Abstract
A scheme for the generation of a pseudo noise (PN) sequence in the optical domain is proposed. The cascaded units of micro-ring resonator (MRR)-based D flip-flop are used to design the device. D flip-flops consist of a single MRR and share the same optical pump signal. Numerical analysis is performed, and simulated results are discussed. The proposed device can be used as a building block for optical computing and for creating an information processing system.
Keywords: all-optical, D flip-flop, micro-ring resonator (MRR), optical communication, pseudo noise (PN) sequence
Footnotes
Rajiv Kumar received his B.Tech degree from RGPV Bhopal, M.Tech degree from BIT Mesra and Ph.D. degree from NIT Jamshedpur, India. His research interest is optical wireless communication.
Ajay Kumar received his B.Tech degree from NIST, Berhampur, M.Tech and Ph.D. degrees from IIT (ISM) Dhanbad, India. His research interest is optical fiber communication and optical logic devices.
Poonam Singh is a professor at NIT Rourkela, India. She received her B.Tech degree from VSSUT, Burla, M.Tech degree from NIT Rourkela and Ph.D. degree from IIT Kharagpur, India. Her research interest is wireless communication. She is a senior member of IEEE.
Niranjan Kumar is a professor at NIT Jamshedpur, India. He received his B.Tech and M.Tech degrees from NIT Jamshedpur, India. He received his Ph.D. degree from IIT Roorkee, India. His research interest is communication and power system.
References
- 1.Haas S M, Shapiro J H. Capacity of wireless optical communications. IEEE Journal on Selected Areas in Communications. 2003;21(8):1346–1357. doi: 10.1109/JSAC.2003.816618. [DOI] [Google Scholar]
- 2.Maia Borges R, Cerqueira Sodre A., Jr Reconfigurable optical-wireless communications for future generations. IEEE Latin America Transactions. 2015;13(11):3580–3584. doi: 10.1109/TLA.2015.7387934. [DOI] [Google Scholar]
- 3.Chaaban A, Morvan J M, Alouini M S. Free-space optical communications: capacity bounds, approximations, and a new sphere-packing perspective. IEEE Transactions on Communications. 2016;64(3):1176–1191. doi: 10.1109/TCOMM.2016.2524569. [DOI] [Google Scholar]
- 4.Chen R Y, Yang Z Y. CMOS transimpedance amplifier for gigabit-per-second optical wireless communications. IEEE Transactions on Circuits and Wystems. II: Express Briefs. 2016;63(5):418–422. [Google Scholar]
- 5.Anguita J A, Djordjevic I B, Neifeld M A, Vasic B V. Shannon capacities and error-correction codes for optical atmospheric turbulent channels. Journal of Optical Networking. 2005;4(9):586–601. doi: 10.1364/JON.4.000586. [DOI] [Google Scholar]
- 6.Niehusmann J, Vörckel A, Bolivar P H, Wahlbrink T, Henschel W, Kurz H. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Optics Letters. 2004;29(24):2861–2863. doi: 10.1364/OL.29.002861. [DOI] [PubMed] [Google Scholar]
- 7.Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews. 2012;6(1):47–73. doi: 10.1002/lpor.201100017. [DOI] [Google Scholar]
- 8.Grover R, Absil P P, Van V, Hryniewicz J V, Little B E, King O, Calhoun L C, Johnson F G, Ho P T. Vertically coupled GaInAsP-InP microring resonators. Optics Letters. 2001;26(8):506–508. doi: 10.1364/OL.26.000506. [DOI] [PubMed] [Google Scholar]
- 9.Ding Y, Ou H, Xu J, Xiong M, An Y, Hu H, Galili M, Riesgo A L, Seoane J, Yvind K, Oxenløwe L K, Zhang X, Huang D, Peucheret C. Linear all-optical signal processing using silicon micro-ring resonators. Frontiers of Optoelectronics. 2016;9(3):362–376. doi: 10.1007/s12200-016-0553-z. [DOI] [Google Scholar]
- 10.Lipson M. Guiding, modulating, and emitting light on silicon-challenges and opportunities. Journal of Lightwave Technology. 2005;23(12):4222–4238. doi: 10.1109/JLT.2005.858225. [DOI] [Google Scholar]
- 11.Xiao H, Li D, Liu Z, Han X, Chen W, Zhao T, Tian Y, Yang J. Experimental realization of a CMOS-compatible optical directed priority encoder using cascaded micro-ring resonators. Nanophotonics. 2018;7(4):727–733. doi: 10.1515/nanoph-2018-0005. [DOI] [Google Scholar]
- 12.Ishida K. Synchronous pseudo-noise code sequence generation circuit. U.S. Patent 5519736, 1996
- 13.Xu Q, Lipson M. All-optical logic based on silicon micro-ring resonators. Optics Express. 2007;15(3):924–929. doi: 10.1364/OE.15.000924. [DOI] [PubMed] [Google Scholar]
- 14.Lee J H, Song I, Park S R, Lee J. Rapid acquisition of PN sequences with a new decision logic. IEEE Transactions on Vehicular Technology. 2004;53(1):49–60. doi: 10.1109/TVT.2003.819813. [DOI] [Google Scholar]
- 15.Yang L, Guo C, Zhu W, Zhang L, Sun C. Demonstration of a directed optical comparator based on two cascaded microring resonators. IEEE Photonics Technology Letters. 2015;27(8):809–812. doi: 10.1109/LPT.2015.2390618. [DOI] [Google Scholar]
- 16.Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics. 2019;12(2):148–156. doi: 10.1007/s12200-018-0846-5. [DOI] [Google Scholar]
- 17.Little B E, Chu S T, Pan W, Kokubun Y. Microring resonator arrays for VLSI photonics. IEEE Photonics Technology Letters. 2000;12(3):323–325. doi: 10.1109/68.826928. [DOI] [Google Scholar]
- 18.Condo C, Gross W J. Pseudo-random Gaussian distribution through optimised LFSR permutations. Electronics Letters. 2015;51(25):2098–2100. doi: 10.1049/el.2015.3418. [DOI] [Google Scholar]
- 19.Rabus D G. Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP. Berlin: Technische Universität Berlin; 2002. [Google Scholar]
- 20.Rakshit J K, Chattopadhyay T, Roy J N. Design of ring resonator based all-optical switch for logic and arithmetic operations-a theoretical study. Optik. 2013;124(23):6048–6057. doi: 10.1016/j.ijleo.2013.04.075. [DOI] [Google Scholar]
- 21.Bharti G K, Rakshit J K. Design and performance analysis of high speed optical binary code converter using micro-ring resonator. Fiber and Integrated Optics. 2018;37(2):103–121. doi: 10.1080/01468030.2018.1430872. [DOI] [Google Scholar]
- 22.Houbavlis T, Zoiros K E, Kanellos G, Tsekrekos C. Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer. Optics Communications. 2004;232(1–6):179–199. doi: 10.1016/j.optcom.2003.12.062. [DOI] [Google Scholar]
- 23.Rakshit J K, Roy J N. Silicon micro-ring resonator-based all-optical digital-to-analog converter. Photonic Network Communications. 2017;34(1):84–92. doi: 10.1007/s11107-016-0664-x. [DOI] [Google Scholar]
- 24.Rakshit J K, Roy J N. Design of all-optical universal shift register using nonlinear microring resonators. Journal of Computational Electronics. 2016;15(4):1450–1461. doi: 10.1007/s10825-016-0897-z. [DOI] [Google Scholar]
- 25.Rakshit J K, Roy J N, Chattopadhyay T. A theoretical study of all-optical clocked D flip flop using single micro-ring resonator. Journal of Computational Electronics. 2014;13(1):278–286. doi: 10.1007/s10825-013-0519-y. [DOI] [Google Scholar]
- 26.Asghari M, White I H, Penty R V. Wavelength conversion using semiconductor optical amplifiers. Journal of Lightwave Technology. 1997;15(7):1181–1190. doi: 10.1109/50.596964. [DOI] [Google Scholar]