Kapler et al., 1990; Wilson & Patient, 1991; Joshi et al., 1995). Nevertheless, there are some studies showing persistent episomal expression in the absence of drug pressure for months (Kelly et al., 1992; Singh et al., 2009; Sharma et al., 2019).
In the past decades, numerous genetic tools including enzymatic, fluorescent, and epitope-based systems have been used to study Leishmania (Fig. 1) (Duncan et al., 2017). Such advancements enabled the investigation of targeted gene expression and function, as well as the subcellular localization of the encoded protein of interest using various tags. However, the results obtained from manipulating heterologous reporter gene must be carefully analyzed since the introduction of exogenous sequences may interfere with the endogenous sequences, which then could result in misleading observations and conclusions (Zhang et al., 2003; Folgueira & Requena, 2007; Kovtun et al., 2010; Goldman-Pinkovich et al., 2016; Espada et al., 2021).
Fig. 1.
Timeline of the application of reporters in Leishmania. Enzymatic systems (annotated in red) include chloramphenicol acetyltransferase (CAT), β-galactosidase (β-gal), luciferase (LUC), β-lactamase (β-lac), and haloalkane dehalogenase (Halo). Fluorescent systems (annotated in green) include green fluorescent protein (GFP), yellow fluorescent protein (YFP), Discosoma red fluorescent protein (DsRed), mCherry, infrared fluorescent protein (iRFP), and mNeonGreen (mNG). Epitope-based systems (annotated in purple) include hemagglutinin-tag (HA-tag), biotin-tag, and FLAG-tag.
In this review, we grouped reporters into enzymatic, fluorescent, and epitope-based systems to discuss the application of each reporter in Leishmania studies (Fig. 2), as well as highlight their advantages and disadvantages (Table 1). Thereupon, we hope to assist future studies in choosing the most suitable reporters for each intended objective.
Fig. 2.
Schematic representation of enzymatic, fluorescent, and epitope-based reporter systems applied in Leishmania studies. Enzymatic reporters (red) involve enzyme-dependent reactions. Fluorescent reporters (green) exhibit fluorescence when exposed to light sources. Epitope-based reporters (purple) are composed of short amino acid sequences.
Table 1.
Advantages and limitations of various reporter systems used in Leishmania studies.
| Reporter system | Vector | Species Ref | Advantage | Limitation |
| CAT | pALT1–1, pSP65CATA, pX-CAT70 pLaΔnCAT, pLarΔnCAT, pTEX-cat |
L. amazonensis1, L. braziliensis2 L. donovani3; 4 , L. enriettii2 L. infantum5, L. major2, L. mexicana3 |
Relatively efficient and sensitive. Can be fused to other proteins and retain the activity. |
Time consuming. May influence regulatory mechanisms of genes. May require a harsh cell lysis step. May limit imaging contrast. Some systems present a short half-life. May not be possible for repeated measurements. |
| β-lac | pIR1SAT-β-LAC | L. amazonensis6, L. donovani7 L. major6 |
||
| β-gal | pSSU-int:β-gal, pX-β-gal, p6.5-β-gal pLEXSY-Hyg2-lacZ |
L. amazonensis8; 9; 10, L. infantum10 L. major8; 11; 12, L. mexicana12; 13 |
||
| LUC | pSPYNEOαLUC pSPαLUC, pLucLink 2.0-Luc, 4pKSNeo-Luc8, pF4x1.HYG, pX63NEO-3Luc, pGL-αNEOαLUC, pGM-αNEOαLUC, pIR1SAT-LUC, YNEOαLUC, pCRm-Luc-DRG, pGUH1, pFHLTG, pSPαLUC, pLEXSY-PAC-PpyRE9h, pSSU-NanoLuc, pSSU-NanoLuc-PEST, pSSU-PRE9, pSSU-RedLuc, pSSU-Luc2, pPLOTv1nanoLuc | L. amazonensis14; 15, L. braziliensis16 L. donovani17; 18; 19; 20; 21; 22; 23; 24 L. infantum25; 26; 27; 28, L. major19, L. mexicana29 |
||
| HaloTag | pPLOTv1-Halo-tag, pLPOT-Halo-tag | L. mexicana29; 30 | ||
| GFP/YFP | pXG-GFP+, pSSU-int: eGFP, pXGFP5, p6.5-eGFP, pPLOTv1, pIR1PhleoGFP+, pLEXSY-EGFP, pNUS-H1-GFP, pRP-GFP pLENTv1-eGFP, pLAC-eGFP, pALTNEO/ANT, pLENTv2-eYFP, pX-GFP-glmS |
L. amazonensis9; 17; 31; 32; 33 L. braziliensis34; 35, L. donovani36; 37; 38 L. infantum39, L. major12; 36; 39 L. mexicana12; 34, L. tarentolae39; 40; 41 |
Low toxicity. Photostability. Relatively easy imaging. No requirement of substrate, permeabilization, and fixation of cells. Direct detection. | May lose fluorescence during fixation. May affect protein expression, folding, functionality, and/or subcellular targeting due to size of the tag and/or tagging site. |
| mNG | pLPOT, pPLOTv1 | L. braziliensis42, L. mexicana29; 42; 52 | ||
| DsRed | pKSNEO-DsRed, pLEXSY-DsRed, pIR1SAT-DsRed2, pLAC-DsRed, pF4X1.HYG-DsRed2 |
L. amazonensis17; 43, L. donovani44 L. major45; 46, L. tarentolae40 |
||
| mCherry | pIR1SAT-mCherry, pLEXSY-mCherry, pXG-mCherry, pLEXSY-CHR, pFL-mCherry, pLPOT-(mCh/puro), pLAC-mCherry, pPLOT- mCherry, pX-mCherry-glmS |
L. donovani47, L. infantum48; 49 L. major47; 50; 51, L. mexicana29 L. tarentolae40; 41 |
||
| iRFP | pLEXSY-IFP1.4-HYG, pLEXSY-iRFP-HYG | L. amazonensis52, L. infantum53 | ||
| HA-tag | pX63, pLEXSY, PGPAHA, pKSNEO, pXG | L. donovani54; 55; 56; 57, L. mexicana58; 59, L. tarentolae60 |
Less interference with tagged protein due to smaller size. Commercially available antibodies for detection. | May affect protein expression and/or subcellular targeting. May display cross-reactivity of antibodies. |
| FLAG-tag | pXGSAT, pXGHyg, pSSU-int | L. amazonensis61; 62, L. donovani63 | ||
| Biotin tags | pPLOTv1-BirA*, pHyg, pTOR, pX72-Hyg | L. mexicana29; 64; 65 |
Enzymatic systems: CAT, chloramphenicol acetyltransferase; β-lac, β-lactamase; β-gal, β-galactosidase; LUC, luciferase; Halo, haloalkane dehalogenase. Fluorescent systems: GFP, green fluorescent protein; YFP, yellow fluorescent protein; mNG, neon green; DsRed, Discosoma red Fluorescent protein; mCherry; IFP, infrared fluorescent proteins. Epitope-based systems: HA-tag, Influenza hemagglutinin; FLAG-tag; Biotin tag. 1Uliana et al., 1996; 2Laban & Wirth, 1989; 3Kelly et al., 1992; 4Kelly et al., 1993; 5Folgueira & Requena, 2007; 6Buckner & Wilson, 2005; 7Mandal et al., 2009; 8LeBowitz et al., 1990; 9Okuno et al., 2003; 10 da Silva Santos et al., 2019; 11LeBowitz et al., 1991; 12Misslitz et al., 2000; 13López et al., 1993; 14Agostino et al., 2020; 15Rocha et al., 2013; 16Coelho et al., 2016; 17Wu et al., 2000; 18Ashutosh et al., 2005; 19Ravinder et al., 2012; 20Luque-Ortega et al., 2001; 21Roy et al., 2000; 22Soysa et al., 2014; 23Yan et al., 2002; 24Domínguez-Asenjo et al., 2021; 25Sereno et al., 2001; 26 Ramamoorthy et al., 1996; 27Michel et al., 2011; 28Álvarez-Velilla et al., 2019; 29Beneke et al., 2017; 30Wang et al., 2020; 31Tetaud et al., 2002; 32Mehta et al., 2008; 33Chan et al., 2003; 34Bastos et al., 2017; 35Jara et al., 2019; 36Ha et al., 1996; 37Guevara et al., 2001; 38Soysa et al., 2015; 39Bolhassani et al., 2011; 40Kushnir et al., 2011; 41Turra et al., 2021; 42Espada et al., 2021; 43Lecoeur et al., 2010; 44Jaiswal et al., 2016; 45Kimblin et al., 2008; 46Ng et al., 2008; 47Vacchina and Morales, 2014; 48Thalhofer et al., 2011; 49Zorgi et al., 2020; 50Calvo-Álvarez et al., 2012; 51Vacas et al., 2017; 52Oliveira et al., 2016; 53Calvo-Álvarez et al., 2015; 54Descoteaux et al., 1995; 55Selvapandiyan et al., 2001; 56Shakarian et al., 2010; 57Bea et al., 2020; 58Gomes et al., 2010; 59Ishemgulova et al., 2017; 60Légaré et al., 2001; 61Huynh et al., 2012; 62Laranjeira-Silva et al., 2018; 63Dan-Goor et al., 2013; 64Detke, 2007; 65Kelly et al., 2020.
2. Enzymatic systems
Over the years, enzymatic systems have been widely used due to their relatively high sensitivity and lower cost compared to other systems (Table 1) (Pardy, 1993; Jiang et al., 2008; Guo et al., 2019). In Leishmania, enzymatic reporters have contributed to a better understanding of the gene expression and physiology of the parasite (Uliana et al., 1996). Besides, these systems have been used as a tool for parasite tracking and drug screening (Buckner & Wilson, 2005; Reimão et al., 2013; Agostino et al., 2020; Domínguez-Asenjo et al., 2021).
Nonetheless, the application of enzymatic systems presents some disadvantages. Disadvantages include the requirement of time-consuming assays, as some detection methods may require specific lysis steps, the potential influence on regulatory mechanisms of a target gene, and the single analysis limitation since repeated measurement of the enzymatic activities may not be possible (Table 1) (Dube et al., 2009).
2.1. Chloramphenicol acetyltransferase
Chloramphenicol acetyltransferase (CAT) is an enzyme that confers resistance against the antibiotic chloramphenicol (Miyamura, 1964). CAT catalyzes the acetyl-CoA-dependent acetylation of chloramphenicol resulting in chloramphenicol 3-acetate (AcCAM), which has no antibiotic activity (Shaw, 1967). Labeled CAT substrate or product can be detected by radioactive (Gorman et al., 1982) or fluorescent (Young et al., 1991) techniques. As an alternative, anti-CAT antibodies can be used for CAT detection by enzyme-linked immunosorbent assay (ELISA) (Smale, 2010).
The use of the CAT system in Leishmania was first reported in 1989 by Laban and Wirth (Laban & Wirth, 1989) (Fig. 1). The authors constructed a hybrid plasmid containing the bacterial cat gene and an intergenic region of the α-tubulin gene cluster containing polyadenylation and splice acceptor sites. After the transfection of L. enriettii, L. braziliensis, and L. major with this plasmid, CAT activity was detected by Thin Layer Chromatography (TLC) using radiolabeled chloramphenicol (Laban & Wirth, 1989). Subsequently, CAT was used in studies looking for DNA sequences involved in L. enriettii trans-splicing (Curotto de Lafaille et al., 1992) and metabolic studies for functional analysis of gene products involved in infection virulence and drug resistance of the parasite (Kelly et al., 1992; Kelly et al., 1993). CAT was also utilized in the characterization of the promoter region of the ribosomal RNA (rRNA) genes in L. amazonensis where they produced the reporters from an RNA polymerase I transcription (Uliana et al., 1996).
One of the main advantages of using CAT in Leishmania is that no ortholog of CAT is found in eukaryotes. However, detection and quantification of the CAT activity require laborious procedures. Besides, CAT was found to be less efficient than luciferase, another commonly used reporter, when used for studying weak eukaryotic gene promoters (Williams et al., 1989). Along with the previous observations, the presence of CAT sequences may also interfere with regulatory mechanisms associated to expression of Leishmania genes (Folgueira & Requena, 2007).
2.1.1. β-lactamase
β-lactamase (β-lac) is a member of a large and structurally diverse family of enzymes that produce chromogens from the hydrolyzes of beta-lactam antibiotics, such as penicillin and cephalosporin (Ambler, 1980; Abraham & Chain, 1988) among other substrates (Lebedev et al., 2018). These chromogens can be detected by flow cytometry, fluorescence microscopy, and colorimetric assays (Zlokarnik, 2000; Knapp et al., 2003).
Although β-lac is not the most utilized among the available enzymatic reporters in Leishmania studies, it has been used in several drug screening analyses (Buckner & Wilson, 2005; Mandal et al., 2009) revealing the potential of β-lac for high throughput screening of antiparasitic drugs.
One of the main advantages of β-lac is its relatively sensitive detection, as some assays can detect as few as 50 molecules of chromogen within a cell (Zlokarnik et al., 1998). Also, there is no ortholog of β-lac in eukaryotes and does not appear to be cytotoxic when overexpressed in cells (Gao et al., 2003). Nevertheless, just like other enzyme-based reporters, β-lac involves a laborious detection process (Dube et al., 2009).
2.1.2. β-galactosidase
β-galactosidase (β-gal) is a family of enzymes that catalyze the hydrolysis of β-galactosides to monosaccharides. Among the β-gal products, some are chromogens, which can be directly detected by flow cytometer, spectrophotometer, and fluorescent assays (Rotman et al., 1963; James et al., 1996; Knapp et al., 2003).
The use of the β-gal system in Leishmania was first reported in 1990 by LeBowitz and colleagues (Fig. 1). The authors inserted β-gal into a Leishmania expression vector where they observed a better transient transfection efficiency and higher detection sensitivity than CAT (LeBowitz et al., 1990). The same group expressed β-gal in L. mexicana to evaluate the host immune response to parasite infection (López et al., 1993). β-gal was also utilized for examining the effects of 3′-untranslated regions (3′-UTRs) on the expression of genes encoding three classes of major surface protease (gp63) of L. chagasi (Ramamoorthy et al., 1995). Later, another group of researchers generated a plasmid containing the intergenic region of the L. mexicana cysteine proteinase B gene, encompassing the processing signals required for high expression in the amastigote stage, to promote β-gal expression at this life cycle stage (Misslitz et al., 2000). Leishmania expressing β-gal have also been used in several studies as an alternative model of in vitro drug screening analyses (Okuno et al., 2003; da Silva Santos et al., 2019).
Advantages of β-gal include its relatively low cost, easy detection and user safety because it does not require radioactive detection methods or laborious preparation steps. Moreover, β-gal activity can be quantified using commercially available histochemical stains in fixed cells (Nolan et al., 1988; LeBowitz et al., 1991). It can also be used in monitoring biological events in live mammalian cells (Campbell, 2004). However, the limitation of β-gal include its large size (116 kDa per monomer) and endogenous expression in some mammalian cell lines, such as macrophages (Campbell, 2004).
2.1.3. Luciferase
Luciferase (LUC) is an oxidative enzyme that transforms chemical energy in bioluminescence. It was discovered for the first time in Pyrophorus noctilucus, a species of click beetle (Dubois, 1886). Later, LUC activity also loomed in other organisms such as Renilla (Rluc) and firefly (Fluc) (Bhaumik & Gambhir, 2002). LUC oxidizes luciferin in an ATP-dependent reaction and generates bioluminescent signals that can be detected by using an illuminometer, microscope, scintillation counter, or cytometer (de Wet et al., 1987). Over the years, LUC has been modified by codon optimization and mutagenesis to express a brighter variant for bioluminescence microscopy (Branchini et al., 2010; Ogoh et al., 2020).
LUC is mainly used in Leishmania studies to measure parasite burden and in drug screening analyses (Roy et al., 2000; Sereno et al., 2001; Ashutosh et al., 2005; Michel et al., 2011; Ravinder et al., 2012; Mendes Costa et al., 2019), including studies on persistent visceral infections caused by L. donovani and L. infantum (Álvarez-Velilla et al., 2019; Domínguez-Asenjo et al., 2021). Besides, it was also used to demonstrate the role of the 3′UTR of Leishmania amastin in stage-specific gene expression (Wu et al., 2000).
Advances in the LUC system led to the development of a dual-reporter system, Fluc/Rluc. This dual system allowed the evaluation of gene expression of post-transcriptional regulation in response to purine starvation in L. donovani and other kinetoplastids (Soysa et al., 2014). Furthermore, another study compared three modified LUCs, RedLuc (RL), NanoLuc (NL), and NanoLuc-PEST (NLP), demonstrating their suitability for evaluating cutaneous leishmaniasis progression in animal models (Agostino et al., 2020).
One of the main advantages of the LUC is that it allows parasite quantification in living hosts, which reduces the use of animals through in vivo imaging system (IVIS) (Thalhofer et al., 2010). On the contrary, LUC requires the presence of cofactors such as ATP, metal ions, as well as chemical substrates for the enzymatic reaction, which could produce background signals (Neefjes et al., 2021).
2.1.4. Haloalkane dehalogenase
HaloTag is an enzyme that derives from a bacterial hydrolase, haloalkane dehalogenase (Los & Wood, 2007). HaloTag covalently binds to a variety of synthetic ligands that comprise a chloroalkane linker attached to fluorescent dyes, affinity handles, or solid surfaces. The covalent bond between the tag and the chloroalkane linker is irreversible, highly specific, and forms rapidly under physiological conditions (Los & Wood, 2007). Proteins of interest fused to HaloTag can be purified or detected by fluorescence microscope or western blot, or other detection methods depending on the chosen ligand and experimental approach (Los et al., 2008; England et al., 2015).
Despite its infrequent use in Leishmania studies, HaloTag was included as an option for tagging the gene of interest using the T7 RNA polymerase-dependent CRISPR-Cas9 toolkit system (Beneke et al., 2017). Interestingly, HaloTag was the only attainable choice among other fluorophores for tagging SPEF1 in L. mexicana FAZ5 knockout line for flagellum movement studies (Wang et al., 2020).
The main advantage of HaloTag is that the ligand can be chosen among endless options according to the experimental approach and available materials. When fluorescent molecules are used as ligands, the fluorophores can be rapidly interchanged among various dyes, enabling a temporal analysis (Los & Wood, 2007). Nonetheless, it is relatively high cost and due to its newness, there is still limited research into its potential applications (England et al., 2015).
2.2. Fluorescent systems
The discovery and development of fluorescent proteins have revolutionized the field of cellular and molecular biology as they enable direct visualization of tagged proteins and quantification of gene and/or protein expression levels. Inevitably, three scientists who pioneered GFP, Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien, were awarded the 2008 Nobel Prize in Chemistry (Shimomura et al., 1962; Chalfie et al., 1994; Heim et al., 1994; Nobelstiftelsen, 2008). Numerous studies over the last decade have demonstrated the application of genetically encoded fluorescent proteins in Leishmania studies. These reporters can be directly detected by fluorescence microscopy, flow cytometry, or spectrofluorometry.
Fluorescent proteins present several advantages such as low toxicity to the study model and allows direct detection without the need for substrates (Chalfie et al., 1994) (Table 1). On the other hand, several limitations include the potential loss of fluorescence during the fixation process and interference with tagged-protein expression, folding, functionality, and/or subcellular targeting (Chalfie et al., 1994; Palmer & Freeman, 2004; Swenson et al., 2007) (Table 1). In regards to the functional interference, in locus reinsertion of a fluorescent protein-tagged PF16 in the L. braziliensis PF16 knockout line showed only partial recovery of wild-type flagellar motility phenotype (Espada et al., 2021). Likewise, regarding the subcellular targeting interference, the amino acid permease 3 (aap3) was located on the surface membrane of L. donovani promastigotes by tagging aap3 with fluorescent proteins at first (Shaked-Mishan et al., 2006). Ten years later, using specific anti-aap3 antibodies, the same group uncovered that aap3 was not only found on the surface of promastigotes but also on glycosomal membranes (Goldman-Pinkovich et al., 2016).
Besides, there have been other concerns regarding the use of fluorescent proteins in protein expression studies. Such as, depending on which terminal the fluorescent protein tag is fused to, it could also affect the tagged protein expression, folding and/or subcellular targeting (de Marco, 2004; Palmer & Freeman, 2004; Kovtun et al., 2010; Tanz et al., 2013).
2.2.1. Green fluorescent proteins
GFP is a green fluorescent protein of 239 amino acids with a molecular weight of ∼27 kDa. GFP is unarguably the most widely used fluorescent protein and it was first isolated from the jellyfish Aequorea victoria (Shimomura et al., 1962). An enhanced brighter version of GFP (EGFP) was engineered to improve detection sensitivity (Heim et al., 1995; Cormack et al., 1996). The use of GFP in Leishmania was first reported in 1996 by Ha and his colleagues (Ha et al., 1996) (Fig. 1).
One of the most frequent applications of this system in Leishmania is for protein subcellular localization. For instance, GFP was used for localization of arginase (Roberts et al., 2004; da Silva et al., 2008), ABC transporter PRP1 (Coelho et al., 2006), heme transporters LHR1 and LFLVCRb (Huynh et al., 2012; Cabello-Donayre et al., 2020), iron transporters LIT1 and LIR1 (Huynh et al., 2006; Laranjeira-Silva et al., 2018), myosin (Katta et al., 2009), phosphatidylserine transporter LABCG2 (Campos-Salinas et al., 2013), nucleoside triphosphate diphosphohydrolase (Sansom et al., 2014), choline ethanolamine phosphotransferase (Moitra et al., 2021) kinesin LmxKIN29 (Al Kufi et al., 2022), and more.
Expression vectors encoding GFP have been used in various in vitro and in vivo studies (Chen et al., 2000; Misslitz et al., 2000; Guevara et al., 2001; Mehta et al., 2008; Bolhassani et al., 2011; Costa et al., 2011; Pulido et al., 2012; Soysa et al., 2015; Bastos et al., 2017; Alexandre et al., 2020) including drug screening analyses (Kamau et al., 2001; Varela et al., 2009), characterization of ubiquitin domains (Bajaj et al., 2020), and tracking of genetic exchange among parasites (Telittchenko & Descoteaux, 2020). Apart from the direct microscope visualization for parasite infectivity quantification, GFP was also integrated into the 18S ribosomal RNA (rDNA) locus to track parasite quiescence, as a biosensor of the parasites’ proliferative stage (Jara et al., 2019).
Over the years, advancements in genetic engineering enabled the development of various GFP-derived fluorescent proteins covering much of the visible light spectrum (Ormö et al., 1996; Sawano & Miyawaki, 2000; Ai et al., 2007; Ai et al., 2008). For instance, YFP is a GFP-derived yellow fluorescent protein derived from GFP by mutagenesis (Ormö et al., 1996), but it is not the most popular choice mainly due to its sensitivity to pH and photobleaching (Nagai et al., 2002). Regardless, YFP was used to determine the localization of L. amazonensis adenine nucleotide translocator (Detke & Elsabrouty, 2008) and it was indicated as an alternative option in another method for tagging proteins of interest in trypanosomatids (Dean et al., 2015). mNeonGreen (mNG) is a green/yellow fluorescent protein of 237 amino acids with a molecular weight of ∼26.6 kDa, derived from Branchiostoma lanceolatum (Shaner et al., 2013). mNG was shown to exhibit greater photostability and brightness than GFP in Caenorhabditis elegans in vivo studies, even when the standard GFP microscope filter was used (Hostettler et al., 2017). Because of these advantages, mNG has become a popular choice in studies of genome editing using the T7 RNA polymerase-dependent CRISPR-Cas9 toolkit system (Beneke et al., 2017; Beneke et al., 2019; Halliday et al., 2019; Halliday et al., 2020; Wang et al., 2020; Baker et al., 2021).
2.2.2. Red fluorescent proteins
DsRed is a GFP-homologous red fluorescent protein derived from Discosoma sp. (Matz et al., 1999). This reporter has been used in vivo infection studies with L. major (Kimblin et al., 2008) and L. amazonensis (Lecoeur et al., 2010) and in vitro studies with L. donovani (Jaiswal et al., 2016). However, DsRed presents a slower chromophore maturation rate then other fluorescent proteins including GFP, which led to the engineering of several DsRed variants to accelerate the maturation process (Bevis & Glick, 2002; Shaner et al., 2005). mCherry is a red fluorescent protein derived from DsRed via directed evolution (Shaner et al., 2004). Compared to DsRed, mCherry exhibits an improved maturation rate, resistance to pH and photobleaching, and higher photostability (Shaner et al., 2005). Nevertheless, it is less bright than EGFP in fixed tissues (Falcy et al., 2020; Shaner et al., 2005). In Leishmania, there have been several studies using mCherry to monitor the course of infection as this reporter is suitable for intravital imaging and enables deeper tissue penetration than GFP (Calvo-Álvarez et al., 2012; Corman et al., 2019). mCherry was also used to evaluate the amastin expression in L. infantum in a stage-specific manner (Zorgi et al., 2020). Besides, mCherry is one of the possible tag options which can be used in the T7 RNA polymerase-dependent CRISPR-Cas9 toolkit system (Beneke et al., 2017), and the glmS ribozyme-based knock-down system of L. tarentolae (Turra et al., 2021).
Infrared fluorescent protein (iRFP) was engineered from bacterial phytochrome photoreceptors (Shu et al., 2009; Filonov et al., 2011) and enables deep tissue penetration for in vivo imaging. Moreover, the fluorescent emission is close to or within the near-infrared regions, fendering off any background interference derived from other organs or tissues (Shu et al., 2009; Oliveira et al., 2016). Hence why iRFP was the reporter of choice in a study to determine parasite load in L. amazonensis infection by in vivo non-invasive imaging methods (Calvo-Álvarez et al., 2015).
2.3. Epitope tags
Epitope tags comprise short amino acid sequences that can be used as reporters for the detection and/or purification of proteins of interest. In most cases, epitope tags are recognized by antibodies, which allow detection and/or purification of the tagged protein via immunofluorescence, immunoblotting, or immunoprecipitation assays. Among various epitopes, FLAG and HA are the most used in Leishmania studies (Einhauer & Jungbauer, 2001; Phan et al., 2009). It is worth mentioning that in Leishmania studies, histidine tail tags (His-tag) were only used for expression of parasites’ recombinant proteins in bacteria (Oliveira et al., 2011; Kaur et al., 2012; Abass et al., 2013; Pereira et al., 2020).
Epitope tags have emerged as alternatives to the larger tags such as fluorescent proteins to reduce potential interference of the tag with the protein of interest expression, localization, and functionality (Lotze et al., 2016). Nonetheless, they still could affect protein expression and function. In parallel, epitope detection often relies on antibodies that may display cross-reactivity (Table 1).
2.3.1. HA-tag
HA-tag is a 9-amino acid long peptide (YPYDVPDYA) sequence derived from the human influenza hemagglutinin molecule. Widely commercialized anti-HA antibodies are commonly used for peptide detection. However, it was shown that HA-tag could affect the stability and activity of the tagged protein (Saiz-Baggetto et al., 2017).
In Leishmania, HA-tag has been used to determine the subcellular localization of several molecules, such as lipophosphoglycan 2 (Descoteaux et al., 1995), ABC transporter PGPA (Légaré et al., 2001), centrin (Selvapandiyan et al., 2001), and ATP/GTP binding protein (ALD1) (Ishemgulova et al., 2017). Moreover, HA-tag has been used for protein expression studies of a lipase in L. donovani (Shakarian et al., 2010), a cyclin-dependent kinase in L. mexicana (Gomes et al., 2010), and a small ubiquitin-like modifier in L. donovani (Bea et al., 2020).
2.3.2. FLAG-tag
FLAG-tag (FLAG) is a synthetic 8-amino acid long polypeptide tag (DYKDDDDK) (Hopp et al., 1988). It is an artificial antigen recognized by specific high affinity commercially available monoclonal antibodies. Later, FLAG was genetically modified to generate a triple-FLAG variant (3X-FLAG) with a long repetitive sequence (DYKDHDGDYKDHDIDYKDDDDK) to increase tag affinity to anti-FLAG antibodies (Kabayama et al., 2020).
The main application of FLAG tags in Leishmania is for protein expression analysis and subcellular localization. Examples include characterization of casein kinase (Dan-Goor et al., 2013), Leishmania Heme Response 1 (LHR1) (Huynh et al., 2012), and Leishmania Iron Regulator 1 (Laranjeira-Silva et al., 2018).
2.3.3. Biotin tags
Biotin tags are composed of a minimum 14-amino acid residues (GLNDIFEAQKIEWH) inserted during molecular cloning as a part of the expression vector construct. Biotinylation refers to the enzymatic or chemical process by which a biotin molecule is covalently attached to a lysine residue of the tag (Cull & Schatz, 2000; Barat & Wu, 2007). Biotin tags can be detected either by anti-biotin antibodies or avidin/streptavidin strategies. The use of biotin-tag in Leishmania was first reported in 2007 by Detke (Fig. 1) who described the biotinylation of recombinant proteins by E. coli biotin ligase (BirA) in Leishmania (Detke, 2007).
Apart from its classification as a peptide tag, this system can also be employed as an enzymatic reporter system, as tagging of proteins of interest with BirA triggers biotinylation of other interacting proteins by proximity. When used as an enzymatic reporter, biotinylated proteins can be isolated by affinity capture and analyzed by mass spectrometry (Roux et al., 2012). This approach was employed for the identification of molecular partners of the KHARON cytoskeletal complex in L. mexicana (Kelly et al., 2020). Alongside other reporters, a biotin ligase variant (BirA*) is one of the tag options for the T7 RNA polymerase-dependent CRISPR-Cas9 toolkit system (Beneke et al., 2017).
One of the main advantages of the biotin tags system is its low cross-reactivity, and the strength and specificity of the avidin-biotin interaction (Barat & Wu, 2007). However, the biggest drawback of using BirA as an enzyme-catalyzed proximity labeling approach is its slow kinetics, requiring prolonged labeling times (Branon et al., 2018).
3. Conclusion
The development of various reporters over the years has enabled researchers in gaining valuable insights into the physiology of parasite Leishmania and unraveled their transmission routes to invertebrate and mammalian hosts. Nonetheless, due to numerous alternatives, it is crucial for researchers to select the most suitable expression systems for their study objectives. Besides, considering the advantages and limitations of each expression system, and the materials available, more than one system can also be employed concurrently to overcome the limitations of one or the other systems. For instance, LUC combined with GFP led to stable expression of both reporters and allowed studies of parasite biology, host-parasite interaction, and anti-parasitic drug screening assays (Sharma et al., 2019; Taheri et al., 2015). Alternatively, a chimeric triple reporter fusion protein composed of a LUC, a red fluorescent protein, and a epitope-tag, was used to monitor the progression of infection with L. major (Calvo-Álvarez et al., 2018), and LUC combined with the fluorescent E2 crimson was used to evaluate the virulence of L. donovani by in vivo imaging (Melo et al., 2017).
Continuous efforts should be made in discovering new reporter systems for studying Leishmania, unveiling the potential and limitations of currently used systems, and in advancing detection methods. Such advances in reporter systems will continue to impact downstream applications including but not limited to monitoring the intracellular pathways regarding gene expression, drug discovery, cellular and gene therapy of leishmaniases, and numerous other infectious diseases.
CRediT authorship contribution statement
Romário Lopes Boy: Conceptualization, Writing – original draft, Writing – review & editing. Ahyun Hong: Conceptualization, Writing – original draft, Writing – review & editing. Juliana Ide Aoki: Conceptualization, Writing – review & editing. Lucile Maria Floeter-Winter: Conceptualization, Formal analysis, Supervision. Maria Fernanda Laranjeira-Silva: Conceptualization, Writing – review & editing, Formal analysis, Supervision.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements
This work was supported by funding from The São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP) of Brazil [grant numbers 2017/23933–3, 2018/23512–0] and the Brazilian Research Council (CNPq). The funders had no role in either the study design, data collection, and analysis, the decision to publish, or the preparation of the manuscript.
Data Availability
No data was used for the research described in the article.
References
- Abass E., Bollig N., Reinhard K., Camara B., Mansour D., Visekruna A.…Steinhoff U. rKLO8, a novel Leishmania donovani - derived recombinant immunodominant protein for sensitive detection of visceral leishmaniasis in Sudan. PLoS Negl. Trop. Dis. 2013;7(7):e2322. doi: 10.1371/journal.pntd.0002322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abraham E.P., Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev. Infect. Dis. 1988;10(4):677–678. doi: 10.1038/146837a0. [DOI] [PubMed] [Google Scholar]
- Agostino V.S., Trinconi C.M., Galuppo M.K., Price H., Uliana S.R.B. Evaluation of NanoLuc, RedLuc and Luc2 as bioluminescent reporters in a cutaneous leishmaniasis model. Acta Trop. 2020;206 doi: 10.1016/j.actatropica.2020.105444. [DOI] [PubMed] [Google Scholar]
- Ai H.-w., Hazelwood K.L., Davidson M.W., Campbell R.E. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat. Methods. 2008;5(5):401–403. doi: 10.1038/nmeth.1207. [DOI] [PubMed] [Google Scholar]
- Ai H.-w., Shaner N.C., Cheng Z., Tsien R.Y., Campbell R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry. 2007;46(20):5904–5910. doi: 10.1021/bi700199g. [DOI] [PubMed] [Google Scholar]
- Al Kufi S.G.J.H., Emmerson J., Rosenqvist H., Garcia C.M.M., Rios-Szwed D.O., Wiese M. Absence of DEATH kinesin is fatal for Leishmania mexicana amastigotes. Sci. Rep. 2022;12(1):3266. doi: 10.1038/s41598-022-07412-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alam J., Cook J.L. Reporter genes: application to the study of mammalian gene transcription. Anal. Biochem. 1990;188(2):245–254. doi: 10.1016/0003-2697(90)90601-5. [DOI] [PubMed] [Google Scholar]
- Alexandre J., Sadlova J., Lestinova T., Vojtkova B., Jancarova M., Podesvova L., Volf P. Experimental infections and co-infections with Leishmania braziliensis and Leishmania infantum in two sand fly species, Lutzomyia migonei and Lutzomyia longipalpis. Sci. Rep. 2020;10(1):3566. doi: 10.1038/s41598-020-60600-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alvar J., Vélez I.D., Bern C., Herrero M., Desjeux P., Cano J., the, WHOLCT Leishmaniasis worldwide and global estimates of its incidence. PLOS ONE. 2012;7(5):e35671. doi: 10.1371/journal.pone.0035671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Álvarez-Velilla R., Gutiérrez-Corbo M.D.C., Punzón C., Pérez-Pertejo M.Y., Balaña-Fouce R., Fresno M., Reguera R.M. A chronic bioluminescent model of experimental visceral leishmaniasis for accelerating drug discovery. PLoS Negl. Trop. Dis. 2019;13(2) doi: 10.1371/journal.pntd.0007133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambler R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
- Ashutosh, Gupta S., Ramesh, Sundar S., Goyal N. Use of Leishmania donovani field isolates expressing the luciferase reporter gene in in vitro drug screening. Antimicrob. Agents Chemother. 2005;49(9):3776–3783. doi: 10.1128/AAC.49.9.3776-3783.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bajaj R., Ambaru B., Gupta C.M. Deciphering the role of UBA-like domains in intraflagellar distribution and functions of myosin XXI in Leishmania. PLoS ONE. 2020;15(4) doi: 10.1371/journal.pone.0232116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker N., Catta-Preta C.M.C., Neish R., Sadlova J., Powell B., Alves-Ferreira E.V.C.…Mottram J.C. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival. Nat. Commun. 2021;12(1):1244. doi: 10.1038/s41467-021-21360-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barat B., Wu A.M. Metabolic biotinylation of recombinant antibody by biotin ligase retained in the endoplasmic reticulum. Biomol. Eng. 2007;24(3):283–291. doi: 10.1016/j.bioeng.2007.02.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastos M.S., Souza L., Onofre T.S., Silva A., Almeida M.R., Bressan G.C., Fietto J.L. Achievement of constitutive fluorescent pLEXSY-egfp Leishmania braziliensis and its application as an alternative method for drug screening in vitro. Mem. Inst. Oswaldo Cruz. 2017;112(2):155–159. doi: 10.1590/0074-02760160237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bea A., Kröber-Boncardo C., Sandhu M., Brinker C., Clos J. The Leishmania donovani SENP protease is required for SUMO processing but not for viability. Genes (Basel) 2020;11(10) doi: 10.3390/genes11101198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beneke T., Demay F., Hookway E., Ashman N., Jeffery H., Smith J., Gluenz E. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog. 2019;15(6) doi: 10.1371/journal.ppat.1007828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beneke T., Madden R., Makin L., Valli J., Sunter J., Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci. 2017;4(5) doi: 10.1098/rsos.170095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bevis B.J., Glick B.S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) Nat. Biotechnol. 2002;20(1):83–87. doi: 10.1038/nbt0102-83. [DOI] [PubMed] [Google Scholar]
- Bhaumik S., Gambhir S.S. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc. Natl. Acad. Sci. 2002;99(1):377–382. doi: 10.1073/pnas.012611099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolhassani A., Taheri T., Taslimi Y., Zamanilui S., Zahedifard F., Seyed N., Rafati S. Fluorescent Leishmania species: development of stable GFP expression and its application for in vitro and in vivo studies. Exp. Parasitol. 2011;127(3):637–645. doi: 10.1016/j.exppara.2010.12.006. [DOI] [PubMed] [Google Scholar]
- Branchini B.R., Ablamsky D.M., Davis A.L., Southworth T.L., Butler B., Fan F., Pule M.A. Red-emitting luciferases for bioluminescence reporter and imaging applications. Anal. Biochem. 2010;396(2):290–297. doi: 10.1016/j.ab.2009.09.009. [DOI] [PubMed] [Google Scholar]
- Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., Ting A.Y. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018;36(9):880–887. doi: 10.1038/nbt.4201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckner F.S., Wilson A.J. Colorimetric assay for screening compounds against Leishmania amastigotes grown in macrophages. Am. J. Trop. Med. Hyg. 2005;72(5):600–605. [PubMed] [Google Scholar]
- Burza S., Croft S.L., Boelaert M. Leishmaniasis. Lancet. 2018;392(10151):951–970. doi: 10.1016/S0140-6736(18)31204-2. [DOI] [PubMed] [Google Scholar]
- Cabello-Donayre M., Orrego L.M., Herráez E., Vargas P., Martínez-García M., Campos-Salinas J., Pérez-Victoria J.M. Leishmania heme uptake involves LmFLVCRb, a novel porphyrin transporter essential for the parasite. Cell Mol. Life Sci. 2020;77(9):1827–1845. doi: 10.1007/s00018-019-03258-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo-Álvarez E., Cren-Travaillé C., Crouzols A., Rotureau B. A new chimeric triple reporter fusion protein as a tool for in vitro and in vivo multimodal imaging to monitor the development of African trypanosomes and Leishmania parasites. Infect. Genet. Evol. 2018;63:391–403. doi: 10.1016/j.meegid.2018.01.011. [DOI] [PubMed] [Google Scholar]
- Calvo-Álvarez E., Guerrero N.A., Alvarez-Velilla R., Prada C.F., Requena J.M., Punzón C., Reguera R.M. Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl. Trop. Dis. 2012;6(11):e1927. doi: 10.1371/journal.pntd.0001927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo-Álvarez E., Stamatakis K., Punzón C., Álvarez-Velilla R., Tejería A., Escudero-Martínez J.M., Reguera R.M. Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Negl. Trop. Dis. 2015;9(3) doi: 10.1371/journal.pntd.0003666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell R.E. Realization of beta-lactamase as a versatile fluorogenic reporter. Trends Biotechnol. 2004;22(5):208–211. doi: 10.1016/j.tibtech.2004.03.012. [DOI] [PubMed] [Google Scholar]
- Campos-Salinas J., León-Guerrero D., González-Rey E., Delgado M., Castanys S., Pérez-Victoria J.M., Gamarro F. LABCG2, a new ABC transporter implicated in phosphatidylserine exposure, is involved in the infectivity and pathogenicity of Leishmania. PLoS Negl. Trop. Dis. 2013;7(4):e2179. doi: 10.1371/journal.pntd.0002179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
- Chan M.M., Bulinski J.C., Chang K.P., Fong D. A microplate assay for Leishmania amazonensis promastigotes expressing multimeric green fluorescent protein. Parasitol. Res. 2003;89(4):266–271. doi: 10.1007/s00436-002-0706-4. [DOI] [PubMed] [Google Scholar]
- Chen D.Q., Kolli B.K., Yadava N., Lu H.G., Gilman-Sachs A., Peterson D.A., Chang K.P. Episomal expression of specific sense and antisense mRNAs in Leishmania amazonensis: modulation of gp63 level in promastigotes and their infection of macrophages in vitro. Infect. Immun. 2000;68(1):80–86. doi: 10.1128/IAI.68.1.80-86.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9(6) doi: 10.1098/rsob.190072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton C.E. Life without transcriptional control? From fly to man and back again. Embo J. 2002;21(8):1881–1888. doi: 10.1093/emboj/21.8.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cloutier S., Laverdière M., Chou M.N., Boilard N., Chow C., Papadopoulou B. Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS ONE. 2012;7(5):e35085. doi: 10.1371/journal.pone.0035085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coelho A.C., Oliveira J.C., Espada C.R., Reimão J.Q., Trinconi C.T., Uliana S.R. A luciferase-expressing Leishmania braziliensis line that leads to sustained skin lesions in BALB/c mice and allows monitoring of miltefosine treatment outcome. PLoS Negl. Trop. Dis. 2016;10(5) doi: 10.1371/journal.pntd.0004660. amp. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coelho A.C., Yamashiro-Kanashiro E.H., Bastos S.F., Mortara R.A., Cotrim P.C. Intracellular location of the ABC transporter PRP1 related to pentamidine resistance in Leishmania major. Mol. Biochem. Parasitol. 2006;150(2):378–383. doi: 10.1016/j.molbiopara.2006.08.013. [DOI] [PubMed] [Google Scholar]
- Cormack B.P., Valdivia R.H., Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP) Gene. 1996;173(1):33–38. doi: 10.1016/0378-1119(95)00685-0. Spec No. [DOI] [PubMed] [Google Scholar]
- Corman H.N., Shoue D.A., Norris-Mullins B., Melancon B.J., Morales M.A., McDowell M.A. Development of a target-free high-throughput screening platform for the discovery of antileishmanial compounds. Int. J. Antimicrob. Agents. 2019;54(4):496–501. doi: 10.1016/j.ijantimicag.2019.07.013. [DOI] [PubMed] [Google Scholar]
- Costa S.o.S., de Assis Golim M., Rossi-Bergmann B., Costa F.T., Giorgio S. Use of in vivo and in vitro systems to select Leishmania amazonensis expressing green fluorescent protein. Korean J. Parasitol. 2011;49(4):357–364. doi: 10.3347/kjp.2011.49.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cull M.G., Schatz P.J. Biotinylation of proteins in vivo and in vitro using small peptide tags. Meth. Enzymol. 2000;326:430–440. doi: 10.1016/S0076-6879(00)26068-0. Academic Press. [DOI] [PubMed] [Google Scholar]
- Curotto de Lafaille M.A., Laban A., Wirth D.F. Gene expression in Leishmania: analysis of essential 5′ DNA sequences. Proc. Natl. Acad. Sci. U. S. A. 1992;89(7):2703–2707. doi: 10.1073/pnas.89.7.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- da Silva E.R., da Silva M.F., Fischer H., Mortara R.A., Mayer M.G., Framesqui K.…Floeter-Winter L.M. Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania (Leishmania) amazonensis and subcellular localization of native enzyme. Mol. Biochem. Parasitol. 2008;159(2):104–111. doi: 10.1016/j.molbiopara.2008.02.011. [DOI] [PubMed] [Google Scholar]
- da Silva Santos A.C., Moura D.M.N., Dos Santos T.A.R., de Melo Neto O.P., Pereira V.R.A. Assessment of Leishmania cell lines expressing high levels of beta-galactosidase as alternative tools for the evaluation of anti-leishmanial drug activity. J. Microbiol. Methods. 2019;166 doi: 10.1016/j.mimet.2019.105732. [DOI] [PubMed] [Google Scholar]
- Dan-Goor M., Nasereddin A., Jaber H., Jaffe C.L. Identification of a secreted casein kinase 1 in Leishmania donovani: effect of protein over expression on parasite growth and virulence. PLoS One. 2013;8(11):e79287. doi: 10.1371/journal.pone.0079287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Marco A. A step ahead: combining protein purification and correct folding selection. Microb. Cell Factories. 2004;3(1):12. doi: 10.1186/1475-2859-3-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Wet J.R., Wood K.V., DeLuca M., Helinski D.R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell Biol. 1987;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5(1) doi: 10.1098/rsob.140197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Descoteaux A., Luo Y., Turco S.J., Beverley S.M. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science. 1995;269(5232):1869–1872. doi: 10.1126/science.7569927. [DOI] [PubMed] [Google Scholar]
- Detke S. Leishmania mexicana amazonensis: development of a peptide tag useful for labeling and purifying biotinylated recombinant proteins. Exp. Parasitol. 2007;115(3):221–225. doi: 10.1016/j.exppara.2006.08.009. [DOI] [PubMed] [Google Scholar]
- Detke S., Elsabrouty R. Leishmania mexicana amazonensis: plasma membrane adenine nucleotide translocator and chemotaxis. Exp. Parasitol. 2008;118(3):408–419. doi: 10.1016/j.exppara.2007.10.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Domínguez-Asenjo B., Gutiérrez-Corbo C., Pérez-Pertejo Y., Iborra S., Balaña-Fouce R., Reguera R.M. Bioluminescent Imaging Identifies Thymus, As Overlooked Colonized Organ, in a Chronic Model of Leishmania donovani Mouse Visceral Leishmaniasis. ACS Infect. Dis. 2021;7(4):871–883. doi: 10.1021/acsinfecdis.0c00864. [DOI] [PubMed] [Google Scholar]
- Dube A., Gupta R., Singh N. Reporter genes facilitating discovery of drugs targeting protozoan parasites. Trends Parasitol. 2009;25(9):432–439. doi: 10.1016/j.pt.2009.06.006. [DOI] [PubMed] [Google Scholar]
- Dubois R. Bull Soc Zool France; 1886. Les Elaterides Lumineux. [Google Scholar]
- Duncan S.M., Jones N.G., Mottram J.C. Recent advances in Leishmania reverse genetics: manipulating a manipulative parasite. Mol. Biochem. Parasitol. 2017;216:30–38. doi: 10.1016/j.molbiopara.2017.06.005. [DOI] [PubMed] [Google Scholar]
- Einhauer A., Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J. Biochem. Biophys. Methods. 2001;49(1-3):455–465. doi: 10.1016/s0165-022x(01)00213-5. [DOI] [PubMed] [Google Scholar]
- England C.G., Luo H., Cai W. HaloTag technology: a versatile platform for biomedical applications. Bioconjug. Chem. 2015;26(6):975–986. doi: 10.1021/acs.bioconjchem.5b00191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Espada C.R., Quilles J.C., Albuquerque-Wendt A., Cruz M.C., Beneke T., Lorenzon L.B.…Uliana S.R.B. Effective genome editing in Leishmania (Viannia) braziliensis stably expressing Cas9 and T7 RNA polymerase [10.3389/fcimb.2021.772311] Front. Cell Infect. Microbiol. 2021;11:1097. doi: 10.3389/fcimb.2021.772311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falcy B.A., Mohr M.A., Micevych P.E. Immunohistochemical amplification of mCherry fusion protein is necessary for proper visualization. MethodsX. 2020;7 doi: 10.1016/j.mex.2020.100946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filonov G.S., Piatkevich K.D., Ting L.M., Zhang J., Kim K., Verkhusha V.V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 2011;29(8):757–761. doi: 10.1038/nbt.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folgueira C., Requena J.M. Pitfalls of the CAT reporter gene for analyzing translational regulation in Leishmania. Parasitol. Res. 2007;101(5):1449–1452. doi: 10.1007/s00436-007-0640-6. amp. [DOI] [PubMed] [Google Scholar]
- Gao W., Xing B., Tsien R.Y., Rao J. Novel fluorogenic substrates for imaging beta-lactamase gene expression. J. Am. Chem. Soc. 2003;125(37):11146–11147. doi: 10.1021/ja036126o. [DOI] [PubMed] [Google Scholar]
- Goldman-Pinkovich A., Balno C., Strasser R., Zeituni-Molad M., Bendelak K., Rentsch D., Zilberstein D. An arginine deprivation response pathway is induced in Leishmania during macrophage invasion. PLOS Pathog. 2016;12(4) doi: 10.1371/journal.ppat.1005494. . . [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomes F.C., Ali N.O., Brown E., Walker R.G., Grant K.M., Mottram J.C. Recombinant Leishmania mexicana CRK3:CYCA has protein kinase activity in the absence of phosphorylation on the T-loop residue Thr178. Mol. Biochem. Parasitol. 2010;171(2):89–96. doi: 10.1016/j.molbiopara.2010.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorman C.M., Moffat L.F., Howard B.H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell Biol. 1982;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gossage S.M., Rogers M.E., Bates P.A. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int. J. Parasitol. 2003;33(10):1027–1034. doi: 10.1016/s0020-7519(03)00142-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guevara P., Pinto-Santíni D., Rojas A., Crisante G., Añez N., Ramirez J.L. Green fluorescent protein-tagged Leishmania in phlebotomine sand flies. J. Med. Entomol. 2001;38(1):39–43. doi: 10.1603/0022-2585-38.1.39. [DOI] [PubMed] [Google Scholar]
- Guo Y., Hui C.Y., Liu L., Zheng H.Q., Wu H.M. Improved monitoring of low-level transcription in Escherichia coli by a β-galactosidase α-complementation system. Front. Microbiol. 2019;10:1454. doi: 10.3389/fmicb.2019.01454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha D.S., Schwarz J.K., Turco S.J., Beverley S.M. Use of the green fluorescent protein as a marker in transfected Leishmania. Mol. Biochem. Parasitol. 1996;77(1):57–64. doi: 10.1016/0166-6851(96)02580-7. [DOI] [PubMed] [Google Scholar]
- Halliday C., Billington K., Wang Z., Madden R., Dean S., Sunter J.D., Wheeler R.J. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol. Biochem. Parasitol. 2019;230:24–36. doi: 10.1016/j.molbiopara.2018.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halliday C., Yanase R., Catta-Preta C.M.C., Moreira-Leite F., Myskova J., Pruzinova K.…Sunter J.D. Role for the flagellum attachment zone in Leishmania anterior cell tip morphogenesis. PLOS Pathog. 2020;16(10) doi: 10.1371/journal.ppat.1008494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heim R., Cubitt A.B., Tsien R.Y. Improved green fluorescence. Nature. 1995;373(6516):663–664. doi: 10.1038/373663b0. [DOI] [PubMed] [Google Scholar]
- Heim R., Prasher D.C., Tsien R.Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U. S. A. 1994;91(26):12501–12504. doi: 10.1073/pnas.91.26.12501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong A., Zampieri R.A., Shaw J.J., Floeter-Winter L.M., Laranjeira-Silva M.F. One health approach to leishmaniases: understanding the disease dynamics through diagnostic tools. Pathogens. 2020;9(10) doi: 10.3390/pathogens9100809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hopp T.P., Prickett K.S., Price V.L., Libby R.T., March C.J., Pat Cerretti D.…Conlon P.J. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology. 1988;6(10):1204–1210. doi: 10.1038/nbt1088-1204. [DOI] [Google Scholar]
- Hostettler L., Grundy L., Käser-Pébernard S., Wicky C., Schafer W.R., Glauser D.A. The bright fluorescent protein mNeonGreen facilitates protein expression analysis. G3 (Bethesda) 2017;7(2):607–615. doi: 10.1534/g3.116.038133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huynh C., Sacks D.L., Andrews N.W. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J. Exp. Med. 2006;203(10):2363–2375. doi: 10.1084/jem.20060559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huynh C., Yuan X., Miguel D.C., Renberg R.L., Protchenko O., Philpott C.C.…Andrews N.W. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012;8(7) doi: 10.1371/journal.ppat.1002795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishemgulova A., Kraeva N., Hlaváčová J., Zimmer S.L., Butenko A., Podešvová L.…Yurchenko V. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl. Trop. Dis. 2017;11(7) doi: 10.1371/journal.pntd.0005782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaiswal A.K., Rao K.B., Kushwaha P., Rawat K., Modukuri R.K., Khare P.…Dube A. Development of Leishmania donovani stably expressing DsRed for flow cytometry-based drug screening using chalcone thiazolyl-hydrazone as a new antileishmanial target. Int. J. Antimicrob. Agents. 2016;48(6):695–702. doi: 10.1016/j.ijantimicag.2016.09.018. [DOI] [PubMed] [Google Scholar]
- James A.L., Perry J.D., Ford M., Armstrong L., Gould F.K. Evaluation of cyclohexenoesculetin-beta-D-galactoside and 8-hydroxyquinoline-beta-D-galactoside as substrates for the detection of beta-galactosidase. Appl. Environ. Microbiol. 1996;62(10):3868–3870. doi: 10.1128/AEM.62.10.3868-3870.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jara M., Maes I., Imamura H., Domagalska M.A., Dujardin J.C., Arevalo J. Tracking of quiescence in Leishmania by quantifying the expression of GFP in the ribosomal DNA locus. Sci. Rep. 2019;9(1):18951. doi: 10.1038/s41598-019-55486-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang T., Xing B., Rao J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol. Genet. Eng. Rev. 2008;25:41–75. doi: 10.5661/bger-25-41. [DOI] [PubMed] [Google Scholar]
- Joshi P.B., Webb J.R., Davies J.E., McMaster W.R. The gene encoding streptothricin acetyltransferase (sat) as a selectable marker for Leishmania expression vectors. Gene. 1995;156(1):145–149. doi: 10.1016/0378-1119(95)00042-5. [DOI] [PubMed] [Google Scholar]
- Kabayama H., Takeuchi M., Tokushige N., Muramatsu S.-i., Kabayama M., Fukuda M.…Mikoshiba K. An ultra-stable cytoplasmic antibody engineered for in vivo applications. Nat. Commun. 2020;11(1):336. doi: 10.1038/s41467-019-13654-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamau S.W., Grimm F., Hehl A.B. Expression of green fluorescent protein as a marker for effects of antileishmanial compounds in vitro. Antimicrob. Agents Chemother. 2001;45(12):3654–3656. doi: 10.1128/AAC.45.12.3654-3656.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapler G.M., Coburn C.M., Beverley S.M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol. Cell Biol. 1990;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katta S.S., Sahasrabuddhe A.A., Gupta C.M. Flagellar localization of a novel isoform of myosin, myosin XXI, in Leishmania. Mol. Biochem. Parasitol. 2009;164(2):105–110. doi: 10.1016/j.molbiopara.2008.12.002. [DOI] [PubMed] [Google Scholar]
- Kaur P.K., Dinesh N., Soumya N., Kishore Babu N., Singh S. Identification and characterization of a novel ribose 5-phosphate isomerase B from Leishmania donovani. Biochem. Biophys. Res. Commun. 2012;421(1):51–56. doi: 10.1016/j.bbrc.2012.03.107. [DOI] [PubMed] [Google Scholar]
- Kelly F.D., Tran K.D., Hatfield J., Schmidt K., Sanchez M.A., Landfear S.M. A cytoskeletal protein complex is essential for division of intracellular amastigotes of. J. Biol. Chem. 2020;295(37):13106–13122. doi: 10.1074/jbc.RA120.014065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly J.M., Taylor M.C., Smith K., Hunter K.J., Fairlamb A.H. Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase. Sensitivity towards agents that are thought to induce oxidative stress. Eur. J. Biochem. 1993;218(1):29–37. doi: 10.1111/j.1432-1033.1993.tb18348.x. [DOI] [PubMed] [Google Scholar]
- Kelly J.M., Ward H.M., Miles M.A., Kendall G. A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res. 1992;20(15):3963–3969. doi: 10.1093/nar/20.15.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimblin N., Peters N., Debrabant A., Secundino N., Egen J., Lawyer P., Sacks D. Quantification of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc. Natl. Acad. Sci. U. S. A. 2008;105(29):10125–10130. doi: 10.1073/pnas.0802331105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knapp T., Hare E., Feng L., Zlokarnik G., Negulescu P. Detection of beta-lactamase reporter gene expression by flow cytometry. Cytometry A. 2003;51(2):68–78. doi: 10.1002/cyto.a.10018. [DOI] [PubMed] [Google Scholar]
- Kovtun O., Mureev S., Johnston W., Alexandrov K. Towards the construction of expressed proteomes using a Leishmania tarentolae based cell-free expression system. PLoS One. 2010;5(12):e14388. doi: 10.1371/journal.pone.0014388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushnir S., Cirstea I.C., Basiliya L., Lupilova N., Breitling R., Alexandrov K. Artificial linear episome-based protein expression system for protozoon Leishmania tarentolae. Mol. Biochem. Parasitol. 2011;176(2):69–79. doi: 10.1016/j.molbiopara.2010.12.002. [DOI] [PubMed] [Google Scholar]
- Laban A., Wirth D.F. Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. Proc. Natl. Acad. Sci. U. S. A. 1989;86(23):9119–9123. doi: 10.1073/pnas.86.23.9119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lahav T., Sivam D., Volpin H., Ronen M., Tsigankov P., Green A.…Myler P.J. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J. 2011;25(2):515–525. doi: 10.1096/fj.10-157529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laranjeira-Silva M.F., Wang W., Samuel T.K., Maeda F.Y., Michailowsky V., Hamza I.…Andrews N.W. A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity. PLoS Pathog. 2018;14(6) doi: 10.1371/journal.ppat.1007140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lebedev, G.V., Grigorenko, V.G., Antipin, R.L., Rubtsova, M.Y., & Egorov, A.M. (2018). Novel chromogenic substrate for bacterial β-lactamases based on cephalosporin modified with an epoxy group. Moscow University Chemistry Bulletin, 73(1), 34–38. https://doi.org/10.3103/S0027131418020086.
- LeBowitz J.H., Coburn C.M., Beverley S.M. Simultaneous transient expression assays of the trypanosomatid parasite Leishmania using beta-galactosidase and beta-glucuronidase as reporter enzymes. Gene. 1991;103(1):119–123. doi: 10.1016/0378-1119(91)90402-w. [DOI] [PubMed] [Google Scholar]
- LeBowitz J.H., Coburn C.M., McMahon-Pratt D., Beverley S.M. Development of a stable Leishmania expression vector and application to the study of parasite surface antigen genes. Proc. Natl. Acad. Sci. U. S. A. 1990;87(24):9736–9740. doi: 10.1073/pnas.87.24.9736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecoeur H., de La Llave E., Osorio Y Fortéa J., Goyard S., Kiefer-Biasizzo H., Balazuc A.M.…Lang T. Sorting of Leishmania-bearing dendritic cells reveals subtle parasite-induced modulation of host-cell gene expression. Microbes Infect. 2010;12(1):46–54. doi: 10.1016/j.micinf.2009.09.014. [DOI] [PubMed] [Google Scholar]
- Liang X.H., Haritan A., Uliel S., Michaeli S. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot. Cell. 2003;2(5):830–840. doi: 10.1128/ec.2.5.830-840.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Los G.V., Encell L.P., McDougall M.G., Hartzell D.D., Karassina N., Zimprich C.…Wood K.V. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 2008;3(6):373–382. doi: 10.1021/cb800025k. [DOI] [PubMed] [Google Scholar]
- Los G.V., Wood K. The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol. Biol. 2007;356:195–208. doi: 10.1385/1-59745-217-3:195. [DOI] [PubMed] [Google Scholar]
- Lotze J., Reinhardt U., Seitz O., Beck-Sickinger A.G. Peptide-tags for site-specific protein labelling in vitro and in vivo [10.1039/C6MB00023A] Mol. BioSystems. 2016;12(6):1731–1745. doi: 10.1039/C6MB00023A. [DOI] [PubMed] [Google Scholar]
- Légaré D., Richard D., Mukhopadhyay R., Stierhof Y.D., Rosen B.P., Haimeur A.…Ouellette M. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J. Biol. Chem. 2001;276(28):26301–26307. doi: 10.1074/jbc.M102351200. [DOI] [PubMed] [Google Scholar]
- López J.A., LeBowitz J.H., Beverley S.M., Rammensee H.G., Overath P. Leishmania mexicana promastigotes induce cytotoxic T lymphocytes in vivo that do not recognize infected macrophages. Eur. J. Immunol. 1993;23(1):217–223. doi: 10.1002/eji.1830230134. [DOI] [PubMed] [Google Scholar]
- Luque-Ortega J.R., Rivero-Lezcano O.M., Croft S.L., Rivas L. In vivo monitoring of intracellular ATP levels in Leishmania donovani promastigotes as a rapid method to screen drugs targeting bioenergetic metabolism. Antimicrob. Agents Chemother. 2001;45(4):1121–1125. doi: 10.1128/AAC.45.4.1121-1125.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mair G., Shi H., Li H., Djikeng A., Aviles H.O., Bishop J.R.…Tschudi C. A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. Rna. 2000;6(2):163–169. doi: 10.1017/s135583820099229x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mandal S., Maharjan M., Ganguly S., Chatterjee M., Singh S., Buckner F.S., Madhubala R. High-throughput screening of amastigotes of Leishmania donovani clinical isolates against drugs using a colorimetric beta-lactamase assay. Indian J. Exp. Biol. 2009;47(6):475–479. [PMC free article] [PubMed] [Google Scholar]
- Matz M.V., Fradkov A.F., Labas Y.A., Savitsky A.P., Zaraisky A.G., Markelov M.L., Lukyanov S.A. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 1999;17(10):969–973. doi: 10.1038/13657. [DOI] [PubMed] [Google Scholar]
- Mehta S.R., Huang R., Yang M., Zhang X.Q., Kolli B., Chang K.P.…Schooley R.T. Real-time in vivo green fluorescent protein imaging of a murine leishmaniasis model as a new tool for Leishmania vaccine and drug discovery. Clin. Vaccine Immunol. 2008;15(12):1764–1770. doi: 10.1128/CVI.00270-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melo G.D., Goyard S., Lecoeur H., Rouault E., Pescher P., Fiette L.…Lang T. New insights into experimental visceral leishmaniasis: real-time in vivo imaging of Leishmania donovani virulence. PLoS Negl. Trop. Dis. 2017;11(9) doi: 10.1371/journal.pntd.0005924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mendes Costa D., Cecílio P., Santarém N., Cordeiro-da-Silva A., Tavares J. Murine infection with bioluminescent Leishmania infantum axenic amastigotes applied to drug discovery. Sci. Rep. 2019;9(1):18989. doi: 10.1038/s41598-019-55474-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel G., Ferrua B., Lang T., Maddugoda M.P., Munro P., Pomares C.…Marty P. Luciferase-expressing Leishmania infantum allows the monitoring of amastigote population size, in vivo, ex vivo and in vitro. PLoS Negl. Trop. Dis. 2011;5(9):e1323. doi: 10.1371/journal.pntd.0001323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misslitz A., Mottram J.C., Overath P., Aebischer T. Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania amastigotes. Mol. Biochem. Parasitol. 2000;107(2):251–261. doi: 10.1016/s0166-6851(00)00195-x. [DOI] [PubMed] [Google Scholar]
- Miyamura S. Inactivation of chloramphenicol by chloramphenicol-resistant bacteria. J. Pharm. Sci. 1964;53(6):604–607. doi: 10.1002/jps.2600530606. [DOI] [PubMed] [Google Scholar]
- Moitra S., Basu S., Pawlowic M., Hsu F.F., Zhang K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania major. Front. Cell Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.647870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai T., Ibata K., Park E.S., Kubota M., Mikoshiba K., Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002;20(1):87–90. doi: 10.1038/nbt0102-87. [DOI] [PubMed] [Google Scholar]
- Neefjes M., Housmans B.A.C., van den Akker G.G.H., van Rhijn L.W., Welting T.J.M., van der Kraan P.M. Reporter gene comparison demonstrates interference of complex body fluids with secreted luciferase activity. Sci. Rep. 2021;11(1):1359. doi: 10.1038/s41598-020-80451-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ng L.G., Hsu A., Mandell M.A., Roediger B., Hoeller C., Mrass P.…Weninger W. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites. PLoS Pathog. 2008;4(11) doi: 10.1371/journal.ppat.1000222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobelstiftelsen (2008, October 8). The Nobel Prize in chemistry 2008 [Press release]. https://www.nobelprize.org/prizes/chemistry/2008/press-release.
- Nolan G.P., Fiering S., Nicolas J.F., Herzenberg L.A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. 1988;85(8):2603–2607. doi: 10.1073/pnas.85.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogoh K., Akiyoshi R., Suzuki H. Cloning and mutagenetic modification of the firefly luciferase gene and its use for bioluminescence microscopy of. Biochem. Biophys. Rep. 2020;23 doi: 10.1016/j.bbrep.2020.100771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuno T., Goto Y., Matsumoto Y., Otsuka H. Applications of recombinant Leishmania amazonensis expressing egfp or the beta-galactosidase gene for drug screening and histopathological analysis. Exp. Anim. 2003;52(2):109–118. doi: 10.1538/expanim.52.109. [DOI] [PubMed] [Google Scholar]
- Oliveira G.G., Magalhães F.B., Teixeira M.C., Pereira A.M., Pinheiro C.G., Santos L.R.…de Melo Neto O.P. Characterization of novel Leishmania infantum recombinant proteins encoded by genes from five families with distinct capacities for serodiagnosis of canine and human visceral leishmaniasis. Am. J. Trop. Med. Hyg. 2011;85(6):1025–1034. doi: 10.4269/ajtmh.2011.11-0102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira J.C., da Silva A.C., Oliveira R.A., Pereira V.R., Gil L.H. In vivo near-infrared fluorescence imaging of Leishmania amazonensis expressing infrared fluorescence protein (iRFP) for real-time monitoring of cutaneous leishmaniasis in mice. J. Microbiol. Methods. 2016;130:189–195. doi: 10.1016/j.mimet.2016.08.003. [DOI] [PubMed] [Google Scholar]
- Ormö M., Cubitt Andrew B., Kallio K., Gross Larry A., Tsien Roger Y., Remington S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996;273(5280):1392–1395. doi: 10.1126/science.273.5280.1392. [DOI] [PubMed] [Google Scholar]
- Palmer E., Freeman T. Investigation into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp. Funct. Genom. 2004;5 doi: 10.1002/cfg.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardy K. Reporter enzyme assays. Methods Mol. Biol. 1993;18:419–424. doi: 10.1385/0-89603-245-0:419. [DOI] [PubMed] [Google Scholar]
- Pereira I.E., Silva K.P., Menegati L.M., Pinheiro A.C., Assunção E.A.O., Araújo M.L.P.…Teixeira H.C. Performance of recombinant proteins in diagnosis and differentiation of canine visceral leishmaniasis infected and vaccinated dogs. Eur. J. Microbiol. Immunol. (Bp) 2020;10(3):165–171. doi: 10.1556/1886.2020.00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phan H.P., Sugino M., Niimi T. The production of recombinant human laminin-332 in a Leishmania tarentolae expression system. Protein Expr. Purif. 2009;68(1):79–84. doi: 10.1016/j.pep.2009.07.005. [DOI] [PubMed] [Google Scholar]
- Pulido S.A., Muñoz D.L., Restrepo A.M., Mesa C.V., Alzate J.F., Vélez I.D., Robledo S.M. Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop. 2012;122(1):36–45. doi: 10.1016/j.actatropica.2011.11.015. [DOI] [PubMed] [Google Scholar]
- Ramamoorthy R., Swihart K.G., McCoy J.J., Wilson M.E., Donelson J.E. Intergenic regions between tandem gp63 genes influence the differential expression of gp63 RNAs in Leishmania chagasi promastigotes. J. Biol. Chem. 1995;270(20):12133–12139. doi: 10.1074/jbc.270.20.12133. [DOI] [PubMed] [Google Scholar]
- Ravinder Bhaskar, Gangwar S., Goyal N. Development of luciferase expressing Leishmania donovani axenic amastigotes as primary model for in vitro screening of antileishmanial compounds. Curr. Microbiol. 2012;65(6):696–700. doi: 10.1007/s00284-012-0209-1. [DOI] [PubMed] [Google Scholar]
- Reimão J.Q., Trinconi C.T., Yokoyama-Yasunaka J.K., Miguel D.C., Kalil S.P., Uliana S.R. Parasite burden in Leishmania (Leishmania) amazonensis-infected mice: validation of luciferase as a quantitative tool. J. Microbiol. Methods. 2013;93(2):95–101. doi: 10.1016/j.mimet.2013.02.007. [DOI] [PubMed] [Google Scholar]
- Roberts S.C., Tancer M.J., Polinsky M.R., Gibson K.M., Heby O., Ullman B. Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J. Biol. Chem. 2004;279(22):23668–23678. doi: 10.1074/jbc.M402042200. [DOI] [PubMed] [Google Scholar]
- Rocha M.N., Corrêa C.M., Melo M.N., Beverley S.M., Martins-Filho O.A., Madureira A.P., Soares R.P. An alternative in vitro drug screening test using Leishmania amazonensis transfected with red fluorescent protein. Diagn. Microbiol. Infect. Dis. 2013;75(3):282–291. doi: 10.1016/j.diagmicrobio.2012.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotman B., Zderic J.A., Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc. Natl. Acad. Sci. U. S. A. 1963;50(1):1–6. doi: 10.1073/pnas.50.1.1-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roux K.J., Kim D.I., Raida M., Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012;196(6):801–810. doi: 10.1083/jcb.201112098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy G., Dumas C., Sereno D., Wu Y., Singh A.K., Tremblay M.J.…Papadopoulou B. Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol. Biochem. Parasitol. 2000;110(2):195–206. doi: 10.1016/s0166-6851(00)00270-x. [DOI] [PubMed] [Google Scholar]
- Saiz-Baggetto S., Méndez E., Quilis I., Igual J.C., Bañó M.C. Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems. PLoS One. 2017;12(8) doi: 10.1371/journal.pone.0183067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sansom F.M., Ralton J.E., Sernee M.F., Cohen A.M., Hooker D.J., Hartland E.L.…McConville M.J. Golgi-located NTPDase1 of Leishmania major is required for lipophosphoglycan elongation and normal lesion development whereas secreted NTPDase2 is dispensable for virulence. PLoS Negl. Trop. Dis. 2014;8(12):e3402. doi: 10.1371/journal.pntd.0003402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawano A., Miyawaki A. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 2000;28(16) doi: 10.1093/nar/28.16.e78. e78-e78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selvapandiyan A., Duncan R., Debrabant A., Bertholet S., Sreenivas G., Negi N.S.…Nakhasi H.L. Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J. Biol. Chem. 2001;276(46):43253–43261. doi: 10.1074/jbc.M106806200. [DOI] [PubMed] [Google Scholar]
- Sereno D., Roy G., Lemesre J.L., Papadopoulou B., Ouellette M. DNA transformation of Leishmania infantum axenic amastigotes and their use in drug screening. Antimicrob. Agents Chemother. 2001;45(4):1168–1173. doi: 10.1128/AAC.45.4.1168-1173.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shakarian A.M., McGugan G.C., Joshi M.B., Stromberg M., Bowers L., Ganim C.…Dwyer D.M. Identification, characterization, and expression of a unique secretory lipase from the human pathogen Leishmania donovani. Mol. Cell Biochem. 2010;341(1-2):17–31. doi: 10.1007/s11010-010-0433-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaked-Mishan P., Suter-Grotemeyer M., Yoel-Almagor T., Holland N., Zilberstein D., Rentsch D. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol. Microbiol. 2006;60(1):30–38. doi: 10.1111/j.1365-2958.2006.05060.x. [DOI] [PubMed] [Google Scholar]
- Shaner N.C., Campbell R.E., Steinbach P.A., Giepmans B.N., Palmer A.E., Tsien R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 2004;22(12):1567–1572. doi: 10.1038/nbt1037. [DOI] [PubMed] [Google Scholar]
- Shaner N.C., Lambert G.G., Chammas A., Ni Y., Cranfill P.J., Baird M.A.…Wang J. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods. 2013;10(5):407–409. doi: 10.1038/nmeth.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaner N.C., Steinbach P.A., Tsien R.Y. A guide to choosing fluorescent proteins. Nat. Methods. 2005;2(12):905–909. doi: 10.1038/nmeth819. [DOI] [PubMed] [Google Scholar]
- Sharma R., Silveira-Mattos P.S., Ferreira V.C., Rangel F.A., Oliveira L.B., Celes F.S.…de Oliveira C.I. Generation and characterization of a dual-reporter transgenic. Front. Cell Infect. Microbiol. 2019;9:468. doi: 10.3389/fcimb.2019.00468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw W.V. The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J. Biol. Chem. 1967;242(4):687–693. [PubMed] [Google Scholar]
- Shimomura O., Johnson F.H., Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 1962;59:223–239. doi: 10.1002/jcp.1030590302. [DOI] [PubMed] [Google Scholar]
- Shu X., Royant A., Lin M.Z., Aguilera T.A., Lev-Ram V., Steinbach P.A., Tsien R.Y. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science. 2009;324(5928):804–807. doi: 10.1126/science.1168683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh N., Gupta R., Jaiswal A.K., Sundar S., Dube A. Transgenic Leishmania donovani clinical isolates expressing green fluorescent protein constitutively for rapid and reliable ex vivo drug screening. J. Antimicrob. Chemother. 2009;64(2):370–374. doi: 10.1093/jac/dkp206. [DOI] [PubMed] [Google Scholar]
- Smale S.T. Chloramphenicol acetyltransferase assay. Cold Spring Harb. Protoc. 2010;2010(5) doi: 10.1101/pdb.prot5422. pdb.prot5422. [DOI] [PubMed] [Google Scholar]
- Soysa R., Carter N.S., Yates P.A. A dual luciferase system for analysis of post-transcriptional regulation of gene expression in Leishmania. Mol. Biochem. Parasitol. 2014;195(1):1–5. doi: 10.1016/j.molbiopara.2014.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soysa R., Tran K.D., Ullman B., Yates P.A. Integrating ribosomal promoter vectors that offer a choice of constitutive expression profiles in Leishmania donovani. Mol. Biochem. Parasitol. 2015;204(2):89–92. doi: 10.1016/j.molbiopara.2016.01.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swenson E.S., Price J.G., Brazelton T., Krause D.S. Limitations of green fluorescent protein as a cell lineage marker. Stem Cells. 2007;25(10):2593–2600. doi: 10.1634/stemcells.2007-0241. [DOI] [PubMed] [Google Scholar]
- Taheri T., Saberi Nik H., Seyed N., Doustdari F., Etemadzadeh M.H., Torkashvand F., Rafati S. Generation of stable L. major(+EGFP-LUC) and simultaneous comparison between EGFP and luciferase sensitivity. Exp. Parasitol. 2015;150:44–55. doi: 10.1016/j.exppara.2015.01.008. [DOI] [PubMed] [Google Scholar]
- Thalhofer C.J., Chen Y., Sudan B., Love-Homan L., Wilson M.E. Leukocytes infiltrate the skin and draining lymph nodes in response to the protozoan Leishmania infantum chagasi. Infect. Immun. 2011;79(1):108–117. doi: 10.1128/IAI.00338-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thalhofer C.J., Graff J.W., Love-Homan L., Hickerson S.M., Craft N., Beverley S.M., Wilson M.E. In vivo imaging of transgenic Leishmania parasites in a live host. J. Vis. Exp. 2010;(41) doi: 10.3791/1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanz S.K., Castleden I., Small I.D., Millar A.H. Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Front. Plant Sci. 2013;4:214. doi: 10.3389/fpls.2013.00214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teixeira D.E., Benchimol M., Rodrigues J.C., Crepaldi P.H., Pimenta P.F., de Souza W. The cell biology of Leishmania: how to teach using animations. PLoS Pathog. 2013;9(10) doi: 10.1371/journal.ppat.1003594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telittchenko R., Descoteaux A. Study on the Occurrence of Genetic Exchange Among Parasites of the Leishmania mexicana Complex. Front. Cell Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.607253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tetaud E., Lecuix I., Sheldrake T., Baltz T., Fairlamb A.H. A new expression vector for Crithidia fasciculata and Leishmania. Mol. Biochem. Parasitol. 2002;120(2):195–204. doi: 10.1016/s0166-6851(02)00002-6. [DOI] [PubMed] [Google Scholar]
- Turra G.L., Schneider L., Liedgens L., Deponte M. Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Mol. Biochem. Parasitol. 2021;241 doi: 10.1016/j.molbiopara.2020.111336. [DOI] [PubMed] [Google Scholar]
- Uliana S.R., Fischer W., Stempliuk V.A., Floeter-Winter L.M. Structural and functional characterization of the Leishmania amazonensis ribosomal RNA promoter. Mol. Biochem. Parasitol. 1996;76(1-2):245–255. doi: 10.1016/0166-6851(95)02562-6. [DOI] [PubMed] [Google Scholar]
- Ullu E., Matthews K.R., Tschudi C. Temporal order of RNA-processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts. Mol. Cell. Biol. 1993;13(1):720–725. doi: 10.1128/mcb.13.1.720-725.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vacas A., Sugden C., Velasco-Rodriguez Ó., Algarabel-Olona M., Peña-Guerrero J., Larrea E., Nguewa P.A. Construction of two mCherry plasmids (pXG-mCherry) for transgenic. J. Parasitol. Res. 2017;2017 doi: 10.1155/2017/1964531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vacchina P., Morales M.A. In vitro screening test using Leishmania promastigotes stably expressing mCherry protein. Antimicrob. Agents Chemother. 2014;58(3):1825–1828. doi: 10.1128/AAC.02224-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varela M.R.E., Lorena Muñoz D., Robledo S.M., Kolli B.K., Dutta S., Chang K.P., Muskus C. Leishmania (Viannia) panamensis: an in vitro assay using the expression of GFP for screening of antileishmanial drug. Exp. Parasitol. 2009;122(2):134–139. doi: 10.1016/j.exppara.2009.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Beneke T., Gluenz E., Wheeler R.J. The single flagellum of Leishmania has a fixed polarisation of its asymmetric beat. J. Cell Sci. 2020;133(20) doi: 10.1242/jcs.246637. jcs246637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHO . World Health Organization; 2022. Leishmaniasis Fact Sheet.https://www.who.int/news-room/fact-sheets/detail/leishmaniasis Retrieved 13 Jun from: <. [Google Scholar]
- Williams T.M., Burlein J.E., Ogden S., Kricka L.J., Kant J.A. Advantages of firefly luciferase as a reporter gene: application to the interleukin-2 gene promoter. Anal. Biochem. 1989;176(1):28–32. doi: 10.1016/0003-2697(89)90267-4. [DOI] [PubMed] [Google Scholar]
- Wilson A.C., Patient R.K. Evaluation of extrachromosomal gene copy number of transiently transfected cell lines. Methods Mol. Biol. 1991;7:397–404. doi: 10.1385/0-89603-178-0:397. [DOI] [PubMed] [Google Scholar]
- Wood K.V. Marker proteins for gene expression. Curr. Opin. Biotechnol. 1995;6(1):50–58. doi: 10.1016/0958-1669(95)80009-3. [DOI] [PubMed] [Google Scholar]
- Wu Y., El Fakhry Y., Sereno D., Tamar S., Papadopoulou B. A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Mol. Biochem. Parasitol. 2000;110(2):345–357. doi: 10.1016/s0166-6851(00)00290-5. [DOI] [PubMed] [Google Scholar]
- Yan S., Martinez-Calvillo S., Schnaufer A., Sunkin S., Myler P.J., Stuart K. A low-background inducible promoter system in Leishmania donovani. Mol. Biochem. Parasitol. 2002;119(2):217–223. doi: 10.1016/s0166-6851(01)00418-2. [DOI] [PubMed] [Google Scholar]
- Young S.L., Barbera L., Kaynard A.H., Haugland R.P., Kang H.C., Brinkley M., Melner M.H. A nonradioactive assay for transfected chloramphenicol acetyltransferase activity using fluorescent substrates. Anal. Biochem. 1991;197(2):401–407. doi: 10.1016/0003-2697(91)90411-l. [DOI] [PubMed] [Google Scholar]
- Zhang K., Kurachi S., Kurachi K. Limitation in use of heterologous reporter genes for gene promoter analysis. Silencer activity associated with the cloramphenicol acetyltransferase reporter gene. J. Biol. Chem. 2003;278(7):4826–4830. doi: 10.1074/jbc.M211361200. [DOI] [PubMed] [Google Scholar]
- Zilberstein D. Lysosome sensing is a key mechanism in Leishmania intracellular development [Mini review] Front. Microbiol. 2021;12 doi: 10.3389/fmicb.2021.667807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlokarnik G. [15]Fusions to β-lactamase as a reporter for gene expression in live mammalian cells. Methods Enzymol. 2000;326:221–241. doi: 10.1016/S0076-6879(00)26057-6. Academic Press. [DOI] [PubMed] [Google Scholar]
- Zlokarnik G., Negulescu P.A., Knapp T.E., Mere L., Burres N., Feng L., Tsien R.Y. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science. 1998;279(5347):84–88. doi: 10.1126/science.279.5347.84. [DOI] [PubMed] [Google Scholar]
- Zorgi N.E., Arruda L.V., Paladine I., Roque G.A.S., Araújo T.F., Brocchi M., Giorgio S. Leishmania infantum transfected with toxic plasmid induces protection in mice infected with wild type L. infantum or L. amazonensis. Mol. Immunol. 2020;127:95–106. doi: 10.1016/j.molimm.2020.08.006. . . [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No data was used for the research described in the article.



