Abstract
In this paper, we review the past and recent works on generating intense terahertz (THz) pulses from photoconductive antennas (PCAs). We will focus on two types of large-aperture photoconductive antenna (LAPCA) that can generate high-intensity THz pulses (a) those with large-aperture dipoles and (b) those with interdigitated electrodes. We will first describe the principles of THz generation from PCAs. The critical parameters for improving the peak intensity of THz radiation from LAPCAs are summarized. We will then describe the saturation and limitation process of LAPCAs along with the advantages and disadvantages of working with wide-bandgap semiconductor substrates. Then, we will explain the evolution of LAPCA with interdigitated electrodes, which allows one to reduce the photoconductive gap size, and thus obtain higher bias fields while applying lower voltages. We will also describe recent achievements in intense THz pulses generated by interdigitated LAPCAs based on wide-bandgap semiconductors driven by amplified lasers. Finally, we will discuss the future perspectives of THz pulse generation using LAPCAs.
Keywords: sub-cycle intense terahertz (THz) pulses, ultrafast Ti:sapphire lasers, wide-bandgap semiconductors, large-aperture photoconductive antenna (LAPCA), phase mask, interdigitated large-aperture photoconductive emitters (ILAPCA)
Footnotes
Elchin Isgandarov is a Ph.D. student at Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications (INRS-EMT), Canada. He received his B.Sc. and M.Sc. degrees in Physics and Semiconductor Physics respectively from Azerbaijan State Pedagogical University, Baku, Azerbaijan. He also obtained an M.Sc. degree in Nanophysics from University of Montpellier, France. His current research focuses on fabrication and development of intense THz large aperture photoconductive antennas (LAPCAs) and their application in the nonlinear THz time-domain spectroscopy.
Xavier Ropagnol graduated from University of Rouen, France in 2004 and received his M.Sc. degree from Rouen University in 2006 and his Ph.D. degree from Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications (INRS-EMT) in Varennes, Qc, Canada in 2013 with very good mention. During his PhD, he worked on the development of table top intense THz sources from large aperture photoconductive antenna and optical rectification. He also worked on the non-linear interaction of these THz pulses with matter with a particular attention on n-doped thin film semiconductor. From 2013 to 2014, he was post-doctoral student at McGill University, Montreal, Qc, Canada and at University of Northern British Columbia, Prince Georges, BC, Canada where he keeps working on intense THz sources and especially with wide bandgap semiconductor photoconductive antennas. He came back to Montreal in 2014 as a research associate at INRS-EMT and ÉTS, Montreal, Qc, Canada, where he is developing THz measurement tools such the THz chemical microscope and the THz imaging. In parallel, he is still developing THz sources and detector which are more adapted to ytterbium laser at wavelength of 1.03 µm. Today, his main research interests include high intensity THz radiations and their applications with matters, non-linear optics and development of THz technology for industrial environment.
Mangaljit Singh is a Ph.D. student at Institut National de la Recherche Scientifique Centre Énergie, Matériaux et Télécommunications (INRS-EMT), Canada. He received his Master degree in Applied Optics from Indian Institute of Technology, India. He is currently involved in studying the high-intensity ultrafast laser-matter interaction, particularly the coherent extreme ultraviolet radiation from the phenomenon of high-order harmonic generation. He is also interested in the intense THz generation methods and THz time-domain spectroscopic applications.
Tsuneyuki Ozaki graduated from University of Tokyo, Japan in 1987, where he also received his M.Sc. and Ph.D. degrees in 1989 and 1998, respectively. From 1990 to 2000, he was a Research Associate at Institute for Solid State Physics, University of Tokyo, Japan. From 2000 to 2003, he was a Research Specialist at Nippon Telegraph and Telephone (NTT) Basic Research Laboratories, Atsugi, Japan. In 2003, he joined Institut National de la Recherche Scientifique (INRS), Varennes, QC, Canada, as an Assistant Professor. He is currently a Full Professor and the former Director of the Advanced Laser Light Source (ALLS) facility. His main research interests include high-intensity THz radiation sources and their applications, intense high-order harmonic generation, and the use of lasers in medicine. T. Ozaki has served on the Board of Directors of the International Committee on Ultra-high Intensity Lasers (ICUIL), and since 2018 is the Chair of Commission 17 on Laser Physics and Photonics of the International Union of Pure and Applied Physics (IUPAP).
References
- 1.Tonouchi M. Cutting-edge terahertz technology. Nature Photonics. 2007;1:97–105. [Google Scholar]
- 2.Consolino L, Bartalini S, De Natale P. Terahertz frequency metrology for spectroscopic applications: a review. Journal of Infrared, Millimeter and Terahertz Waves. 2017;38(11):1289–1315. [Google Scholar]
- 3.Nicoletti D, Cavalleri A. Nonlinear light-matter interaction at terahertz frequencies. Advances in Optics and Photonics. 2016;8(3):401. [Google Scholar]
- 4.Fausti D, Tobey R I, Dean N, Kaiser S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H, Cavalleri A. Light-induced superconductivity in a stripe-ordered cuprate. Science. 2011;331(6014):189–191. doi: 10.1126/science.1197294. [DOI] [PubMed] [Google Scholar]
- 5.Först M, Tobey R I, Bromberger H, Wilkins S B, Khanna V, Caviglia A D, Chuang Y D, Lee W S, Schlotter W F, Turner J J, Minitti M P, Krupin O, Xu Z J, Wen J S, Gu G D, Dhesi S S, Cavalleri A, Hill J P. Melting of charge stripes in vibrationally driven La1.875Ba0.125CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. Physical Review Letters. 2014;112(15):157002. doi: 10.1103/PhysRevLett.112.157002. [DOI] [PubMed] [Google Scholar]
- 6.Mankowsky R, Subedi A, Först M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A, Cavalleri A. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature. 2014;516(7529):71–73. doi: 10.1038/nature13875. [DOI] [PubMed] [Google Scholar]
- 7.Kaiser S, Clark S R, Nicoletti D, Cotugno G, Tobey R I, Dean N, Lupi S, Okamoto H, Hasegawa T, Jaksch D, Cavalleri A. Optical properties of a vibrationally modulated solid state Mott insulator. Scientific Reports. 2014;4:3823. doi: 10.1038/srep03823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Mitrano M, Cantaluppi A, Nicoletti D, Kaiser S, Perucchi A, Lupi S, Di Pietro P, Pontiroli D, Riccò M, Clark S R, Jaksch D, Cavalleri A. Possible light-induced superconductivity in K3C60 at high temperature. Nature. 2016;530(7591):461–464. doi: 10.1038/nature16522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics. 2017;11:16–18. [Google Scholar]
- 10.Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H, Shimano R. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science. 2014;345(6201):1145–1149. doi: 10.1126/science.1254697. [DOI] [PubMed] [Google Scholar]
- 11.Matsunaga R, Hamada Y I, Makise K, Uzawa Y, Terai H, Wang Z, Shimano R. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Physical Review Letters. 2013;111(5):057002. doi: 10.1103/PhysRevLett.111.057002. [DOI] [PubMed] [Google Scholar]
- 12.Rajasekaran S, Casandruc E, Laplace Y, Nicoletti D, Gu G D, Clark S R, Jaksch D, Cavalleri A. Parametric amplification of a superconducting plasma wave. Nature Physics. 2016;12(11):1012–1016. doi: 10.1038/nphys3819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Auston D H, Cheung K P, Smith P R. Picosecond photoconducting Hertzian dipoles. Applied Physics Letters. 1984;45(3):284–286. [Google Scholar]
- 14.Darrow J T, Zhang X C, Auston D H, Morse J D. Saturation properties of large-aperture photoconducting antennas. IEEE Journal of Quantum Electronics. 1992;28(6):1607–1616. [Google Scholar]
- 15.Stone M R, Naftaly M, Miles R E, Fletcher J R, Steenson D P. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. IEEE Transactions on Microwave Theory and Techniques. 2004;52(10):2420–2429. [Google Scholar]
- 16.Reid M, Fedosejevs R. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences. Applied Optics. 2005;44(1):149–153. doi: 10.1364/ao.44.000149. [DOI] [PubMed] [Google Scholar]
- 17.Grischkowsky D, Keiding S, van Exter M, Fattinger C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics. 1990;7(10):2006. [Google Scholar]
- 18.Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics. 2016;18(9):093004. [Google Scholar]
- 19.Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics. 2011;83(2):543–586. [Google Scholar]
- 20.Pačebutas V, Bičiūnas A, Balakauskas S, Krotkus A, Andriukaitis G, Lorenc D, Pugžlys A, Baltuška A. Terahertz time-domainspectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting component. Applied Physics Letters. 2010;97(3):031111. [Google Scholar]
- 21.Rungsawang R, Ohta K, Tukamoto K, Hattori T. Ring formation of focused half-cycle terahertz pulses. Journal of Physics D, Applied Physics. 2003;36(3):229. [Google Scholar]
- 22.Razzari L, Su F H, Sharma G, Blanchard F, Ayesheshim A, Bandulet H C, Morandotti R, Kieffer J C, Ozaki T, Reid M, Hegmann F A. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B: Condensed Matter and Materials Physics. 2009;79(19):193204. [Google Scholar]
- 23.Hu B B, Nuss M C. Imaging with terahertz waves. Optics Letters. 1995;20(16):1716. doi: 10.1364/ol.20.001716. [DOI] [PubMed] [Google Scholar]
- 24.Mittleman D M, Gupta M, Neelamani R, Baraniuk R G, Rudd J V, Koch M. Recent advances in terahertz imaging. Applied Physics B, Lasers and Optics. 1999;68(6):1085–1094. [Google Scholar]
- 25.Jiang Z, Zhang X C. Single-shot spatiotemporal terahertz field imaging. Optics Letters. 1998;23(14):1114–1116. doi: 10.1364/ol.23.001114. [DOI] [PubMed] [Google Scholar]
- 26.O’Hara J, Grischkowsky D. Quasi-optic terahertz imaging. Optics Letters. 2001;26(23):1918–1920. doi: 10.1364/ol.26.001918. [DOI] [PubMed] [Google Scholar]
- 27.Zeitler J A, Gladden L F. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. European Journal of Pharmaceutics and Biopharmaceutics. 2009;71(1):2–22. doi: 10.1016/j.ejpb.2008.08.012. [DOI] [PubMed] [Google Scholar]
- 28.Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews. 2011;5(1):124–166. [Google Scholar]
- 29.Yang S H, Hashemi M R, Berry C W, Jarrahi M. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transactions on Terahertz Science and Technology. 2014;4(5):575–581. [Google Scholar]
- 30.Yardimci N T, Lu H, Jarrahi M. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Applied Physics Letters. 2016;109(19):191103. doi: 10.1063/1.4967440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Yardimci N T, Cakmakyapan S, Hemmati S, Jarrahi M. Significant efficiency enhancement in photoconductive terahertz emitters through three-dimensional light confinement; Honololu: IEEE; 2017. pp. 435–438. [Google Scholar]
- 32.Yardimci N T, Cakmakyapan S, Hemmati S, Jarrahi M. A highpower broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity. Scientific Reports. 2017;7(1):4166. doi: 10.1038/s41598-017-04553-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Jones R R, You D, Bucksbaum P H. Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses. Physical Review Letters. 1993;70(9):1236–1239. doi: 10.1103/PhysRevLett.70.1236. [DOI] [PubMed] [Google Scholar]
- 34.Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express. 2016;24(11):11299–11311. doi: 10.1364/OE.24.011299. [DOI] [PubMed] [Google Scholar]
- 35.Ropagnol X, Kovács Z, Gilicze B, Zhuldybina M, Blanchard F, Garcia-Rosas C M, Szatmári S, Földes I B, Ozaki T. Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers. New Journal of Physics. 2019;21(11):113042. [Google Scholar]
- 36.Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources. Advanced Optical Materials. 2020;8(3):1900681. [Google Scholar]
- 37.Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics. 2013;7:680–690. [Google Scholar]
- 38.Ropagnol X, Morandotti R, Ozaki T, Reid M. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters. 2011;36(14):2662–2664. doi: 10.1364/OL.36.002662. [DOI] [PubMed] [Google Scholar]
- 39.You D, Dykaar D R, Jones R R, Bucksbaum P H. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters. 1993;18(4):290. doi: 10.1364/ol.18.000290. [DOI] [PubMed] [Google Scholar]
- 40.Brown E R, Smith F W, McIntosh K A. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors. Journal of Applied Physics. 1993;73(3):1480–1484. [Google Scholar]
- 41.Emadi R, Barani N, Safian R, Nezhad A Z. Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves. 2016;37(11):1069–1085. [Google Scholar]
- 42.Kim D S, Citrin D S. Coulomb and radiation screening in photoconductive terahertz sources. Applied Physics Letters. 2006;88(16):161117. [Google Scholar]
- 43.Tiedje H F, Saeedkia D, Nagel M, Haugen H K. Optical scanning techniques for characterization of terahertz photoconductive antenna arrays; Pasadena: IEEE; 2008. pp. 1–2. [Google Scholar]
- 44.Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices. 2013;60(5):1619–1624. [Google Scholar]
- 45.Huang Y, Khiabani N, Shen Y, Li D. Terahertz photoconductive antenna efficiency; Hong Kong: IEEE; 2011. pp. 152–156. [Google Scholar]
- 46.Burford N M, El-Shenawee M O. Review of terahertz photoconductive antenna technology. Optical Engineering (Redondo Beach, Calif.) 2017;56(1):010901. [Google Scholar]
- 47.Tani M, Matsuura S, Sakai K, Nakashima S. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Applied Optics. 1997;36(30):7853–7859. doi: 10.1364/ao.36.007853. [DOI] [PubMed] [Google Scholar]
- 48.Tani M, Yamamoto K, Estacio E S, Que C T, Nakajima H, Hibi M, Miyamaru F, Nishizawa S, Hangyo M. Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices. Journal of Infrared, Millimeter and Terahertz Waves. 2012;33(4):393–404. [Google Scholar]
- 49.Shi W, Hou L, Wang X. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics. 2011;110(2):023111. [Google Scholar]
- 50.Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperture biased InP photoconductors. Optics Letters. 1993;18(16):1332. doi: 10.1364/ol.18.001332. [DOI] [PubMed] [Google Scholar]
- 51.Ropagnol X, Morandotti R, Ozaki T, Reid M. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Photonics Journal. 2011;3(2):174–186. [Google Scholar]
- 52.Prajapati J, Bharadwaj M, Chatterjee A, Bhattacharjee R. Magnetic field-assisted radiation enhancement from a large aperture photoconductive antenna. IEEE Transactions on Microwave Theory and Techniques. 2018;66(2):678–687. [Google Scholar]
- 53.Ropagnol X. Développement d’une source de radiation terahertz (THz) intense et mise en forme d’impulsions THz àpartir d’une antenne de grande ouverture de ZnSe. 2013
- 54.Wang X, Shi W, Hou L, Ma D, Qu G. Investigation of semiinsulating gallium arsenide photoconductive photodetectors; Beijing: SPIE; 2008. p. 71570B. [Google Scholar]
- 55.Yoneda H, Tokuyama K, Ueda K, Yamamoto H, Baba K. Highpower terahertz radiation emitter with a diamond photoconductive switch array. Applied Optics. 2001;40(36):6733–6736. doi: 10.1364/ao.40.006733. [DOI] [PubMed] [Google Scholar]
- 56.Meng P, Zhao X, Yang X, Wu J, Xie Q, He J, Hu J, He J. Breakdown phenomenon of ZnO varistors caused by non-uniform distribution of internal pores. Journal of the European Ceramic Society. 2019;39(15):4824–4830. [Google Scholar]
- 57.Singh B P, Imafuji O, Hirose Y, Fukushima Y, Takigawa S, Ueda D. High power C-doped GaN photoconductive THz emitter; Cardiff: IEEE; 2007. pp. 1004–1005. [Google Scholar]
- 58.Ropagnol X, Morandotti R, Ozaki T, Reid M. Towards high-power terahertz emitters using large aperture ZnSe photoconductive antennas; San Jose: IEEE; 2010. pp. 1–2. [Google Scholar]
- 59.Doğan S, Teke A, Huang D, Morkoç H, Roberts C B, Parish J, Ganguly B, Smith M, Myers R E, Saddow S E. 4H-SiC photoconductive switching devices for use in high-power applications. Applied Physics Letters. 2003;82(18):3107–3109. [Google Scholar]
- 60.Friedrichs P, Burte E P, Schörner R. Dielectric strength of thermal oxides on 6H-SiC and 4H-SiC. Applied Physics Letters. 1994;65(13):1665–1667. [Google Scholar]
- 61.Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters. 2007;91(7):071112. [Google Scholar]
- 62.Wang L M. Relationship between intrinsic breakdown field and bandgap of materials; Belgrade: IEEE; 2006. pp. 615–618. [Google Scholar]
- 63.Ropagnol X, Bouvier M, Reid M, Ozaki T. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics. 2014;116(4):043107. [Google Scholar]
- 64.Hou L, Shi W, Chen S. Noise analysis and optimization of terahertz photoconductive emitters. IEEE Journal of Selected Topics in Quantum Electronics. 2013;19(1):8401305. [Google Scholar]
- 65.Moreno E, Pantoja M F, Ruiz F G, Roldán J B, García S G. On the numerical modeling of terahertz photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves. 2014;35(5):432–444. [Google Scholar]
- 66.Castro-Camus E, Fu L, Lloyd-Hughes J, Tan H H, Jagadish C, Johnston M B. Photoconductive response correction for detectors of terahertz radiation. Journal of Applied Physics. 2008;104(5):053113. [Google Scholar]
- 67.Park S G, Weiner A M, Melloch M R, Siders C W, Siders J L W, Taylor A J. High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE Journal of Quantum Electronics. 1999;35(8):1257–1268. [Google Scholar]
- 68.Benicewicz P K, Roberts J P, Taylor A J. Scaling of terahertz radiation from large-aperture biased photoconductors. Journal of the Optical Society of America B, Optical Physics. 1994;11(12):2533. [Google Scholar]
- 69.Duvillaret L, Garet F, Roux J F, Coutaz J L. Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE Journal of Selected Topics in Quantum Electronics. 2001;7(4):615–623. [Google Scholar]
- 70.Castro-Camus E, Lloyd-Hughes J, Johnston M B. Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Physical Review B: Condensed Matter and Materials Physics. 2005;71(19):195301. [Google Scholar]
- 71.Prajapati J, Bharadwaj M, Chatterjee A, Bhattacharjee R. Radiation field analysis of a photoconductive antenna using an improved carrier dynamics. Semiconductor Science and Technology. 2019;34(2):024004. [Google Scholar]
- 72.Piao Z, Tani M, Sakai K. Carrier dynamics and terahertz radiation in photoconductive antennas. Japanese Journal of Applied Physics. 2000;39(1):96–100. [Google Scholar]
- 73.Winnerl S, Peter F, Nitsche S, Dreyhaupt A, Zimmermann B, Wagner M, Schneider H, Helm M, Köhler K. Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes. IEEE Journal of Selected Topics in Quantum Electronics. 2008;14(2):449–457. [Google Scholar]
- 74.Shi W, Sun X F, Zeng J, Jia W L. Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna; Beijing: SPIE; 2008. p. 662228. [Google Scholar]
- 75.Liu D, Qin J. Carrier dynamics of terahertz emission from low-temperature-grown GaAs. Applied Optics. 2003;42(18):3678–3683. doi: 10.1364/ao.42.003678. [DOI] [PubMed] [Google Scholar]
- 76.Piao Z, Tani M, Sakai K. Carrier dynamics and THz radiation in biased semiconductor structures; San Jose: SPIE; 1999. pp. 49–56. [Google Scholar]
- 77.Chen L, Fan W. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas; Beijing: SPIE; 2011. p. 81950K. [Google Scholar]
- 78.Šlekas G, Kancleris Ž, Urbanowicz A, Čiegis R. Comparison of full-wave models of terahertz photoconductive antenna based on ordinary differential equation and Monte Carlo method. European Physical Journal Plus. 2020;135(1):85. [Google Scholar]
- 79.Cadilhon B, Cassany B, Modin P, Diot J C, Bertrand V, Pecastaing L. Ultra Wideband Antennas for High Pulsed Power Applications. In: Matin M, editor. Ultra Wideband Communications: Novel Trends Antennas and Propagation. Rijeka: InTech; 2011. [Google Scholar]
- 80.Mahadevan S, Hardas S M, Suryan G. Electrical breakdown in semiconductors. Physica Status Solidi (a) 1971;8(2):335–374. [Google Scholar]
- 81.Xu M, Li M, Shi W, Ma C, Zhang Q, Fan L, Shang X, Xue P. Temperature-dependence of high-gain operation in GaAs photoconductive semiconductor switch at 1.6 µJ excitation. IEEE Electron Device Letters. 2016;37(1):67–69. [Google Scholar]
- 82.Qadri S B, Wu D H, Graber B D, Mahadik N A, Garzarella A. Failure mechanism of THz GaAs photoconductive antenna. Applied Physics Letters. 2012;101(1):011910. [Google Scholar]
- 83.Sun C, Zhang A. Efficient terahertz generation from lightly ion-beam-treated semi-insulating GaAs photoconductive antennas. Applied Physics Express. 2017;10(10):102202. [Google Scholar]
- 84.Gupta S, Frankel M Y, Valdmanis J A, Whitaker J F, Mourou G A, Smith F W, Calawa A R. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters. 1991;59(25):3276–3278. [Google Scholar]
- 85.Liu T A, Tani M, Nakajima M, Hangyo M, Pan C L. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters. 2003;83(7):1322–1324. [Google Scholar]
- 86.Salem B, Morris D, Aimez V, Beerens J, Beauvais J, Houde D. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter. 2005;17(46):7327. [Google Scholar]
- 87.Salem B, Morris D, Salissou Y, Aimez V, Charlebois S, Chicoine M, Schiettekatte F. Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films. 2006;24(3):774–777. [Google Scholar]
- 88.Ono S, Murakami H, Quema A, Diwa G, Sarukura N, Nagasaka R, Ichikawa Y, Ogino H, Ohshima E, Yoshikawa A, Fukuda T. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters. 2005;87(26):261112. [Google Scholar]
- 89.Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express. 2010;18(9):9251–9257. doi: 10.1364/OE.18.009251. [DOI] [PubMed] [Google Scholar]
- 90.Gavrushchuk E M. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials. 2003;39(9):883–899. [Google Scholar]
- 91.Cho P S, Peng F, Ho P T, Goldhar J, Lee C H. ZnSe photoconductive switches with transparent electrodes; San Diego: IEEE; 2005. pp. 209–212. [Google Scholar]
- 92.Ho P T, Peng F, Goldhar J. Photoconductive switching using polycrystalline ZnSe. IEEE Transactions on Electron Devices. 1990;37(12):2517–2519. [Google Scholar]
- 93.Cho P S, Goldhar J, Lee C H, Saddow S E, Neudeck P. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices. Journal of Applied Physics. 1995;77(4):1591–1599. [Google Scholar]
- 94.Holzman J F, Elezzabi A Y. Two-photon photoconductive terahertz generation in ZnSe. Applied Physics Letters. 2003;83(14):2967–2969. [Google Scholar]
- 95.Mauch D, Sullivan W, Bullick A, Neuber A, Dickens J. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms. IEEE Transactions on Plasma Science. 2015;43(6):2021–2031. [Google Scholar]
- 96.Shimizu H, Watanabe N, Morikawa T, Shima A, Iwamuro N. 1.2 kV silicon carbide Schottky barrier diode embedded MOSFETs with extension structure and titanium-based single contact. Japanese Journal of Applied Physics. 2020;59(2):026502. [Google Scholar]
- 97.Kimoto T, Yonezawa Y. Current status and perspectives of ultrahigh-voltage SiC power devices. Materials Science in Semiconductor Processing. 2018;78:43–56. [Google Scholar]
- 98.Bhalla A. Status of SiC Products and Technology. In: Sharma Y, editor. Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications. London: InTech; 2018. [Google Scholar]
- 99.Xiao L, Yang X, Duan P, Xu H, Chen X, Hu X, Peng Y, Xu X. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption. Applied Optics. 2018;57(11):2804–2808. doi: 10.1364/AO.57.002804. [DOI] [PubMed] [Google Scholar]
- 100.Yu D, Kang J, Berakdar J, Jia C. Nondestructive ultrafast steering of a magnetic vortex by terahertz pulses. NPG Asia Materials. 2020;12(1):36. [Google Scholar]
- 101.Elliott D. Ultraviolet Laser Technology and Applications. New York: Academic Press; 2014. [Google Scholar]
- 102.Duarte F. Tunable Lasers Handbook. New York: Academic Press; 1996. [Google Scholar]
- 103.Szatmári S, Rácz B, Schäffer F P. Bandwidth limited amplification of 220 fs pulses in XeCl. Optics Communications. 1987;62(4):271–276. [Google Scholar]
- 104.Dick B, Szatmári S, Rácz B, Schäfer F P. Bandwidth limited amplification of 220 fs pulses in XeCl: theoretical and experimental study of temporal and spectral behavior. Optics Communications. 1987;62(4):277–283. [Google Scholar]
- 105.Szatmári S, Schäfer F P, Müller-Horsche E, Müchenheim W. Hybrid dye-excimer laser system for the generation of 80 fs, 900 GW pulses at 248 nm. Optics Communications. 1987;63(5):305–309. [Google Scholar]
- 106.Di G, Bhattacharya A, Samad S, Nayak B, Shah A P, Rahman A A, Bhattacharya A, Prabhu S S. Towards bandwidth-enhanced GaN-based terahertz photoconductive antennas; Paris: IEEE; 2019. pp. 1–2. [Google Scholar]
- 107.Szatmári S. High-brightness ultraviolet excimer lasers. Applied Physics B: Laser and Optics. 1994;58(3):211–223. [Google Scholar]
- 108.Loata G C, Thomson M D, Löffler T, Roskos H G. Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy. Applied Physics Letters. 2007;91(23):232506. [Google Scholar]
- 109.Budiarto E, Margolies J, Jeong S, Son J, Bokor J. High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics. 1996;32(10):1839–1846. [Google Scholar]
- 110.Welsh G H, Turton D A, Jones D R, Jaroszynski D A, Wynne K. 200 ns pulse high-voltage supply for terahertz field emission. Review of Scientific Instruments. 2007;78(4):043103. doi: 10.1063/1.2724769. [DOI] [PubMed] [Google Scholar]
- 111.Winnerl S, Zimmermann B, Peter F, Schneider H, Helm M. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Optics Express. 2009;17(3):1571–1576. doi: 10.1364/oe.17.001571. [DOI] [PubMed] [Google Scholar]
- 112.Cliffe M J, Rodak A, Graham D M, Jamison S P. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm. Applied Physics Letters. 2014;105(19):191112. [Google Scholar]
- 113.Mourou G A, Bloom D M, Lee C H. Picosecond electronics and optoelectronics; Nevada: SPIE; 1985. p. 438. [Google Scholar]
- 114.Cox C H, III, Diadiuk V, Yao I, Leonberger F J, Williamson R C. InP optoelectronic switches and their high-speed signal-processiny applications; San Diego: SPIE; 1983. pp. 164–168. [Google Scholar]
- 115.Hattori T, Egawa K, Ookuma S I, Itatani T. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics. 2006;45(15):L422–L424. [Google Scholar]
- 116.Chou S Y, Liu Y, Fischer P B. Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width. Applied Physics Letters. 1992;61(4):477–479. [Google Scholar]
- 117.Awad M, Nagel M, Kurz H, Herfort J, Ploog K. Characterization of low temperature GaAs antenna array terahertz emitters. Applied Physics Letters. 2007;91(18):181124. [Google Scholar]
- 118.Acuna G, Buersgens F, Lang C, Handloser M, Guggenmos A, Kersting R. Interdigitated terahertz emitters. Electronics Letters. 2008;44(3):229–231. [Google Scholar]
- 119.Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters. 2013;103(16):161108. [Google Scholar]
- 120.Dreyhaupt A, Winnerl S, Dekorsy T, Helm M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters. 2005;86(12):121114. [Google Scholar]
- 121.Go D B, Pohlman D A. A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. Journal of Applied Physics. 2010;107(10):103303. [Google Scholar]
- 122.Headley C, Fu L, Member S, Parkinson P, Xu X, Lloyd-Hughes J, Jagadish C, Johnston M B. Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation. IEEE Journal of Selected Topics in Quantum Electronics. 2011;17(1):17–21. [Google Scholar]
- 123.Gupta A, Rana G, Bhattacharya A, Singh A, Jain R, Bapat R D, Duttagupta S P, Prabhu S S. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics. 2018;3(5):051706. [Google Scholar]
- 124.Kirawanich P, Yakura S J, Islam N E. Study of high-power wideband terahertz-pulse generation using integrated high-speed photoconductive semiconductor switches. IEEE Transactions on Plasma Science. 2009;37(1):219–228. [Google Scholar]
- 125.Singh A, Welsch M, Winnerl S, Helm M, Schneider H. Improved electrode design for interdigitated large-area photoconductive terahertz emitters. Optics Express. 2019;27(9):13108–13115. doi: 10.1364/OE.27.013108. [DOI] [PubMed] [Google Scholar]
- 126.Ropagnol X, Chai X, Raeis-Zadeh S M, Safavi-Naeini S, Kirouac-Turmel M, Bouvier M, Cote C Y, Reid M, Gauthier M A, Ozaki T. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics. 2017;23(4):1–8. [Google Scholar]
- 127.Berry C W, Jarrahi M. Principles of impedance matching in photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves. 2012;33(12):1182–1189. [Google Scholar]
- 128.Emadi R, Safian R, Nezhad A Z. Theoretical modeling of terahertz pulsed photoconductive antennas based on hot-carriers effect. IEEE Journal of Selected Topics in Quantum Electronics. 2017;23(4):1–9. [Google Scholar]
- 129.Brown E R, McIntosh K A, Smith F W, Nichols K B, Manfra M J, Dennis C L, Mattia J P. Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer. Applied Physics Letters. 1994;64(24):3311–3313. [Google Scholar]
- 130.Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters. 2013;103(16):161108. [Google Scholar]
- 131.Bacon D R, Gill T B, Rosamond M, Burnett A D, Dunn A, Li L, Linfield E H, Davies A G, Dean P, Freeman J R. Photoconductive arrays on insulating substrates for high-field terahertz generation. Optics Express. 2020;28(12):17219–17231. doi: 10.1364/OE.391656. [DOI] [PubMed] [Google Scholar]
- 132.Dreyhaupt A, Peter F, Winnerl S, Nitsche S, Wagner M, Schneider H, Helm M, Köhler K. Leistungsstarke emitter und einfach handhabbare detektoren für die terahertz-time-domain-spektroskopie. Technisches Messen. 2008;75(1):3–13. [Google Scholar]
- 133.Winnerl S. Scalable microstructured photoconductive terahertz emitters. Journal of Infrared, Millimeter and Terahertz Waves. 2012;33(4):431–454. [Google Scholar]
- 134.Matthäus G, Nolte S, Hohmuth R, Voitsch M, Richter W, Pradarutti B, Riehemann S, Notni G, Tünnermann A. Large-area microlens emitters for powerful THz emission. Applied Physics B, Lasers and Optics. 2009;96(2–3):233–235. [Google Scholar]
- 135.Singh A, Prabhu S S. Microlensless interdigitated photoconductive terahertz emitters. Optics Express. 2015;23(2):1529–1535. doi: 10.1364/OE.23.001529. [DOI] [PubMed] [Google Scholar]
- 136.Bacon D R, Gill T B, Rosamond M, Burnett A D, Dunn A, Li L, Linfield E H, Davies A G, Dean P, Freeman J R. Photoconductive arrays on insulating substrates for high-field terahertz generation. Optics Express. 2020;28(12):17219–17231. doi: 10.1364/OE.391656. [DOI] [PubMed] [Google Scholar]
- 137.Singh A, Winnerl S, König-Otto J C, Stephan D R, Helm M, Schneider H. Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters. Optics Express. 2016;24(20):22628–22634. doi: 10.1364/OE.24.022628. [DOI] [PubMed] [Google Scholar]
- 138.Zhang X C. Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics. Journal of Luminescence. 1995;66–67(1–6):488–492. [Google Scholar]
- 139.Preu S, Dhler G H, Malzer S, Wang L J, Gossard A C. Tunable, continuous-wave terahertz photomixer sources and applications. Journal of Applied Physics. 2011;109(6):061301. [Google Scholar]
- 140.Hale P J, Madeo J, Chin C, Dhillon S S, Mangeney J, Tignon J, Dani K M. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Optics Express. 2014;22(21):26358–26364. doi: 10.1364/OE.22.026358. [DOI] [PubMed] [Google Scholar]
- 141.Madéo J, Jukam N, Oustinov D, Rosticher M, Rungsawang R, Tignon J, Dhillon S S. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters. 2010;46(9):611–613. [Google Scholar]
- 142.Yardimci N T, Yang S H, Berry C W, Jarrahi M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology. 2015;5(2):223–229. [Google Scholar]
- 143.Maussang K, Palomo J, Mangeney J, Dhillon S S, Tignon J. Largearea photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization. Optics Express. 2019;27(10):14784–14797. doi: 10.1364/OE.27.014784. [DOI] [PubMed] [Google Scholar]
- 144.Sterczewski L A, Grzelczak M P, Plinski E F. Terahertz antenna electronic chopper. Review of Scientific Instruments. 2016;87(1):014702. doi: 10.1063/1.4939461. [DOI] [PubMed] [Google Scholar]
- 145.Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters. 2011;98(9):091106. [Google Scholar]
- 146.Chai X, Ropagnol X, Raeis-Zadeh S M, Reid M, Safavi-Naeini S, Ozaki T. Subcycle terahertz nonlinear optics. Physical Review Letters. 2018;121(14):143901. doi: 10.1103/PhysRevLett.121.143901. [DOI] [PubMed] [Google Scholar]
- 147.Moreno E, Pantoja M F, Ruiz F G, Roldán J B, García S G. On the numerical modeling of terahertz photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves. 2014;35(5):432–444. [Google Scholar]