Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Jul 20;13(3):246–255. doi: 10.1007/s12200-020-1050-y

Possible top cells for next-generation Si-based tandem solar cells

Shuaicheng Lu 1, Chao Chen 1,, Jiang Tang 1
PMCID: PMC9743844  PMID: 36641575

Abstract

Si-based solar cells, which have the advantages of high efficiency, low manufacturing costs, and outstanding stability, are dominant in the photovoltaic market. Currently, state-of-the-art Si-based solar cells are approaching the practical limit of efficiency. Constructing Si-based tandem solar cells is one available pathway to break the theoretical efficiency limit of single-junction silicon solar cells. Various top cells have been explored recently in the construction of Si-based tandem devices. Nevertheless, many challenges still stand in the way of extensive commercial application of Si-based tandem solar cells. Herein, we summarize the recent progress of representative Si-based tandem solar cells with different top cells, such as III-V solar cells, wide-bandgap perovskite solar cells, cadmium telluride (CdTe)-related solar cells, Cu(In,Ga)(Se,S)2 (CIGS)-related solar cells, and amorphous silicon (a-Si) solar cells, and we analyze the main bottlenecks for their next steps of development. Subsequently, we suggest several potential candidate top cells for Si-based tandem devices, such as Sb2S3, Se, CdSe, and Cu2O. These materials have great potential for the development of high-performance and low-cost Si-based tandem solar cells in the future.

graphic file with name 12200_2020_1050_Fig1_HTML.jpg

Keywords: photovoltaic market, Si-based solar cell, efficiency limit, tandem, top cell

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61725401 and 61904058), the National Key R&D Program of China (No. 2016YFA0204000), the Innovation Fund of Wuhan National Laboratory for Optoelectronics, National Postdoctoral Program for Innovative Talent (No. BX20190127), China Postdoctoral Science Foundation Project (No. 2019M662623), and the Graduates’ Innovation Fund of Huazhong University of Science and Technology (No. 2019ygscxcy022).

Footnotes

Shuaicheng Lu obtained his Bachelor’s degree from Huazhong University of Science and Technology (HUST), China in 2016. Then he joined Wuhan National Laboratory for Optoelectronics (WNLO) at HUST as a Ph.D. candidate. His research interests include quasi-one-dimensional photovoltaic semiconductors and physical characterization techniques for photovoltaic materials and devices.

Dr. Chao Chen received his B.S. degree from School of Physics, Huazhong University of Science and Technology, China in 2014/06. From 2014/09-2019/02, he studied in Wuhan National Laboratory for Optoelectronics at Huazhong University of Science and Technology as a doctoral candidate and received his Ph.D. degree in 2019/02. Currently, he is a post-doctorin Wuhan National Laboratory for Optoelectronics at Huazhong University of Science and Technology, China. His research interests are thin film solar cells and photodetectors.

Prof. Jiang Tang is a professor at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China. He obtained his Ph.D. degree from University of Toronto, Canada at 2010. His research interest is optoelectronic devices including X-ray and infrared detectors, thin film solar cells and light emitting diodes. He has published > 150 papers, filed > 30 patents and received the funding for exceptional young researchers from the National Natural Science Foundation of China.

References

  • 1.BP p.l.c. BP Statistical Review of World Energy. UK. 2019, 51
  • 2.Fraunhofer Institute for Solar Energy Systems. Photovolatics Report. Germany. 2019, 21–15
  • 3.Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics. 2013;3(4):1184–1191. [Google Scholar]
  • 4.NREL. Best Research-Cell Efficiencies. 2020
  • 5.Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic materials: present efficiencies and future challenges. Science. 2016;352(6283):aad4424. doi: 10.1126/science.aad4424. [DOI] [PubMed] [Google Scholar]
  • 6.Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nature Energy. 2018;3(11):1002–1012. [Google Scholar]
  • 7.Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Ho-Baillie A W. Solar cell efficiency tables (Version 55) Progress in Photovoltaics: Research and Applications. 2020;28(1):3–15. [Google Scholar]
  • 8.Yu Z S, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nature Energy. 2016;1(11):16137. [Google Scholar]
  • 9.Leijtens T, Bush K A, Prasanna R, McGehee M D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy. 2018;3(10):828–838. [Google Scholar]
  • 10.Bremner S, Levy M, Honsberg C B. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications. 2008;16(3):225–233. [Google Scholar]
  • 11.Yamaguchi M, Lee K H, Araki K, Kojima N. A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D, Applied Physics. 2018;51(13):133002. [Google Scholar]
  • 12.White T P, Lal N N, Catchpole K R. Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for > 30% efficiency. IEEE Journal of Photovoltaics. 2014;4(1):208–214. [Google Scholar]
  • 13.Kayes B M, Nie H, Twist R, Spruytte S G, Reinhardt F, Kizilyalli I C, Higashi G S. Proceedings of the 37th IEEE Photovoltaic Specialists Conference. Seattle: IEEE; 2011. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination; pp. 000004–000008. [Google Scholar]
  • 14.Geisz J F, Steiner M A, Jain N, Schulte K L, France R M, McMahon W E, Perl E E, Friedman D J. Building a six-junction inverted metamorphic concentrator solar cell. IEEE Journal of Photovoltaics. 2018;8(2):626–632. [Google Scholar]
  • 15.Essig S, Allebé C, Remo T, Geisz J F, Steiner M A, Horowitz K, Barraud L, Ward J S, Schnabel M, Descoeudres A, Young D L, Woodhouse M, Despeisse M, Ballif C, Tamboli A. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy. 2017;2(9):17144. [Google Scholar]
  • 16.Xu J, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van Hest MFAM, Berry J J, Luther J M, Holman Z C, McGehee M D. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science. 2020;367(6482):1097–1104. doi: 10.1126/science.aaz5074. [DOI] [PubMed] [Google Scholar]
  • 17.Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) Nature. 2019;567(7749):511–515. doi: 10.1038/s41586-019-1036-3. [DOI] [PubMed] [Google Scholar]
  • 18.Lal N N, Dkhissi Y, Li W, Hou Q, Cheng Y B, Bach U. Perovskite tandem solar cells. Advanced Energy Materials. 2017;7(18):1602761. [Google Scholar]
  • 19.Grassman T J, Chmielewski D J, Carnevale S D, Carlin J A, Ringel S A. GaAs0.75P0.25/Si dual-junction solar cells grown by MBE and MOCVD. IEEE Journal of Photovoltaics. 2016;6(1):326–331. [Google Scholar]
  • 20.Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Scientific Reports. 2012;2(1):349. doi: 10.1038/srep00349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Cariou R, Benick J, Feldmann F, Höhn O, Hauser H, Beutel P, Razek N, Wimplinger M, Bläsi B, Lackner D, Hermle M, Siefer G, Glunz S W, Bett A W, Dimroth F. III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy. 2018;3(4):326–333. [Google Scholar]
  • 22.Feifel M, Lackner D, Ohlmann J, Benick J, Hermle M, Dimroth F. Direct growth of a GaInP/GaAs/Si triple-junction solar cell with 22.3% AM1.5G efficiency. Solar RRL. 2019;3(12):1900313. [Google Scholar]
  • 23.Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science. 2020;367(6482):1135–1140. doi: 10.1126/science.aaz3691. [DOI] [PubMed] [Google Scholar]
  • 24.Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25% Advanced Energy Materials. 2019;9(14):1803241. [Google Scholar]
  • 25.Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials. 2018;17(9):820–826. doi: 10.1038/s41563-018-0115-4. [DOI] [PubMed] [Google Scholar]
  • 26.Jaysankar M, Raul B A, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters. 2019;4(1):259–264. [Google Scholar]
  • 27.Carmody M, Mallick S, Margetis J, Kodama R, Biegala T, Xu D, Bechmann P, Garland J, Sivananthan S. Single-crystal II–VI on Si single-junction and tandem solar cells. Applied Physics Letters. 2010;96(15):153502. [Google Scholar]
  • 28.Sivananthan S, Garland J W, Carmody M W. Proceedings of Energy Harvesting and Storage: Materials, Devices, and Applications. Orlando: SPIE; 2010. Multijunction single-crystal CdTe-based solar cells: opportunities and challenges; p. 76830N. [Google Scholar]
  • 29.Noufi R, Young D L, Courts T J, Gessert T, Ward J S, Duda A, Wu X, Romero M, Dhere R, Shama J A. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka: IEEE; 2003. Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues; pp. 12–14. [Google Scholar]
  • 30.Jeong A R, Choi S B, Kim W M, Park J K, Choi J, Kim I, Jeong J H. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Scientific Reports. 2017;7(1):15723. doi: 10.1038/s41598-017-15998-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Matsumoto Y, Miyagi K, Takakura H, Okamoto H, Hamakawa Y. Proceedings of IEEE Conference on Photovoltaic Specialists. Kissimmee: IEEE; 1990. a-Si/poly-Si two-and four-terminal tandem type solar cells; pp. 1420–1425. [Google Scholar]
  • 32.Shen H, Walter D, Wu Y, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R. Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Advanced Energy Materials. 2020;10(13):1902840. [Google Scholar]
  • 33.Todorov T, Gunawan O, Guha S. A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering. 2016;1(4):370–376. [Google Scholar]
  • 34.Scheer R, Schock H W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Weinheim: John Wiley & Sons; 2011. p. 178. [Google Scholar]
  • 35.Bosio A, Rosa G, Romeo N. Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy. 2018;175:31–43. [Google Scholar]
  • 36.Todorov T K, Bishop D M, Lee Y S. Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells. 2018;180:350–357. [Google Scholar]
  • 37.Becker J J, Campbell C M, Tsai C, Zhao Y, Lassise M, Zhao X, Boccard M, Holman Z C, Zhang Y. Monocrystalline 1.7-eV-bandgap MgCdTe solar cell with 11.2% efficiency. IEEE Journal of Photovoltaics. 2018;8(2):581–586. [Google Scholar]
  • 38.Swanson D E, Reich C, Abbas A, Shimpi T, Liu H, Ponce F A, Walls J M, Zhang Y H, Metzger W K, Sampath W S, Holman Z C. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics. 2018;123(20):203101. [Google Scholar]
  • 39.Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H. Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35% IEEE Journal of Photovoltaics. 2019;9(6):1863–1867. [Google Scholar]
  • 40.Jordan D C, Kurtz S R. Photovoltaic degradation rates-an analytical review. Progress in Photovoltaics: Research and Applications. 2013;21(1):12–29. [Google Scholar]
  • 41.Yi J. New generation multijunction solar cells for achieving high efficiencies. Current Photovoltaic Research. 2018;6(2):31–38. [Google Scholar]
  • 42.Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S. Impact of a binary Ga2Se3 precursor on ternary CuGaSe2 thin-film and solar cell device properties. Applied Physics Letters. 2013;103(14):143903. [Google Scholar]
  • 43.Hiroi H, Iwata Y, Adachi S, Sugimoto H, Yamada A. New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE Journal of Photovoltaics. 2016;6(3):760–763. [Google Scholar]
  • 44.Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule. 2018;2(5):857–878. [Google Scholar]
  • 45.Sai H, Matsui T, Kumagai H, Matsubara K. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express. 2018;11(2):022301. [Google Scholar]
  • 46.Navaraj W T, Yadav B K, Kumar A. Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/crystalline silicon tandem solar cell. Journal of Computational Electronics. 2016;15(1):287–294. [Google Scholar]
  • 47.Matsui T, Maejima K, Bidiville A, Sai H, Koida T, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M. High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design. Japanese Journal of Applied Physics. 2015;54(8S1):08KB10. [Google Scholar]
  • 48.Tiedje T. Band tail recombination limit to the output voltage of amorphous silicon solar cells. Applied Physics Letters. 1982;40(7):627–629. [Google Scholar]
  • 49.Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy. 2016;130:139–147. [Google Scholar]
  • 50.Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics. 1961;32(3):510–519. [Google Scholar]
  • 51.Castro-Hermosa S, Yadav S K, Vesce L, Guidobaldi A, Reale A, Di Carlo A, Brown T M. Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal of Physics D, Applied Physics. 2017;50(3):033001. [Google Scholar]
  • 52.Owens C, Ferguson G M, Hermenau M, Voroshazi E, Galagan Y, Zimmermann B, Rösch R, Angmo D, Teran-Escobar G, Uhrich C, Andriessen R, Hoppe H, Würfel U, Lira-Cantu M, Krebs F C, Tanenbaum D M. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration. Polymers. 2015;8(1):1. doi: 10.3390/polym8010001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Choi Y C, Lee D U, Noh J H, Kim E K, Seok S I. Highly improved Sb2S3 sensitized-inorganic-organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Advanced Functional Materials. 2014;24(23):3587–3592. [Google Scholar]
  • 54.Todorov T K, Singh S, Bishop D M, Gunawan O, Lee Y S, Gershon T S, Brew K W, Antunez P D, Haight R. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nature Communications. 2017;8(1):682. doi: 10.1038/s41467-017-00582-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Rickus E. Proceedings of the 4th EC Photovoltaic Solar Energy Conference. Dordrecht: Springer; 1982. Photovoltaic behaviour of CdSe thin film solar cells; pp. 831–835. [Google Scholar]
  • 56.Minami T, Nishi Y, Miyata T. Efficiency enhancement using a Zn1xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Applied Physics Express. 2016;9(5):052301. [Google Scholar]
  • 57.Wong L H, Zakutayev A, Major J D, Hao X, Walsh A, Todorov T K, Saucedo E. Emerging inorganic solar cell efficiency tables (Version 1) Journal of Physics: Energy. 2019;1(3):032001. [Google Scholar]
  • 58.Minami T, Nishi Y, Miyata T. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Applied Physics Express. 2013;6(4):044101. [Google Scholar]
  • 59.Lei H, Chen J, Tan Z, Fang G. Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL. 2019;3(6):1900026. [Google Scholar]
  • 60.Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T, Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy. 2020;201:227–246. [Google Scholar]
  • 61.Han J, Wang S, Yang J, Guo S, Cao Q, Tang H, Pu X, Gao B, Li X. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Applied Materials & Interfaces. 2020;12(4):4970–4979. doi: 10.1021/acsami.9b15148. [DOI] [PubMed] [Google Scholar]
  • 62.Jiang C H, Tang R F, Wang X M, Ju H X, Chen G L, Chen T. Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Solar RRL. 2019;3(1):1800272. [Google Scholar]
  • 63.Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy. 2017;2(4):17046. [Google Scholar]
  • 64.Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics. 2015;9(6):409–415. [Google Scholar]
  • 65.Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K, Webster R, Wu H, Chen Z, Yi F, Song H, Hao X, Tang J. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials. 2019;29(31):1901720. [Google Scholar]
  • 66.Cao Y, Zhu X, Jiang J, Liu C, Zhou J, Ni J, Zhang J, Pang J. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Solar Energy Materials and Solar Cells. 2020;206:110279. [Google Scholar]
  • 67.Zhang J, Lian W, Yin Y, Wang X, Tang R, Qian C, Hao X, Zhu C, Chen T. All antimony chalcogenide tandem solar cell. Solar RRL. 2020;4(4):2000048. [Google Scholar]
  • 68.Zhu M, Niu G, Tang J. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices. 2019;7(8):2199–2206. [Google Scholar]
  • 69.Hadar I, Hu X, Luo Z Z, Dravid V P, Kanatzidis M G. Nonlinear band gap tunability in selenium tellurium alloys and its utilization in solar cells. ACS Energy Letters. 2019;4(9):2137–2143. [Google Scholar]
  • 70.Bagheri B, Kottokkaran R, Poly L P, Sharikadze S, Reichert B, Noack M, Dalal V. Proceedings of the 46th IEEE Photovoltaic Specialists Conference (PVSC) Chicago: IEEE; 2019. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation; p. 1822 1825. [Google Scholar]
  • 71.Mahawela P, Jeedigunta S, Vakkalanka S, Ferekides C S, Morel D L. Transparent high-performance CDSE thin-film solar cells. Thin Solid Films. 2005;480–481:466–470. [Google Scholar]
  • 72.Patel N G, Panchal C J, Makhija K K, Patel P G, Patel S S. Fabrication and characterization of ZnTe/CdSe thin film solar cells. Crystal Research and Technology. 1994;29(2):247–252. [Google Scholar]
  • 73.Shenouda A Y, El Sayed E S M. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe. Ain Shams Engineering Journal. 2015;6(1):341–346. [Google Scholar]
  • 74.Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society. 1993;115(19):8706–8715. [Google Scholar]
  • 75.Frese K W., Jr. A high-efficiency single-crystal cdse photoelectrochemical solar-cell and an associated loss mechanism. Applied Physics Letters. 1982;40(3):275–277. [Google Scholar]
  • 76.Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodréguez A, Saucedo E. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Advanced Materials. 2019;31(16):1806692. doi: 10.1002/adma.201806692. [DOI] [PubMed] [Google Scholar]
  • 77.Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Advanced Materials. 2014;26(27):4704–4710. doi: 10.1002/adma.201401054. [DOI] [PubMed] [Google Scholar]
  • 78.Eisermann S, Kronenberger A, Laufer A, Bieber J, Haas G, Lautenschläger S, Homm G, Klar P J, Meyer B K. Copper oxide thin films by chemical vapor deposition: Synthesis, characterization and electrical properties. Physica Status Solidi (a) 2012;209(3):531–536. [Google Scholar]
  • 79.Lee Y S, Heo J, Siah S C, Mailoa J P, Brandt R E, Kim S B, Gordon R G, Buonassisi T. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy & Environmental Science. 2013;6(7):2112–2118. [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES