Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2019 Nov 11;13(1):35–49. doi: 10.1007/s12200-019-0946-x

Research development on fabrication and optical properties of nonlinear photonic crystals

Huangjia Li 1, Boqin Ma 1,
PMCID: PMC9743886  PMID: 36641585

Abstract

Since the lasers at fixed wavelengths are unable to meet the requirements of the development of modern science and technology, nonlinear optics is significant for overcoming the obstacle. Investigation on frequency conversion in ferroelectric nonlinear photonic crystals with different superlattices has been being one of the popular research directions in this field. In this paper, some mature fabrication methods of nonlinear photonic crystals are concluded, for example, the electric poling method at room temperature and the femtosecond direct laser writing technique. Then the development of nonlinear photonic crystals with one-dimensional, two-dimensional and three-dimensional superlattices which are used in quasi-phase matching and nonlinear diffraction harmonic generation is introduced. In the meantime, several creative applications of nonlinear photonic crystals are summarized, showing the great value of them in an extensive practical area, such as communication, detection, imaging, and so on.

Keywords: quasi-phase matching (QPM), nonlinear diffraction (ND), superlattice, nonlinear photonic crystal (NPC), reciprocal lattice vector (RLV)

Acknowledgements

The work was supported by the Fundamental Research Funds for the Central Universities (No. 2018CUCTJ043).

Footnotes

Huangjia Li received the bachelor degree of engineering from Communication University of China. She is currently pursuing the master degree in School of Data Science and Media Intelligence, Communication University of China. Her present research work involves the nonlinear photonic crystals with snowflake superlattices and their nonlinear optical properties.

Boqin Ma received the Ph.D. degree from the Institute of Physics, Chinese Academy of Sciences, Beijing, China, in the field of Optics in 2005. Since then, she joined the Faculty of Science and Technology, Communication University of China. In 2011, she received the position of associate professor. She has been working on the nonlinear interactions between nonlinear photonic crystals and laser beams.

References

  • 1.Armstrong J A, Bloembergen N, Ducuing J, Pershan P S. Interactions between light waves in a nonlinear dielectric. Physical Review. 1962;127(6):1918–1939. [Google Scholar]
  • 2.Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second harmonic generation. Applied Physics Letters. 1993;62(5):435–436. [Google Scholar]
  • 3.Zhu S, Zhu Y, Qin Y, Wang H, Ge C, Ming N. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Physical Review Letters. 1997;78(14):2752–2755. [Google Scholar]
  • 4.Zhu S, Zhu Y, Ming N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science. 1997;278(5339):843–846. [Google Scholar]
  • 5.Berger V. Nonlinear photonic crystals. Physical Review Letters. 1998;81(19):4136–4139. [Google Scholar]
  • 6.Broderick N G, Ross G W, Offerhaus H L, Richardson D J, Hanna D C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Physical Review Letters. 2000;84(19):4345–4348. doi: 10.1103/PhysRevLett.84.4345. [DOI] [PubMed] [Google Scholar]
  • 7.Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4. Applied Physics Letters. 2004;85(3):375–377. [Google Scholar]
  • 8.Saltiel S M, Neshev D N, Krolikowski W, Arie A, Kivshar Y S. Frequency doubling by nonlinear diffraction in nonlinear photonic crystals. In: Proceedings of International Conference on Transparent Optical Networks. IEEE, 2009, paper Tu.B1.2
  • 9.Sheng Y, Best A, Butt H J, Krolikowski W, Arie A, Koynov K. Three-dimensional ferroelectric domain visualization by Cerenkovtype second harmonic generation. Optics Express. 2010;18(16):16539–16545. doi: 10.1364/OE.18.016539. [DOI] [PubMed] [Google Scholar]
  • 10.Li H, Mu S, Xu P, Zhong M, Chen C, Hu X, Cui W, Zhu S. Multicolor Čerenkov conical beams generation by cascaded-χ(2) processes in radially poled nonlinear photonic crystals. Applied Physics Letters. 2012;100(10):101101. [Google Scholar]
  • 11.Ma B, Kafka K, Chowdhury E. Fourth-harmonic generation via nonlinear diffraction in a 2D LiNbO3 nonlinear photonic crystal from mid-IR ultrashort pulses. Chinese Optics Letters. 2017;15(5):051901. [Google Scholar]
  • 12.Liu S, Switkowski K, Chen X, Xu T, Krolikowski W, Sheng Y. Broadband enhancement of Cerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Optics Express. 2018;26(7):8628–8633. doi: 10.1364/OE.26.008628. [DOI] [PubMed] [Google Scholar]
  • 13.Sheng Y, Wang W, Shiloh R, Roppo V, Kong Y, Arie A, Krolikowski W. Cerenkov third-harmonic generation in χ(2) nonlinear photonic crystal. Applied Physics Letters. 2011;98(24):241114. [Google Scholar]
  • 14.Yao J, Li G, Xu J, Zhang G. New development of quasi-phase-matching technique. Chinese Journal of Quantum Electronics. 1999;16(4):289–294. [Google Scholar]
  • 15.Thomas J, Hilbert V, Geiss R, Pertsch T, Tünnermann A, Nolte S. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser & Photonics Reviews. 2013;7(3):L17–L20. [Google Scholar]
  • 16.Rosenman G, Urenski P, Agronin A, Rosenwaks Y, Molotskii M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Applied Physics Letters. 2003;82(1):103–105. [Google Scholar]
  • 17.Yamada M, Kishima K. Fabrication of periodically reversed domainstructure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electronics Letters. 1991;27(10):828–829. [Google Scholar]
  • 18.Wei D, Zhu Y, Zhong W, Cui G, Wang H, He Y, Zhang Y, Lu Y, Xiao M. Directly generating orbital angular momentum in second-harmonic waves with a spirally poled nonlinear photonic crystal. Applied Physics Letters. 2017;110(26):261104. [Google Scholar]
  • 19.Magel G A, Fejer M M, Byer R L. Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3. Applied Physics Letters. 1990;56(2):108–110. [Google Scholar]
  • 20.Xu T, Lu D, Yu H, Zhang H, Zhang Y, Wang J. A naturally grown three-dimensional nonlinear photonic crystal. Applied Physics Letters. 2016;108(5):051907. [Google Scholar]
  • 21.Leng H. Manipulation of second harmonic waves and entangled photons using two- and three-dimensional nonlinear photonic crystals. Nanjing: Nanjing University; 2014. pp. 77–79. [Google Scholar]
  • 22.Fejer M M. Nonlinear optical frequency conversion. Physics Today. 1994;47(5):25–32. [Google Scholar]
  • 23.Freund I. Nonlinear diffraction. Physical Review Letters. 1968;21(19):1404–1406. [Google Scholar]
  • 24.Kalinowski K, Roedig P, Sheng Y, Ayoub M, Imbrock J, Denz C, Krolikowski W. Enhanced Cerenkov second-harmonic emission in nonlinear photonic structures. Optics Letters. 2012;37(11):1832–1834. doi: 10.1364/OL.37.001832. [DOI] [PubMed] [Google Scholar]
  • 25.Vyunishev A M, Slabko V V, Baturin I S, Akhmatkhanov A R, Shur V Y. Nonlinear Raman-Nath diffraction of femtosecond laser pulses. Optics Letters. 2014;39(14):4231–4234. doi: 10.1364/OL.39.004231. [DOI] [PubMed] [Google Scholar]
  • 26.Wang X, Zhao X, Zheng Y, Chen X. Theoretical study on second-harmonic generation in two-dimensional nonlinear photonic crystals. Applied Optics. 2017;56(3):750–754. doi: 10.1364/AO.56.000750. [DOI] [PubMed] [Google Scholar]
  • 27.Miller G D, Batchko R G, Tulloch W M, Weise D R, Fejer M M, Byer R L. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Optics Letters. 1997;22(24):1834–1836. doi: 10.1364/ol.22.001834. [DOI] [PubMed] [Google Scholar]
  • 28.Saltiel S M, Neshev D N, Krolikowski W, Arie A, Bang O, Kivshar Y S. Multiorder nonlinear diffraction in frequency doubling processes. Optics Letters. 2009;34(6):848–850. doi: 10.1364/ol.34.000848. [DOI] [PubMed] [Google Scholar]
  • 29.Liu H, Li J, Zhao X, Zheng Y, Chen X. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave. Optics Express. 2016;24(14):15666–15671. doi: 10.1364/OE.24.015666. [DOI] [PubMed] [Google Scholar]
  • 30.Li H, Fan Y, Xu P, Zhu S, Lu P, Gao Z, Wang H, Zhu Y, Ming N, He J L. 530-mW quasi-white-light generation using all-solid-state laser technique. Journal of Applied Physics. 2004;96(12):7756–7758. [Google Scholar]
  • 31.Chen B, Ren M, Liu R, Zhang C, Sheng Y, Ma B, Li Z. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals. Light, Science & Applications. 2014;3(7):e189. [Google Scholar]
  • 32.Wang W, Niu X, Zhou C. Study on broadband second harmonic generation in short-range ordered quadratic medium. Journal of Synthetic Crystals. 2014;43(5):1252–1256. [Google Scholar]
  • 33.Gu B, Dong B, Zhang Y, Yang G. Enhanced harmonic generation in aperiodic optical superlattices. Applied Physics Letters. 1999;75(15):2175–2177. [Google Scholar]
  • 34.Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nature Photonics. 2015;9(3):180–184. [Google Scholar]
  • 35.Reyes Gómez F, Porras-Montenegro N, Oliveira O N, Jr, Mejía-Salazar J R. Giant second-harmonic generation in cantor-like metamaterial photonic superlattices. ACS Omega. 2018;3(12):17922–17927. doi: 10.1021/acsomega.8b02837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Gómez F R, Porras-Montenegro N, Oliveira O N, Mejía-Salazar J R. Second harmonic generation in the plasmon-polariton gap of quasiperiodic metamaterial photonic superlattices. Physical Review B. 2018;98(7):075406. [Google Scholar]
  • 37.Gómez F R, Mejía-Salazar J R. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices. Optics Letters. 2015;40(21):5034–5037. doi: 10.1364/OL.40.005034. [DOI] [PubMed] [Google Scholar]
  • 38.Robles-Uriza A X, Gómez F R, Mejía-Salazar J R. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect. Superlattices and Microstructures. 2016;97:110–115. [Google Scholar]
  • 39.Gómez F R, Mejía-Salazar J R, Oliveira O N, Porras-Montenegro N. Defect mode in the bulk plasmon-polariton gap for giant enhancement of second harmonic generation. Physical Review B. 2017;96(7):075429. [Google Scholar]
  • 40.Kasimov D, Arie A, Winebrand E, Rosenman G, Bruner A, Shaier P, Eger D. Annular symmetry nonlinear frequency converters. Optics Express. 2006;14(20):9371–9376. doi: 10.1364/oe.14.009371. [DOI] [PubMed] [Google Scholar]
  • 41.Qin Y Q, Zhang C, Zhu Y Y, Hu X P, Zhao G. Wave-front engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures. Physical Review Letters. 2008;100(6):063902. doi: 10.1103/PhysRevLett.100.063902. [DOI] [PubMed] [Google Scholar]
  • 42.Chen B, Zhang C, Liu R, Li Z. Multi-direction high-efficiency second harmonic generation in ellipse structure nonlinear photonic crystals. Applied Physics Letters. 2014;105(15):151106. [Google Scholar]
  • 43.Ma B, Wang T, Sheng Y, Ni P, Wang Y, Cheng B, Zhang D. Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice. Applied Physics Letters. 2005;87(25):251103. [Google Scholar]
  • 44.Ma B, Ren M, Ma D, Li Z. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure. Applied Physics B, Lasers and Optics. 2013;111(2):183–187. [Google Scholar]
  • 45.Zhang Y, Gao Z D, Qi Z, Zhu S N, Ming N B. Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides. Physical Review Letters. 2008;100(16):163904. doi: 10.1103/PhysRevLett.100.163904. [DOI] [PubMed] [Google Scholar]
  • 46.Ni P, Ma B, Wang X, Cheng B, Zhang D. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching. Applied Physics Letters. 2003;82(24):4230–4232. [Google Scholar]
  • 47.Peng L, Hsu C, Ng J, Kung A. Wavelength tunability of second-harmonic generation from two-dimensional χ(2) nonlinear photonic crystals with a tetragonal lattice structure. Applied Physics Letters. 2004;84(17):3250–3252. [Google Scholar]
  • 48.Ni P, Ma B, Feng S, Cheng B, Zhang D. Multiple-wavelength second-harmonic generations in a two-dimensional periodically poled lithium niobate. Optics Communications. 2004;233(1–3):199–203. [Google Scholar]
  • 49.Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K, Kivshar Y S. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE Journal of Quantum Electronics. 2009;45(11):1465–1472. [Google Scholar]
  • 50.Wang T, Ma B, Sheng Y, Ni P, Cheng B, Zhang D. Large angle acceptance of quasi-phase-matched second harmonic generation in a homocentrically poled LiNbO3. Optics Communications. 2005;252(4–6):397–401. [Google Scholar]
  • 51.Sheng Y, Koynov K, Zhang D. Collinear second harmonic generation of 20 wavelengths in a single two-dimensional decagonal nonlinear photonic quasi-crystal. Optics Communications. 2009;282(17):3602–3606. [Google Scholar]
  • 52.Hou B, Xu G, Wen W, Wong G K. Diffraction by an optical fractal grating. Applied Physics Letters. 2004;85(25):6125–6127. [Google Scholar]
  • 53.Park H, Camper A, Kafka K, Ma B, Lai Y H, Blaga C, Agostini P, DiMauro L F, Chowdhury E. High-order harmonic generations in intense MIR fields by cascade three-wave mixing in a fractal-poled LiNbO3 photonic crystal. Optics Letters. 2017;42(19):4020–4023. doi: 10.1364/OL.42.004020. [DOI] [PubMed] [Google Scholar]
  • 54.Ma B, Li H. High-order nonlinear diffraction harmonics in nonlinear photonic crystals. Chinese Journal of Lasers. 2019;46(2):0208001. [Google Scholar]
  • 55.Mateos L, Molina P, Galisteo J, López C, Bausá L E, Ramírez M O. Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal. Optics Express. 2012;20(28):29940–29948. doi: 10.1364/OE.20.029940. [DOI] [PubMed] [Google Scholar]
  • 56.Wang W, Sheng Y, Kong Y, Arie A, Krolikowski W. Multiple Cerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Optics Letters. 2010;35(22):3790–3792. doi: 10.1364/OL.35.003790. [DOI] [PubMed] [Google Scholar]
  • 57.Saltiel S M, Neshev D N, Krolikowski W, Voloch-Bloch N, Arie A, Bang O, Kivshar Y S. Nonlinear diffraction from a virtual beam. Physical Review Letters. 2010;104(8):083902. doi: 10.1103/PhysRevLett.104.083902. [DOI] [PubMed] [Google Scholar]
  • 58.Vyunishev A M, Arkhipkin V G, Baturin I S, Akhmatkhanov A R, Shur V Y, Chirkin A S. Mutiple nonlinear Bragg diffraction of femtosecond laser pulses in a χ(2) photonic lattice with hexagonal domains. Laser Physics Letters. 2018;15(4):045401. [Google Scholar]
  • 59.Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications. 2016;7(1):12533. doi: 10.1038/ncomms12533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wei D, Wang C, Wang H, Hu X, Wei D, Fang X, Zhang Y, Wu D, Hu Y, Li J, Zhu S, Xiao M. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics. 2018;12(10):596–600. [Google Scholar]
  • 61.Xu T, Switkowski K, Chen X, Liu S, Koynov K, Yu H, Zhang H, Wang J, Sheng Y, Krolikowski W. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nature Photonics. 2018;12(10):591–595. [Google Scholar]
  • 62.Zhang J, Zhao X, Zheng Y, Li H, Chen X. Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals. Optics Express. 2018;26(12):15675–15682. doi: 10.1364/OE.26.015675. [DOI] [PubMed] [Google Scholar]
  • 63.Powers P E, Kulp T J, Bisson S E. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Optics Letters. 1998;23(3):159–161. doi: 10.1364/ol.23.000159. [DOI] [PubMed] [Google Scholar]
  • 64.Sasaki Y, Avetisyan Y, Yokoyama H, Ito H. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Optics Letters. 2005;30(21):2927–2929. doi: 10.1364/ol.30.002927. [DOI] [PubMed] [Google Scholar]
  • 65.Shapira A, Naor L, Arie A. Nonlinear optical holograms for spatial and spectral shaping of light waves. Science Bulletin. 2015;60(16):1403–1415. [Google Scholar]
  • 66.Tokura A, Asobe M, Enbutsu K, Yoshihara T, Hashida S N, Takenouchi H. Real-time N2O gas detection system for agricultural production using a 4.6-µm-band laser source based on a periodically poled LiNbO3 ridge waveguide. Sensors (Basel) 2013;13(8):9999–10013. doi: 10.3390/s130809999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Myers L E, Miller G D, Eckardt R C, Fejer M M, Byer R L, Bosenberg W R. Quasi-phase-matched 1.064-um-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Optics Letters. 1995;20(1):52–54. doi: 10.1364/ol.20.000052. [DOI] [PubMed] [Google Scholar]
  • 68.Myers L E, Bosenberg W R. Periodically poled lithium niobate and quasi-phase-matched optical oarametric oscillators. IEEE Journal of Quantum Electronics. 1997;33(10):1663–1672. [Google Scholar]
  • 69.Burr K C, Tang C L, Arbore M A, Fejer M M. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate. Applied Physics Letters. 1997;70(25):3341–3343. [Google Scholar]
  • 70.Batchko R G, Weise D R, Plettner T, Miller G D, Fejer M M, Byer R L. Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate. Optics Letters. 1998;23(3):168–170. doi: 10.1364/ol.23.000168. [DOI] [PubMed] [Google Scholar]
  • 71.Wang T D, Lin S T, Lin Y Y, Chiang A C, Huang Y C. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Optics Express. 2008;16(9):6471–6478. doi: 10.1364/oe.16.006471. [DOI] [PubMed] [Google Scholar]
  • 72.Liu H, Zhao X, Li H, Zheng Y, Chen X. Dynamic computergenerated nonlinear optical holograms in a non-collinear second-harmonic generation process. Optics Letters. 2018;43(14):3236–3239. doi: 10.1364/OL.43.003236. [DOI] [PubMed] [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES