Abstract
Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the state-of-the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.
Keywords: optical fibers, semiconductor photonics, nonlinear optics
Acknowledgements
The authors acknowledge UKRI and EPSRC for financial support under the grant EP/R021503/1.
Footnotes
Hei Chit Leo Tsui is a research associate in the Emerging Technologies and Materials (ETM) Group at Newcastle University, UK. He received his Ph.D. degree in Materials Physics from Imperial College London, UK, and was a research associate in the Photon Science Institute at The University of Manchester, UK. His current research interests include photonic materials and optical characterisations.
E-mail: hei.tsui@newcastle.ac.uk
Noel Healy is the Head of the Emerging Technologies and Materials (ETM) Group and a Professor of Photonics at Newcastle University, UK. He is the Director of Research and Innovation at the School of Mathematics, Statistic, and Physics and Director of the Photon Science Laboratory which is a state-of-the-art photonics research facility that specialises in novel photonics materials and fibers, optical characterisation and ultra-fast light-matter interactions. Prior to his time at Newcastle, Prof. Healy spent eight years as a Senior Research Fellow at the Optoelectronics Research Centre at the University of Southampton, UK. He is an author on more than 190 papers for top scientific journals and international conferences; including > 30 invited presentations.
E-mail: noel.healy@newcastle.ac.uk
Contributor Information
Hei Chit Leo Tsui, Email: hei.tsui@newcastle.ac.uk.
Noel Healy, Email: noel.healy@newcastle.ac.uk.
References
- 1.Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters. 1987;12(11):888–890. doi: 10.1364/ol.12.000888. [DOI] [PubMed] [Google Scholar]
- 2.Mears R, Reekie L, Jauncey I, Payne D. Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electronics Letters. 1987;23(2):1026–1028. [Google Scholar]
- 3.Urquhart P. Review of rare earth doped fibre lasers and amplifiers. IEE Proceedings J (Optoelectronics) 1988;135(6):385–107. [Google Scholar]
- 4.Miniscalco W J. Erbium-doped glasses for fiber amplifiers at 1500 nm. Journal of Lightwave Technology. 1991;9(2):234–250. [Google Scholar]
- 5.Giles C R, Desurvire E. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology. 1991;9(2):271–283. [Google Scholar]
- 6.Agrawal G P. Optical pulse propagation in doped fiber amplifiers. Physical Review A. 1991;44(11):7493–7501. doi: 10.1103/physreva.44.7493. [DOI] [PubMed] [Google Scholar]
- 7.Barnard C, Myslinski P, Chrostowski J, Kavehrad M. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics. 1994;30(8):1817–1830. [Google Scholar]
- 8.Seddon A B, Tang Z, Furniss D, Sujecki S, Benson T M. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express. 2010;18(25):26704–26719. doi: 10.1364/OE.18.026704. [DOI] [PubMed] [Google Scholar]
- 9.Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives. Journal of the Optical Society of America B, Optical Physics. 2010;27(11):B63–B92. [Google Scholar]
- 10.Peacock A C, Healy N. Semiconductor optical fibres for infrared applications: a review. Semiconductor Science and Technology. 2016;31(10):103004. [Google Scholar]
- 11.Dragic P D, Cavillon M, Ballato J. Materials for optical fiber lasers: a review. Applied Physics Reviews. 2018;5(4):041301. [Google Scholar]
- 12.Wetenkamp L, West G F, Többen H. Optical properties of rare earth-doped ZBLAN glasses. Journal of Non-Crystalline Solids. 1992;140:35–40. [Google Scholar]
- 13.Miyajima Y, Komukai T, Sugawa T, Yamamoto T. Rare earth-doped fluoride fiber amplifiers and fiber lasers. Optical Fiber Technology. 1994;1(1):35–47. [Google Scholar]
- 14.Wang J, Vogel E, Snitzer E. Tellurite glass: a new candidate for fiber devices. Optical Materials. 1994;3(3):187–203. [Google Scholar]
- 15.Sidebottom D, Hruschka M, Potter B, Brow R. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses. Journal of Non-Crystalline Solids. 1997;222(1–2):282–289. [Google Scholar]
- 16.Clara Gonçalves M, Santos L F, Almeida R M. Rare-earth-doped transparent glass ceramics. Comptes Rendus Chimie. 2002;5(12):845–854. [Google Scholar]
- 17.Sanghera J S, Brandon Shaw L, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE Journal of Selected Topics in Quantum Electronics. 2009;15(1):114–119. [Google Scholar]
- 18.Boetti N G, Pugliese D, Ceci-Ginistrelli E, Lousteau J, Janner D, Milanese D. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Applied Sciences (Basel, Switzerland) 2017;7(12):1295. [Google Scholar]
- 19.Richardson K, Krol D, Hirao K. Glasses for photonic applications. International Journal of Applied Glass Science. 2010;1(1):74–86. [Google Scholar]
- 20.Dajani I, Zhu X, Peyghambarian N. High-power ZBLAN glass fiber lasers: review and prospect. Advances in OptoElectronics. 2010;2010:501956. [Google Scholar]
- 21.Calvez L. Chalcogenide glasses and glass-ceramics: transparent materials in the infrared for dual applications. Comptes Rendus Physique. 2017;18(5–6):314–322. [Google Scholar]
- 22.Harbold J M, Ilday F O, Wise F W, Sanghera J S, Nguyen V Q, Shaw L B, Aggarwal I D. Highly nonlinear As-S-Se glasses for all-optical switching. Optics Letters. 2002;27(2):119–121. doi: 10.1364/ol.27.000119. [DOI] [PubMed] [Google Scholar]
- 23.Sanghera J S, Shaw L B, Pureza P, Nguyen V Q, Gibson D, Busse L, Aggarwal I D, Florea C M, Kung F H. Nonlinear properties of chalcogenide glass fibers. International Journal of Applied Glass Science. 2010;1(3):296–308. [Google Scholar]
- 24.Gan F. Optical properties of fluoride glasses: a review. Journal of Non-Crystalline Solids. 1995;184:9–20. [Google Scholar]
- 25.Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics. Nature Photonics. 2011;5(3):141–148. [Google Scholar]
- 26.Ballato J, Hawkins T, Foy P, Yazgan-Kokuoz B, McMillen C, Burka L, Morris S, Stolen R, Rice R. Advancements in semiconductor core optical fiber. Optical Fiber Technology. 2010;16(6):399–408. [Google Scholar]
- 27.Peacock A C, Sparks J R, Healy N. Semiconductor optical fibres: progress and opportunities. Laser & Photonics Reviews. 2014;8(1):53–72. [Google Scholar]
- 28.Peacock A C, Gibson U J, Ballato J. Silicon optical fibres—past, present, and future. Advances in Physics: X. 2016;1(1):114–127. [Google Scholar]
- 29.Ordu M, Basu S N. Recent progress in germanium-core optical fibers for mid-infrared optics. Infrared Physics & Technology. 2020;111:103507. [Google Scholar]
- 30.Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Advanced Materials. 2019;31(1):e1802348. doi: 10.1002/adma.201802348. [DOI] [PubMed] [Google Scholar]
- 31.Wang Z, Chen M, Zheng Y, Zhang J, Wang Z, Yang J, Zhang Q, He B, Qi M, Zhang H, Li K, Wei L. Advanced thermally drawn multimaterial fibers: structure-enabled functionalities. Advanced Devices & Instrumentation. 2021;2021:9676470. [Google Scholar]
- 32.Bayindir M, Sorin F, Abouraddy A F, Viens J, Hart S D, Joannopoulos J D, Fink Y. Metal-insulator-semiconductor optoelectronic fibres. Nature. 2004;431(7010):826–829. doi: 10.1038/nature02937. [DOI] [PubMed] [Google Scholar]
- 33.Abouraddy A F, Shapira O, Bayindir M, Arnold J, Sorin F, Hinczewski D S, Joannopoulos J D, Fink Y. Large-scale optical-field measurements with geometric fibre constructs. Nature Materials. 2006;5(7):532–536. doi: 10.1038/nmat1674. [DOI] [PubMed] [Google Scholar]
- 34.Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy. 2017;41:35–42. [Google Scholar]
- 35.Zhang T, Wang Z, Srinivasan B, Wang Z, Zhang J, Li K, Boussard-Pledel C, Troles J, Bureau B, Wei L. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Applied Materials & Interfaces. 2019;11(2):2441–2447. doi: 10.1021/acsami.8b20307. [DOI] [PubMed] [Google Scholar]
- 36.Zhang J, Zhang T, Zhang H, Wang Z, Li C, Wang Z, Li K, Huang X, Chen M, Chen Z, Tian Z, Chen H, Zhao L D, Wei L. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Advanced Materials. 2020;32(36):e2002702. doi: 10.1002/adma.202002702. [DOI] [PubMed] [Google Scholar]
- 37.Sazio P J A, Amezcua-Correa A, Finlayson C E, Hayes J R, Scheidemantel T J, Baril N F, Jackson B R, Won D J, Zhang F, Margine E R, Gopalan V, Crespi V H, Badding J V. Microstructured optical fibers as high-pressure microfluidic reactors. Science. 2006;311(5767):1583–1586. doi: 10.1126/science.1124281. [DOI] [PubMed] [Google Scholar]
- 38.Healy N, Lagonigro L, Sparks J R, Boden S, Sazio P J A, Badding J V, Peacock A C. Polycrystalline silicon optical fibers with atomically smooth surfaces. Optics Letters. 2011;36(13):2480–2482. doi: 10.1364/OL.36.002480. [DOI] [PubMed] [Google Scholar]
- 39.Sparks J R, Sazio P J, Gopalan V, Badding J V. Templated chemically deposited semiconductor optical fiber materials. Annual Review of Materials Research. 2013;43(1):527–557. [Google Scholar]
- 40.Healy N, Gibson U, Peacock A C. A review of materials engineering in silicon-based optical fibres. Semiconductor Science and Technology. 2018;33(2):023001. [Google Scholar]
- 41.Tyagi H K, Schmidt M A, Prill Sempere L, Russell P S. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Optics Express. 2008;16(22):17227–17236. doi: 10.1364/oe.16.017227. [DOI] [PubMed] [Google Scholar]
- 42.Lee H W, Schmidt M A, Russell R F, Joly N Y, Tyagi H K, Uebel P, Russell P S J. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express. 2011;19(13):12180–12189. doi: 10.1364/OE.19.012180. [DOI] [PubMed] [Google Scholar]
- 43.Chen H, Fan S, Li G, Schmidt M A, Healy N. Single crystal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization. IEEE Photonics Technology Letters. 2020;32(2):81–84. [Google Scholar]
- 44.Ballato J, Snitzer E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Applied Optics. 1995;34(30):6848–6854. doi: 10.1364/AO.34.006848. [DOI] [PubMed] [Google Scholar]
- 45.Ballato J, Hawkins T, Foy P, Stolen R, Kokuoz B, Ellison M, McMillen C, Reppert J, Rao A M, Daw M, Sharma S R, Shori R, Stafsudd O, Rice R R, Powers D R. Silicon optical fiber. Optics Express. 2008;16(23):18675–18683. doi: 10.1364/oe.16.018675. [DOI] [PubMed] [Google Scholar]
- 46.Scott B L, Pickrell G R. Silicon optical fiber diameter dependent grain size. Journal of Crystal Growth. 2013;371:134–141. [Google Scholar]
- 47.Ballato J, Hawkins T, Foy P, Yazgan-Kokuoz B, Stolen R, McMillen C, Hon N K, Jalali B, Rice R. Glass-clad single-crystal germanium optical fiber. Optics Express. 2009;17(10):8029–8035. doi: 10.1364/oe.17.008029. [DOI] [PubMed] [Google Scholar]
- 48.Nordstrand E F, Dibbs A N, Eraker A J, Gibson U J. Alkaline oxide interface modifiers for silicon fiber production. Optical Materials Express. 2013;3(5):651–657. [Google Scholar]
- 49.Hou C, Jia X, Wei L, Tan S C, Zhao X, Joannopoulos J D, Fink Y. Crystalline silicon core fibres from aluminium core preforms. Nature Communications. 2015;6(1):6248. doi: 10.1038/ncomms7248. [DOI] [PubMed] [Google Scholar]
- 50.Hou C, Jia X, Wei L, Stolyarov A M, Shapira O, Joannopoulos J D, Fink Y. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Letters. 2013;13(3):975–979. doi: 10.1021/nl304023z. [DOI] [PubMed] [Google Scholar]
- 51.Spinella C, Lombardo S, Priolo F. Crystal grain nucleation in amorphous silicon. Journal of Applied Physics. 1998;84(10):5383–5414. [Google Scholar]
- 52.Bo X Z, Yao N, Shieh S R, Duffy T S, Sturm J C. Large-grain polycrystalline silicon films with low intra- granular defect density by low-temperature solid-phase crystallization without underlying oxide. Journal of Applied Physics. 2002;91(5):2910–2915. [Google Scholar]
- 53.Chaudhuri S, Sparks J R, Ji X, Krishnamurthi M, Shen L, Healy N, Peacock A C, Gopalan V, Badding J V. Crystalline silicon optical fibers with low optical loss. ACS Photonics. 2016;3(3):378–384. [Google Scholar]
- 54.Gupta N, McMillen C, Singh R, Podila R, Rao A M, Hawkins T, Foy P, Morris S, Rice R, Poole K F, Zhu L, Ballato J. Annealing of silicon optical fibers. Journal of Applied Physics. 2011;110(9):093107. [Google Scholar]
- 55.Xue S, van Eijkelenborg M A, Barton G W, Hambley P. Theoretical, numerical, and experimental analysis of optical fiber tapering. Journal of Lightwave Technology. 2007;25(5):1169–1176. [Google Scholar]
- 56.Suhailin F H, Shen L, Healy N, Xiao L, Jones M, Hawkins T, Ballato J, Gibson U J, Peacock A C. Tapered polysilicon core fibers for nonlinear photonics. Optics Letters. 2016;41(7):1360–1363. doi: 10.1364/OL.41.001360. [DOI] [PubMed] [Google Scholar]
- 57.Franz Y, Runge A F J, Ren H, Healy N, Ignatyev K, Jones M, Hawkins T, Ballato J, Gibson U J, Peacock A C. Material properties of tapered crystalline silicon core fibers. Optical Materials Express. 2017;7(6):2055–2061. [Google Scholar]
- 58.Healy N, Fokine M, Franz Y, Hawkins T, Jones M, Ballato J, Peacock A C, Gibson U J. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss. Advanced Optical Materials. 2016;4(7):1004–1008. [Google Scholar]
- 59.Ji X, Lei S, Yu S Y, Cheng H Y, Liu W, Poilvert N, Xiong Y, Dabo I, Mohney S E, Badding J V, Gopalan V. Single-crystal silicon optical fiber by direct laser crystallization. ACS Photonics. 2017;4(1):85–92. [Google Scholar]
- 60.Zhao Z, Mao Y, Ren L, Zhang J, Chen N, Wang T. CO2 laser annealing of Ge core optical fibers with different laser power. Optical Materials Express. 2019;9(3):1333–1347. [Google Scholar]
- 61.Coucheron D A, Fokine M, Patil N, Breiby D W, Buset O T, Healy N, Peacock A C, Hawkins T, Jones M, Ballato J, Gibson U J. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nature Communications. 2016;7(1):13265. doi: 10.1038/ncomms13265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Wu W, Balci M, Song S, Liu C, Fokine M, Laurell F, Hawkins T, Ballato J, Gibson U J. CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients. Optical Materials Express. 2020;10(4):926–936. [Google Scholar]
- 63.Fokine M, Theodosiou A, Song S, Hawkins T, Ballato J, Kalli K, Gibson U J. Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Optical Materials Express. 2017;7(5):1589. [Google Scholar]
- 64.Healy N, Sparks J R, Petrovich M N, Sazio P J A, Badding J V, Peacock A C. Large mode area silicon microstructured fiber with robust dual mode guidance. Optics Express. 2009;17(20):18076–18082. doi: 10.1364/OE.17.018076. [DOI] [PubMed] [Google Scholar]
- 65.Healy N, Sparks J R, He R R, Sazio P J A, Badding J V, Peacock A C. High index contrast semiconductor ARROW and hybrid ARROW fibers. Optics Express. 2011;19(11):10979–10985. doi: 10.1364/OE.19.010979. [DOI] [PubMed] [Google Scholar]
- 66.Wu D, Shen L, Ren H, Huang M, Lacava C, Campling J, Sun S, Hawkins T W, Gibson U J, Petropoulos P, Ballato J, Peacock A C. Four-wave mixing-based wavelength conversion and parametric amplification in submicron silicon core fibers. IEEE Journal of Selected Topics in Quantum Electronics. 2021;27(2):1–11. [Google Scholar]
- 67.Kudinova M, Bouwmans G, Habert R, Plus S, Baudelle K, Bernard R, Chazallon B, Cassez A, Hamzaoui H E, Vanvincq O, Troles J, Bigot L. Proceedings of SPIE 11276, Optical Components and Materials XVII. San Francisco: SPIE; 2020. Hundreds of meter-long low-loss silicon-core optical fiber; pp. 161–166. [Google Scholar]
- 68.Zhao Z, Ren L, Zhang J, Wang S, Xue F, Mao Y. High temperature annealing of Si core fiber with different annealing time. Optical Fiber Technology. 2020;58:102288. [Google Scholar]
- 69.Finlayson C E, Amezcua-Correa A, Sazio P J A, Baril N F, Badding J V. Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers. Applied Physics Letters. 2007;90(13):132110. [Google Scholar]
- 70.Mehta P, Krishnamurthi M, Healy N, Baril N F, Sparks J R, Sazio P J A, Gopalan V, Badding J V, Peacock A C. Mid-infrared transmission properties of amorphous germanium optical fibers. Applied Physics Letters. 2010;97(7):071117. [Google Scholar]
- 71.Ji X, Page R L, Chaudhuri S, Liu W, Yu S Y, Mohney S E, Badding J V, Gopalan V. Single-crystal germanium core optoelectronic fibers. Advanced Optical Materials. 2017;5(1):1600592. [Google Scholar]
- 72.Ballato J, Hawkins T, Foy P, Morris S, Hon N K, Jalali B, Rice R. Silica-clad crystalline germanium core optical fibers. Optics Letters. 2011;36(5):687–688. doi: 10.1364/OL.36.000687. [DOI] [PubMed] [Google Scholar]
- 73.Ordu M, Guo J, Tai B, Hong M K, Erramilli S, Ramachandran S, Basu S N. Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers. Optical Materials Express. 2017;7(9):3107–3115. [Google Scholar]
- 74.Shi J, Han F, Cui C, Yu Y, Feng X. Mid-infrared dielectric-metal-semiconductor composite fiber. Optics Communications. 2020;459:125093. [Google Scholar]
- 75.Caldwell R S, Fan H Y. Optical properties of tellurium and selenium. Physical Review. 1959;114(3):664–675. [Google Scholar]
- 76.Tang G W, Qian Q, Peng K L, Wen X, Zhou G X, Sun M, Chen X D, Yang Z M. Selenium semiconductor core optical fibers. AIP Advances. 2015;5(2):027113. [Google Scholar]
- 77.Peng S, Tang G, Huang K, Qian Q, Chen D, Zhang Q, Yang Z. Crystalline selenium core optical fibers with low optical loss. Optical Materials Express. 2017;7(6):1804–1812. [Google Scholar]
- 78.Sparks J R, He R, Healy N, Krishnamurthi M, Peacock A C, Sazio P J A, Gopalan V, Badding J V. Zinc selenide optical fibers. Advanced Materials. 2011;23(14):1647–1651. doi: 10.1002/adma.201003214. [DOI] [PubMed] [Google Scholar]
- 79.Sparks J R, Aro S C, He R, Goetz M L, Krug J P, McDaniel S A, Berry P A, Cook G, Schepler K L, Sazio P J, Gopalan V, Badding J V. Chromium doped zinc selenide optical fiber lasers. Optical Materials Express. 2020;10(8):1843–1852. [Google Scholar]
- 80.Huang K, Tang G, Luo Q, Qian G, Yang L, Yuan F, Shi Z, Qian Q, Yang Z. SeTe alloy semiconductor core optical fibers. Materials Research Bulletin. 2018;100:382–385. [Google Scholar]
- 81.Sinobad M, Monat C, Luther-davies B, Ma P, Madden S, Moss D J, Mitchell A, Allioux D, Orobtchouk R, Boutami S, Hartmann J M, Fedeli J M, Grillet C. Mid-infrared octave spanning super-continuum generation to 8.5 in silicon-germanium waveguides. Optica. 2018;5(4):360–366. [Google Scholar]
- 82.Chaudhuri S, Ji X, Huang H T, Day T, Gopalan V, Badding J. Proceedings of Conference on Lasers and Electro-Optics. San Jose: Optical Society of America; 2017. Small core SiGe alloy optical fibers by templated deposition. [Google Scholar]
- 83.Wu W, Balci M H, Mühlberger K, Fokine M, Laurell F, Hawkins T, Ballato J, Gibson U J. Ge-capped SiGe core optical fibers. Optical Materials Express. 2019;9(11):4301–4306. [Google Scholar]
- 84.Ordu M, Guo J, Akosman A E, Erramilli S, Ramachandran S, Basu S N. Effect of thermal annealing on mid-infrared transmission in semiconductor alloy-core glass-cladded fibers. Advanced Fiber Materials. 2020;2(3):178–184. [Google Scholar]
- 85.Gavrushchuk E M. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials. 2003;39(9):883–899. [Google Scholar]
- 86.Sorokina I T. Cr2+-doped II-VI materials for lasers and nonlinear optics. Optical Materials. 2004;26(4):395–412. [Google Scholar]
- 87.Mirov S, Fedorov V, Moskalev I, Martyshkin D, Kim C. Progress in Cr2+ and Fe2+ doped mid-IR laser materials. Laser & Photonics Reviews. 2010;4(1):21–41. [Google Scholar]
- 88.Coco M G, Aro S C, McDaniel S A, Hendrickson A, Krug J P, Sazio P J, Cook G, Gopalan V, Badding J V. Continuous wave Fe2+:ZnSe mid-IR optical fiber lasers. Optics Express. 2020;28(20):30263–30274. doi: 10.1364/OE.402197. [DOI] [PubMed] [Google Scholar]
- 89.Ballato J, Hawkins T, Foy P, McMillen C, Burka L, Reppert J, Podila R, Rao A M, Rice R R. Binary III-V semiconductor core optical fiber. Optics Express. 2010;18(5):4972–4979. doi: 10.1364/OE.18.004972. [DOI] [PubMed] [Google Scholar]
- 90.Song S, Healy N, Svendsen S K, Österberg U L, Covian A V C, Liu J, Peacock A C, Ballato J, Laurell F, Fokine M, Gibson U J. Crystalline GaSb-core optical fibers with room-temperature photoluminescence. Optical Materials Express. 2018;8(6):1435–1440. [Google Scholar]
- 91.Song S, Lønsethagen K, Laurell F, Hawkins T W, Ballato J, Fokine M, Gibson U J. Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nature Communications. 2019;10(1):1790. doi: 10.1038/s41467-019-09835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Tang G, Qian Q, Wen X, Chen X, Liu W, Sun M, Yang Z. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers. Optics Express. 2015;23(18):23624–23633. doi: 10.1364/OE.23.023624. [DOI] [PubMed] [Google Scholar]
- 93.Dudley J M, Genty G, Coen S. Fibre Supercontinuum Generation Overview. Cambridge: Cambridge University Press; 2010. pp. 52–61. [Google Scholar]
- 94.Shen L, Healy N, Xu L, Cheng H Y, Day T D, Price J H V, Badding J V, Peacock A C. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Optics Letters. 2014;39(19):5721–5724. doi: 10.1364/OL.39.005721. [DOI] [PubMed] [Google Scholar]
- 95.Won D J, Ramirez M O, Kang H, Gopalan V, Baril N F, Calkins J, Badding J V, Sazio P J A. All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers. Applied Physics Letters. 2007;91(16):161112. [Google Scholar]
- 96.Mehta P, Healy N, Day T D, Sparks J R, Sazio P J A, Badding J V, Peacock A C. All-optical modulation using two-photon absorption in silicon core optical fibers. Optics Express. 2011;19(20):19078–19083. doi: 10.1364/OE.19.019078. [DOI] [PubMed] [Google Scholar]
- 97.Mehta P, Healy N, Day T D, Badding J V, Peacock A C. Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. Optics Express. 2012;20(24):26110–26116. doi: 10.1364/OE.20.026110. [DOI] [PubMed] [Google Scholar]
- 98.Peacock A C. Soliton propagation in tapered silicon core fibers. Optics Letters. 2010;35(21):3697–3699. doi: 10.1364/OL.35.003697. [DOI] [PubMed] [Google Scholar]
- 99.Peacock A, Healy N. Parabolic pulse generation in tapered silicon fibers. Optics Letters. 2010;35(11):1780–1782. doi: 10.1364/OL.35.001780. [DOI] [PubMed] [Google Scholar]
- 100.He R, Sazio P J A, Peacock A C, Healy N, Sparks J R, Krishnamurthi M, Gopalan V, Badding J V. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nature Photonics. 2012;6(3):174–179. [Google Scholar]
- 101.He R, Day T D, Krishnamurthi M, Sparks J R, Sazio P J A, Gopalan V, Badding J V. Silicon p-i-n junction fibers. Advanced Materials. 2013;25(10):1461–1467. doi: 10.1002/adma.201203879. [DOI] [PubMed] [Google Scholar]
- 102.Davis R, Rice R, Ballato A, Hawkins T, Foy P, Ballato J. Toward a photoconducting semiconductor RF optical fiber antenna array. Applied Optics. 2010;49(27):5163–5168. doi: 10.1364/AO.49.005163. [DOI] [PubMed] [Google Scholar]
- 103.Sui K, Feng X, Hou Y, Zhang Q, Qi S, Wang Y, Wang P. Glass-clad semiconductor germanium fiber for high-speed photodetecting applications. Optical Materials Express. 2017;7(4):1211–1219. [Google Scholar]
- 104.Lühder T, Plentz J, Kobelke J, Wondraczek K, Schmidt M A. Allfiber integrated in-line semiconductor photoconductor. Journal of Lightwave Technology. 2019;37(13):3244–3251. [Google Scholar]
- 105.Healy N, Mailis S, Bulgakova N M, Sazio P J A, Day T D, Sparks J R, Cheng H Y, Badding J V, Peacock A C. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nature Materials. 2014;13(12):1122–1127. doi: 10.1038/nmat4098. [DOI] [PubMed] [Google Scholar]
- 106.Tonouchi M. Cutting-edge terahertz technology. Nature Photonics. 2007;1(2):97–105. [Google Scholar]
- 107.Grischkowsky D, Keiding S, van Exter M, Fattinger C. Farinfrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics. 1990;7(10):2006–2015. [Google Scholar]
- 108.Bas D A, Cushing S K, Ballato J, Bristow A D. Terahertz waveguiding in silicon-core fibers. 2013, arXiv:1305.0520
- 109.Sørgård T, Song S, Vullum P E, Kores C, Mølster K M, Laurell F, Hawkins T, Ballato J, Österberg U L, Gibson U J. Broadband infrared and THz transmitting silicon core optical fiber. Optical Materials Express. 2020;10(10):2491–2499. [Google Scholar]
- 110.Sørgård T, Hawkins T, Ballato J, Österberg U L, Gibson U J. All-optical high-speed modulation of THz transmission through silicon core optical fibers. Optics Express. 2021;29(3):3543–3552. doi: 10.1364/OE.414545. [DOI] [PubMed] [Google Scholar]
- 111.Zhou P, Wang X, Ma Y, Lu H, Liu Z. Review on recent progress on mid-infrared fiber lasers. Laser Physics. 2012;22(11):1744–1751. [Google Scholar]
- 112.Danto S, Sorin F, Orf N D, Wang Z, Speakman S A, Joannopoulos J D, Fink Y. Fiber field-effect device via in situ channel crystallization. Advanced Materials. 2010;22(37):4162–4166. doi: 10.1002/adma.201000268. [DOI] [PubMed] [Google Scholar]
- 113.Yan W, Nguyen-Dang T, Cayron C, Gupta T D, Page A G, Qu Y, Sorin F. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Optical Materials Express. 2017;7(4):1388–1397. [Google Scholar]
- 114.Wei L, Hou C, Levy E, Lestoquoy G, Gumennik A, Abouraddy A F, Joannopoulos J D, Fink Y. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Advanced Materials. 2017;29(1):1603033. doi: 10.1002/adma.201603033. [DOI] [PubMed] [Google Scholar]
- 115.Gumennik A, Wei L, Lestoquoy G, Stolyarov A M, Jia X, Rekemeyer P H, Smith M J, Liang X, Grena B J B, Johnson S G, Gradečak S, Abouraddy A F, Joannopoulos J D, Fink Y. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications. 2013;4(1):2216. doi: 10.1038/ncomms3216. [DOI] [PubMed] [Google Scholar]
- 116.Rein M, Favrod V D, Hou C, Khudiyev T, Stolyarov A, Cox J, Chung C C, Chhav C, Ellis M, Joannopoulos J, Fink Y. Diode fibres for fabric-based optical communications. Nature. 2018;560(7717):214–218. doi: 10.1038/s41586-018-0390-x. [DOI] [PubMed] [Google Scholar]
- 117.Yan W, Qu Y, Gupta T D, Darga A, Nguyên D T, Page A G, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Advanced Materials. 2017;29(27):1700681. doi: 10.1002/adma.201700681. [DOI] [PubMed] [Google Scholar]