Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Aug 27;13(3):225–234. doi: 10.1007/s12200-020-1051-x

Self-trapped excitons in two-dimensional perovskites

Junze Li 1, Haizhen Wang 1,, Dehui Li 1,2,
PMCID: PMC9743880  PMID: 36641579

Abstract

With strong electron-phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.

graphic file with name 12200_2020_1051_Fig1_HTML.jpg

Keywords: self-trapped exciton (STE), two-dimensional (2D) perovskites, broadband emission, electron-phonon coupling, optoelectronic applications

Acknowledgements

D. L. acknowledges the support from the National Basic Research Program of China (No. 2018YFA0704403), the National Natural Science Foundation of China (NSFC) (Grant No. 61674060), and Innovation Fund of Wuhan National Laboratory for Optoelectronics (WNLO).

Footnotes

Junze Li obtained his Ph.D. degree in Physical Electronics from Huazhong University of Science and Technology, China in June 2020. In July 2020, he joined School of Optical and Electronic Information, Huazhong University of Science and Technology, China as a postdoctoral. His current research interests focus on optoelectronic devices based on 2D perovskite.

Haizhen Wang is a scientist in School of Optical and Electronic Information at Huazhong University of Science and Technology in China. She received her Ph.D. degree from New Mexico State University, USA. Her research interest mainly focuses on the design of transition metal-based bifunctional electrocatalysts and anode materials for lithium ion batteries as well as two-dimensional halide perovskites.

Dehui Li is a professor in School of Optical and Electronic Information at Huazhong University of Science and Technology in China. He obtained his Ph.D. degree from Nanyang Technological University, Singapore in 2013 and was a postdoctoral fellow with Prof. Xiangfeng Duan (2013–2016) at University of California, Los Angeles, USA. His current research interests include low-dimensional halide perovskites, two-dimensional layered materials and surface plasmons in optoelectronics.

Contributor Information

Haizhen Wang, Email: wanghz@hust.edu.cn.

Dehui Li, Email: dehuili@hust.edu.cn.

References

  • 1.Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials. 2016;1(1):15007. [Google Scholar]
  • 2.Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nature Reviews Materials. 2017;2(3):16099. [Google Scholar]
  • 3.National Renewable Energy Laboratory. NREL efficiency chart. 2020
  • 4.Wang Z, Shi Z, Li T, Chen Y, Huang W. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition. 2017;56(5):1190–1212. doi: 10.1002/anie.201603694. [DOI] [PubMed] [Google Scholar]
  • 5.Dou L. Emerging two-dimensional halide perovskite nanomaterials. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices. 2017;5(43):11165–11173. [Google Scholar]
  • 6.Etgar L. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy & Environmental Science. 2018;11(2):234–242. [Google Scholar]
  • 7.Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials. 2019;4(1):4–22. [Google Scholar]
  • 8.Li J, Wang J, Zhang Y, Wang H, Lin G, Xiong X, Zhou W, Luo H, Li D. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials. 2018;5(2):021001. [Google Scholar]
  • 9.Fang C, Wang H, Shen Z, Shen H, Wang S, Ma J, Wang J, Luo H, Li D. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Applied Materials & Interfaces. 2019;11(8):8419–8427. doi: 10.1021/acsami.8b20538. [DOI] [PubMed] [Google Scholar]
  • 10.Ma J, Fang C, Chen C, Jin L, Wang J, Wang S, Tang J, Li D. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano. 2019;13(3):3659–3665. doi: 10.1021/acsnano.9b00302. [DOI] [PubMed] [Google Scholar]
  • 11.Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society. 2015;137(24):7843–7850. doi: 10.1021/jacs.5b03796. [DOI] [PubMed] [Google Scholar]
  • 12.Smith M D, Connor B A, Karunadasa H I. Tuning the luminescence of layered halide perovskites. Chemical Reviews. 2019;119(5):3104–3139. doi: 10.1021/acs.chemrev.8b00477. [DOI] [PubMed] [Google Scholar]
  • 13.Gao Y, Shi E, Deng S, Shiring S B, Snaider J M, Liang C, Yuan B, Song R, Janke S M, Liebman-Peláez A, Yoo P, Zeller M, Boudouris B W, Liao P, Zhu C, Blum V, Yu Y, Savoie B M, Huang L, Dou L. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nature Chemistry. 2019;11(12):1151–1157. doi: 10.1038/s41557-019-0354-2. [DOI] [PubMed] [Google Scholar]
  • 14.Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science. 2015;349(6255):1518–1521. doi: 10.1126/science.aac7660. [DOI] [PubMed] [Google Scholar]
  • 15.Straus D B, Kagan C R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. Journal of Physical Chemistry Letters. 2018;9(6):1434–1447. doi: 10.1021/acs.jpclett.8b00201. [DOI] [PubMed] [Google Scholar]
  • 16.Blancon J C, Tsai H, Nie W, Stoumpos C C, Pedesseau L, Katan C, Kepenekian M, Soe C M, Appavoo K, Sfeir M Y, Tretiak S, Ajayan P M, Kanatzidis M G, Even J, Crochet J J, Mohite A D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science. 2017;355(6331):1288–1292. doi: 10.1126/science.aal4211. [DOI] [PubMed] [Google Scholar]
  • 17.Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z. 2D Ruddlesden-Popper perovskites for optoelectronics. Advanced Materials. 2018;30(2):1703487. doi: 10.1002/adma.201703487. [DOI] [PubMed] [Google Scholar]
  • 18.Wang J, Su R, Xing J, Bao D, Diederichs C, Liu S, Liew T C H, Chen Z, Xiong Q. Room temperature coherently coupled excitonpolaritons in two-dimensional organic-inorganic perovskite. ACS Nano. 2018;12(8):8382–8389. doi: 10.1021/acsnano.8b03737. [DOI] [PubMed] [Google Scholar]
  • 19.Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology. 2016;11(10):872–877. doi: 10.1038/nnano.2016.110. [DOI] [PubMed] [Google Scholar]
  • 20.Ha S T, Shen C, Zhang J, Xiong Q. Laser cooling of organic-inorganic lead halide perovskites. Nature Photonics. 2016;10(2):115–121. [Google Scholar]
  • 21.Straus D B, Hurtado Parra S, Iotov N, Gebhardt J, Rappe A M, Subotnik J E, Kikkawa J M, Kagan C R. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. Journal of the American Chemical Society. 2016;138(42):13798–13801. doi: 10.1021/jacs.6b08175. [DOI] [PubMed] [Google Scholar]
  • 22.Li J, Wang J, Ma J, Shen H, Li L, Duan X, Li D. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nature Communications. 2019;10(1):806. doi: 10.1038/s41467-019-08768-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y. Trap states in lead iodide perovskites. Journal of the American Chemical Society. 2015;137(5):2089–2096. doi: 10.1021/ja512833n. [DOI] [PubMed] [Google Scholar]
  • 24.Cortecchia D, Neutzner S, Srimath Kandada A R, Mosconi E, Meggiolaro D, De Angelis F, Soci C, Petrozza A. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society. 2017;139(1):39–42. doi: 10.1021/jacs.6b10390. [DOI] [PubMed] [Google Scholar]
  • 25.Dohner E R, Jaffe A, Bradshaw L R, Karunadasa H I. Intrinsic white-light emission from layered hybrid perovskites. Journal of the American Chemical Society. 2014;136(38):13154–13157. doi: 10.1021/ja507086b. [DOI] [PubMed] [Google Scholar]
  • 26.Mao L, Guo P, Kepenekian M, Hadar I, Katan C, Even J, Schaller R D, Stoumpos C C, Kanatzidis M G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. Journal of the American Chemical Society. 2018;140(40):13078–13088. doi: 10.1021/jacs.8b08691. [DOI] [PubMed] [Google Scholar]
  • 27.Mao L, Wu Y, Stoumpos C C, Wasielewski M R, Kanatzidis M G. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. Journal of the American Chemical Society. 2017;139(14):5210–5215. doi: 10.1021/jacs.7b01312. [DOI] [PubMed] [Google Scholar]
  • 28.Williams R T, Song K S. The self-trapped exciton. Journal of Physics and Chemistry of Solids. 1990;51(7):679–716. [Google Scholar]
  • 29.Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Accounts of Chemical Research. 2018;51(3):619–627. doi: 10.1021/acs.accounts.7b00433. [DOI] [PubMed] [Google Scholar]
  • 30.Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chemical Science (Cambridge) 2017;8(6):4497–4504. doi: 10.1039/c7sc01590a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials. 2016;28(8):2852–2867. [Google Scholar]
  • 32.Wang S, Ma J, Li W, Wang J, Wang H, Shen H, Li J, Wang J, Luo H, Li D. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron-phonon interaction. Journal of Physical Chemistry Letters. 2019;10(10):2546–2553. doi: 10.1021/acs.jpclett.9b01011. [DOI] [PubMed] [Google Scholar]
  • 33.Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Even J, Mohite A D. Scaling law for excitons in 2D perovskite quantum wells. Nature Communications. 2018;9(1):2254. doi: 10.1038/s41467-018-04659-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Li J, Ma J, Cheng X, Liu Z, Chen Y, Li D. Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano. 2020;14(2):2156–2161. doi: 10.1021/acsnano.9b08975. [DOI] [PubMed] [Google Scholar]
  • 35.Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Advanced Materials. 2019;31(7):e1806385. doi: 10.1002/adma.201806385. [DOI] [PubMed] [Google Scholar]
  • 36.Yangui A, Garrot D, Lauret J S, Lusson A, Bouchez G, Deleporte E, Pillet S, Bendeif E E, Castro M, Triki S, Abid Y, Boukheddaden K. Optical investigation of broadband white-light emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4. Journal of Physical Chemistry C. 2015;119(41):23638–23647. [Google Scholar]
  • 37.Zhou C, Lin H, Shi H, Tian Y, Pak C, Shatruk M, Zhou Y, Djurovich P, Du M H, Ma B. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly Stokes-shifted deep-red emission. Angewandte Chemie International Edition. 2018;57(4):1021–1024. doi: 10.1002/anie.201710383. [DOI] [PubMed] [Google Scholar]
  • 38.Zhou G, Su B, Huang J, Zhang Q, Xia Z. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Materials Science and Engineering R Reports. 2020;141(1):100548. [Google Scholar]
  • 39.Yuan Z, Zhou C, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications. 2017;8(1):14051. doi: 10.1038/ncomms14051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Li X, Guo P, Kepenekian M, Hadar I, Katan C, Even J, Stoumpos C C, Schaller R D, Kanatzidis M G. Small cyclic diammonium cation templated (110)-oriented 2D halide (X = I, Br, Cl) perovskites with white-light emission. Chemistry of Materials. 2019;31(9):3582–3590. [Google Scholar]
  • 41.Mao L, Wu Y, Stoumpos C C, Traore B, Katan C, Even J, Wasielewski M R, Kanatzidis M G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10xClx. Journal of the American Chemical Society. 2017;139(34):11956–11963. doi: 10.1021/jacs.7b06143. [DOI] [PubMed] [Google Scholar]
  • 42.Gautier R, Paris M, Massuyeau F. Exciton self-trapping in hybrid lead halides: role of halogen. Journal of the American Chemical Society. 2019;141(32):12619–12623. doi: 10.1021/jacs.9b04262. [DOI] [PubMed] [Google Scholar]
  • 43.Cortecchia D, Yin J, Bruno A, Lo S Z A, Gurzadyan G G, Mhaisalkar S, Brédas J L, Soci C. Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices. 2017;5(11):2771–2780. [Google Scholar]
  • 44.Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature. 2018;563(7732):541–545. doi: 10.1038/s41586-018-0691-0. [DOI] [PubMed] [Google Scholar]
  • 45.Li S, Luo J, Liu J, Tang J. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. Journal of Physical Chemistry Letters. 2019;10(8):1999–2007. doi: 10.1021/acs.jpclett.8b03604. [DOI] [PubMed] [Google Scholar]
  • 46.Li L, Jin L, Zhou Y, Li J, Ma J, Wang S, Li W, Li D. Filterless polarization-sensitive 2D perovskite narrowband photodetectors. Advanced Optical Materials. 2019;7(23):1900988. [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES