Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Jun 11;13(3):235–245. doi: 10.1007/s12200-020-1042-y

Focus on performance of perovskite light-emitting diodes

Peipei Du 1, Liang Gao 2, Jiang Tang 2,
PMCID: PMC9743889  PMID: 36641572

Abstract

Perovskite-based optoelectronic devices, especially perovskite light-emitting diodes (PeLEDs) and perovskite solar cells, have recently attracted considerable attention. The National Renewable Energy Laboratory (NREL) chart inspires us to develop a counterpart for PeLEDs. In this study, we collect the record performance of PeLEDs including several new entries to address their latest external quantum efficiency (EQE), highest luminance, and stability status. We hope that these performance tables and future updated versions will show the frontiers of PeLEDs, assist researchers in capturing the overview of this field, identify the remaining challenges, and predict the promising research directions. graphic file with name 12200_2020_1042_Fig1_HTML.jpg

Keywords: metal halide perovskite, light-emitting diode (LED), performance table

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB070700702), the National Natural Science Foundation of China (Grant No. 51761145048), the Fundamental Research Funds for the Central Universities (HUST:2019421JYCXJJ004) and the Innovation Funds of Wuhan National Laboratory for Optoelectronics (WNLO).

Footnotes

Peipei Du obtained the bachelor degree from Wuhan University of Science and Technology, China. She is currently pursuing a doctorate in the School of Materials Science and Engineering, Huazhong University of Science and Technology, China. Her research interests are mainly focused on the halide perovskite materials and their application in LEDs.

Liang Gao received his Ph.D. degree from Wuhan National Laboratory for Optoelectronics at Huazhong University of Science and Technology, China in 2018 and undertook his research under the supervision of Prof. Edward H. Sargent in University of Toronto, Canada from 2016 to 2017. Since then, he joined Huazhong University of Science and Technology to be a lecturer. His present research work involves quantum dot detectors and LEDs.

Jiang Tang received his Ph.D. degree from University of Toronto, Canada under the supervision of Prof. Edward H. Sargent in 2010 and undertook his postdoctoral research with Dr. David Mitzi at the IBM T. J. Watson Research Center from 2011 to 2012. Then, he became a full professor in Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, China, since 2012. His research interests include luminescent materials and their applications, single crystals for X-ray detection, and antimony selenide thin film solar cells.

References

  • 1.Lee T W. Emerging halide perovskite materials and devices for optoelectronics. Advanced Materials. 2019;31(47):e1905077. doi: 10.1002/adma.201905077. [DOI] [PubMed] [Google Scholar]
  • 2.Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature. 2018;562(7726):249–253. doi: 10.1038/s41586-018-0576-2. [DOI] [PubMed] [Google Scholar]
  • 3.Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature. 2018;562(7726):245–248. doi: 10.1038/s41586-018-0575-3. [DOI] [PubMed] [Google Scholar]
  • 4.Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology. 2014;9(9):687–692. doi: 10.1038/nnano.2014.149. [DOI] [PubMed] [Google Scholar]
  • 5.Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics. 2018;12(11):681–687. [Google Scholar]
  • 6.Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nature Communications. 2019;10(1):5633. doi: 10.1038/s41467-019-13580-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Liu Y, Cui J, Du K, Tian H, He Z, Zhou Q, Yang Z, Deng Y, Chen D, Zuo X, Ren Y, Wang L, Zhu H, Zhao B, Di D, Wang J, Friend R H, Jin Y. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nature Photonics. 2019;13(11):760–764. [Google Scholar]
  • 8.Meredith P, Armin A. LED technology breaks performance barrier. Nature. 2018;562(7726):197–198. doi: 10.1038/d41586-018-06923-y. [DOI] [PubMed] [Google Scholar]
  • 9.Anaya M, Rand B P, Holmes R J, Credgington D, Bolink H J, Friend R H, Wang J, Greenham N C, Stranks S D. Best practices for measuring emerging light-emitting diode technologies. Nature Photonics. 2019;13(12):818–821. [Google Scholar]
  • 10.Li J, Du P, Li S, Liu J, Zhu M, Tan Z, Hu M, Luo J, Guo D, Ma L, Nie Z, Ma Y, Gao L, Niu G, Tang J. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Advanced Functional Materials. 2019;29(51):1903607. [Google Scholar]
  • 11.Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5. Nature Communications. 2019;10(1):1027. doi: 10.1038/s41467-019-09011-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium inter-layers. Chemistry of Materials. 2019;31(1):83–89. [Google Scholar]
  • 13.Ma D, Todorović P, Meshkat S, Saidaminov M I, Wang Y K, Chen B, Li P, Scheffel B, Quintero-Bermudez R, Fan J Z, Dong Y, Sun B, Xu C, Zhou C, Hou Y, Li X, Kang Y, Voznyy O, Lu Z H, Ban D, Sargent E H. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. Journal of the American Chemical Society. 2020;142(11):5126–5134. doi: 10.1021/jacs.9b12323. [DOI] [PubMed] [Google Scholar]
  • 14.Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Letters. 2020;5(4):1062–1069. [Google Scholar]
  • 15.Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J. Spectra stable blue perovskite light-emitting diodes. Nature Communications. 2019;10(1):1868. doi: 10.1038/s41467-019-09794-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Yao J, Wang L, Wang K, Yin Y, Yang J, Zhang Q, Yao H. Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Science Bulletin, 2020, doi:10.1016/j.scib.2020.03.036 [DOI] [PubMed]
  • 17.Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Advanced Materials. 2019;31(44):e1904319. doi: 10.1002/adma.201904319. [DOI] [PubMed] [Google Scholar]
  • 18.Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Advanced Materials. 2019;31(24):e1901517. doi: 10.1002/adma.201901517. [DOI] [PubMed] [Google Scholar]
  • 19.Shen Y, Li M N, Li Y, Xie F M, Wu H Y, Zhang G H, Chen L, Lee S T, Tang J X. Rational interface engineering for efficient flexible perovskite light-emitting diodes. ACS Nano, 2020, acsna-no.0c01908 [DOI] [PubMed]
  • 20.Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S, Lee T W. Efficient perovskite light-emitting diodes using polycrystalline core-shell-mimicked nanograins. Advanced Functional Materials. 2019;29(22):1902017. [Google Scholar]
  • 21.Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications. 2019;10(1):665. doi: 10.1038/s41467-019-08425-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S, Sun B. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Advanced Functional Materials. 2017;27(28):1700338. [Google Scholar]
  • 23.Zou C, Liu Y, Ginger D S, Lin L Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano, 2020, acsnano.0c01817 [DOI] [PubMed]
  • 24.Sim K, Jun T, Bang J, Kamioka H, Kim J, Hiramatsu H, Hosono H. Performance boosting strategy for perovskite light-emitting diodes. Applied Physics Reviews. 2019;6(3):031402. [Google Scholar]
  • 25.Fang Z, Chen W, Shi Y, Zhao J, Chu S, Zhang J, Xiao Z. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20% Advanced Functional Materials. 2020;30(12):1909754. [Google Scholar]
  • 26.Cai W, Chen Z, Li Z, Yan L, Zhang D, Liu L, Xu Q H, Ma Y, Huang F, Yip H L, Cao Y. Polymer-assisted in situ growth of all-inorganic perovskite nanocrystal film for efficient and stable pure-red light-emitting devices. ACS Applied Materials & Interfaces. 2018;10(49):42564–42572. doi: 10.1021/acsami.8b13418. [DOI] [PubMed] [Google Scholar]
  • 27.Lu M, Guo J, Sun S, Lu P, Wu J, Wang Y, Kershaw S V, Yu W W, Rogach A L, Zhang Y. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency rolloff realized by applying zirconium acetylacetonate surface modification. Nano Letters. 2020;20(4):2829–2836. doi: 10.1021/acs.nanolett.0c00545. [DOI] [PubMed] [Google Scholar]
  • 28.Cheng G, Liu Y, Chen T, Chen W, Fang Z, Zhang J, Ding L, Li X, Shi T, Xiao Z. Efficient all-inorganic perovskite light-emitting diodes with improved operation stability. ACS Applied Materials & Interfaces. 2020;12(15):18084–18090. doi: 10.1021/acsami.9b23170. [DOI] [PubMed] [Google Scholar]
  • 29.Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics. 2019;13(6):418–424. [Google Scholar]
  • 30.Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nature Photonics. 2018;12(12):783–789. [Google Scholar]
  • 31.Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics. 2020;14(4):215–218. doi: 10.1038/s41467-020-18110-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Han T H, Lee J W, Choi Y J, Choi C, Tan S, Lee S J, Zhao Y, Huang Y, Kim D, Yang Y. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Advanced Materials. 2020;32(1):e1905674. doi: 10.1002/adma.201905674. [DOI] [PubMed] [Google Scholar]
  • 33.Du P, Li J, Wang L, Liu J, Li S, Liu N, Li Y, Zhang M, Gao L, Ma Y, Tang J. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Applied Materials & Interfaces. 2019;11(50):47083–47090. doi: 10.1021/acsami.9b17164. [DOI] [PubMed] [Google Scholar]
  • 34.Leyden M R, Meng L, Jiang Y, Ono L K, Qiu L, Juarez-Perez E J, Qin C, Adachi C, Qi Y. Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition. Journal of Physical Chemistry Letters. 2017;8(14):3193–3198. doi: 10.1021/acs.jpclett.7b01093. [DOI] [PubMed] [Google Scholar]
  • 35.Hu Y, Wang Q, Shi Y L, Li M, Zhang L, Wang Z K, Liao L S. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices. 2017;5(32):8144–8149. [Google Scholar]
  • 36.Chiang K M, Hsu B W, Chang Y A, Yang L, Tsai W L, Lin H W. Vacuum-deposited organometallic halide perovskite light-emitting devices. ACS Applied Materials & Interfaces. 2017;9(46):40516–40522. doi: 10.1021/acsami.7b12805. [DOI] [PubMed] [Google Scholar]
  • 37.Zhuang S, Ma X, Hu D, Dong X, Zhang B. Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceramics International. 2018;44(5):4685–4688. [Google Scholar]
  • 38.Shi Z, Lei L, Li Y, Zhang F, Ma Z, Li X, Wu D, Xu T, Tian Y, Zhang B, Yao Z, Du G. Hole-injection layer-free perovskite light-emitting diodes. ACS Applied Materials & Interfaces. 2018;10(38):32289–32297. doi: 10.1021/acsami.8b07048. [DOI] [PubMed] [Google Scholar]
  • 39.Lian X, Wang X, Ling Y, Lochner E, Tan L, Zhou Y, Ma B, Hanson K, Gao H. Light emitting diodes based on inorganic composite halide perovskites. Advanced Functional Materials. 2019;29(5):1807345. [Google Scholar]
  • 40.Tan Y, Li R, Xu H, Qin Y, Song T, Sun B. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Advanced Functional Materials. 2019;29(23):1900730. [Google Scholar]
  • 41.Shin M, Lee H S, Sim Y C, Cho Y H, Cheol Choi K, Shin B. Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS Applied Materials & Interfaces. 2020;12(1):1944–1952. doi: 10.1021/acsami.9b20094. [DOI] [PubMed] [Google Scholar]
  • 42.Jia K, Song L, Hu Y, Guo X, Liu X, Geng C, Xu S, Fan R, Huang L, Luan N, Bi W. Improved performance for thermally evaporated perovskite light-emitting devices via defect passivation and carrier regulation. ACS Applied Materials & Interfaces. 2020;12(13):15928–15933. doi: 10.1021/acsami.0c01173. [DOI] [PubMed] [Google Scholar]
  • 43.Yuan F, Xi J, Dong H, Xi K, Zhang W, Ran C, Jiao B, Hou X, Jen A K Y, Wu Z. All-inorganic hetero-structured cesium tin halide perovskite light-emitting diodes with current density over 900 A · cm−2 and its amplified spontaneous emission behaviors. Physica Status Solidi (RRL)-Rapid Research Letters. 2018;12(5):1800090. [Google Scholar]
  • 44.Gil-Escrig L, Miquel-Sempere A, Sessolo M, Bolink H J. Mixed iodide-bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics. Journal of Physical Chemistry Letters. 2015;6(18):3743–3748. doi: 10.1021/acs.jpclett.5b01716. [DOI] [PubMed] [Google Scholar]
  • 45.Dänekamp B, Droseros N, Palazon F, Sessolo M, Banerji N, Bolink H J. Efficient photo- and electroluminescence by trap states passivation in vacuum-deposited hybrid perovskite thin films. ACS Applied Materials & Interfaces. 2018;10(42):36187–36193. doi: 10.1021/acsami.8b13100. [DOI] [PubMed] [Google Scholar]
  • 46.Leng M, Yang Y, Chen Z, Gao W, Zhang J, Niu G, Li D, Song H, Zhang J, Jin S, Tang J. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters. 2018;18(9):6076–6083. doi: 10.1021/acs.nanolett.8b03090. [DOI] [PubMed] [Google Scholar]
  • 47.Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials. 2018;28(1):1704446. [Google Scholar]
  • 48.Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bidoped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials. 2018;28(29):1801131. [Google Scholar]
  • 49.Hu Q, Deng Z, Hu M, Zhao A, Zhang Y, Tan Z, Niu G, Wu H, Tang J. X-ray scintillation in lead-free double perovskite crystals. Science China, Chemistry. 2018;61(12):1581–1586. [Google Scholar]
  • 50.Zhou C, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B. Highly efficient broadband yellow phosphor based on zero-dimensional tin mixed-halide perovskite. ACS Applied Materials & Interfaces. 2017;9(51):44579–44583. doi: 10.1021/acsami.7b12862. [DOI] [PubMed] [Google Scholar]
  • 51.Lai M L, Tay T Y S, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K. Tunable near-infrared luminescence in tin-halide perovskite devices. Journal of Physical Chemistry Letters. 2016;7(14):2653–2658. doi: 10.1021/acs.jpclett.6b01047. [DOI] [PubMed] [Google Scholar]
  • 52.Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C. Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Advanced Materials. 2016;28(36):8029–8036. doi: 10.1002/adma.201601024. [DOI] [PubMed] [Google Scholar]
  • 53.Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Letters. 2017;2(7):1662–1668. [Google Scholar]
  • 54.Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials. 2018;30(43):e1804547. doi: 10.1002/adma.201804547. [DOI] [PubMed] [Google Scholar]
  • 55.Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature. 2018;563(7732):541–545. doi: 10.1038/s41586-018-0691-0. [DOI] [PubMed] [Google Scholar]
  • 56.Zhang X, Wang C, Zhang Y, Zhang X, Wang S, Lu M, Cui H, Kershaw S V, Yu W W, Rogach A L. Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energy Letters. 2019;4(1):242–248. [Google Scholar]
  • 57.Singh A, Chiu N C, Boopathi K M, Lu Y J, Mohapatra A, Li G, Chen Y F, Guo T F, Chu C W. Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method. ACS Applied Materials & Interfaces. 2019;11(38):35088–35094. doi: 10.1021/acsami.9b10602. [DOI] [PubMed] [Google Scholar]
  • 58.Ma Z, Shi Z, Yang D, Zhang F, Li S, Wang L, Wu D, Zhang Y, Na G, Zhang L, Li X, Zhang Y, Shan C. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Letters. 2020;5(2):385–394. [Google Scholar]
  • 59.Liang H, Yuan F, Johnston A, Gao C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P, Bappi G, Chen B, Li J, Wang Y, Dong Y, Ma D, Gao Y, Liu Y, Yuan M, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H. High color purity lead-free perovskite light-emitting diodes via Sn stabilization. Advancement of Science. 2020;7(8):1903213. doi: 10.1002/advs.201903213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Ma Z, Shi Z, Qin C, Cui M, Yang D, Wang X, Wang L, Ji X, Chen X, Sun J, Wu D, Zhang Y, Li X J, Zhang L, Shan C. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano. 2020;14(4):4475–4486. doi: 10.1021/acsnano.9b10148. [DOI] [PubMed] [Google Scholar]
  • 61.Wang L, Shi Z, Ma Z, Yang D, Zhang F, Ji X, Wang M, Chen X, Na G, Chen S, Wu D, Zhang Y, Li X, Zhang L, Shan C. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Letters. 2020;20(5):3568–3576. doi: 10.1021/acs.nanolett.0c00513. [DOI] [PubMed] [Google Scholar]
  • 62.Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W, Sargent E H. Perovskites for next-generation optical sources. Chemical Reviews. 2019;119(12):7444–7477. doi: 10.1021/acs.chemrev.9b00107. [DOI] [PubMed] [Google Scholar]
  • 63.Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A, Jang J, Nazeeruddin M K. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Advanced Optical Materials. 2017;5(7):1600920. [Google Scholar]
  • 64.Wu C, Wu T, Yang Y, McLeod J A, Wang Y, Zou Y, Zhai T, Li J, Ban M, Song T, Gao X, Duhm S, Sirringhaus H, Sun B. Alternative type two-dimensional-three-dimensional lead halide perovskite with inorganic sodium ions as a spacer for high-performance light-emitting diodes. ACS Nano. 2019;13(2):1645–1654. doi: 10.1021/acsnano.8b07632. [DOI] [PubMed] [Google Scholar]
  • 65.Chen H, Fan L, Zhang R, Bao C, Zhao H, Xiang W, Liu W, Niu G, Guo R, Zhang L, Wang L. High-efficiency formamidinium lead bromide perovskite nanocrystal-based light-emitting diodes fabricated via a surface defect self-passivation strategy. Advanced Optical Materials. 2020;8(6):1901390. [Google Scholar]
  • 66.He Z, Liu Y, Yang Z, Li J, Cui J, Chen D, Fang Z, He H, Ye Z, Zhu H, Wang N, Wang J, Jin Y. High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites. ACS Photonics. 2019;6(3):587–594. [Google Scholar]
  • 67.Xiao Z, Kerner R A, Tran N, Zhao L, Scholes G D, Rand B P. Engineering perovskite nanocrystal surface termination for light-emitting diodes with external quantum efficiency exceeding 15% Advanced Functional Materials. 2019;29(11):1807284. [Google Scholar]
  • 68.Deng W, Xu X, Zhang X, Zhang Y, Jin X, Wang L, Lee S T, Jie J. Organometal halide perovskite quantum dot light-emitting diodes. Advanced Functional Materials. 2016;26(26):4797–4802. [Google Scholar]
  • 69.Na Quan L, Ma D, Zhao Y, Voznyy O, Yuan H, Bladt E, Pan J, García de Arquer F P, Sabatini R, Piontkowski Z, Emwas A H, Todorović P, Quintero-Bermudez R, Walters G, Fan J Z, Liu M, Tan H, Saidaminov M I, Gao L, Li Y, Anjum D H, Wei N, Tang J, McCamant D W, Roeffaers M B J, Bals S, Hofkens J, Bakr O M, Lu Z H, Sargent E H. Edge stabilization in reduced-dimensional perovskites. Nature Communications. 2020;11(1):170. doi: 10.1038/s41467-019-13944-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q, Zeng H. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48% Advanced Materials. 2018;30(50):e1805409. doi: 10.1002/adma.201805409. [DOI] [PubMed] [Google Scholar]
  • 71.Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B. Highly efficient spectrally stable red perovskite light-emitting diodes. Advanced Materials. 2018;30(20):e1707093. doi: 10.1002/adma.201707093. [DOI] [PubMed] [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES