Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Dec 23;14(1):4–36. doi: 10.1007/s12200-020-1052-9

Intense terahertz radiation: generation and application

Yan Zhang 1,, Kaixuan Li 1, Huan Zhao 1
PMCID: PMC9743905  PMID: 36637780

Abstract

Strong terahertz (THz) radiation provides a powerful tool to manipulate and control complex condensed matter systems. This review provides an overview of progress in the generation, detection, and applications of intense THz radiation. The tabletop intense THz sources based on Ti:sapphire laser are reviewed, including photoconductive antennas (PCAs), optical rectification sources, plasma-based THz sources, and some novel techniques for THz generations, such as topological insulators, spintronic materials, and metasurfaces. The coherent THz detection methods are summarized, and their limitations for intense THz detection are analyzed. Applications of intense THz radiation are introduced, including applications in spectroscopy detection, nonlinear effects, and switching of coherent magnons. The review is concluded with a short perspective on the generation and applications of intense THz radiation.

graphic file with name 12200_2020_1052_Fig1_HTML.jpg

Keywords: terahertz (THz) radiation, THz generation, THz detection, light-matter interaction

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1711905), the National Natural Science Foundation of China (Grant Nos. 11774243, 11774246, and 6167513), the Youth Innovative Research Team of Capital Normal University (No. 19530050146), the Capacity Building for Science & Technology Innovation Fundamental Scientific Research Funds (Nos. 19530050170 and 19530050180), and the Scientific Research Base Development Program of the Beijing Municipal Commission of Education.

Footnotes

Yan Zhang received his Bachelor’s and Master’s degrees from Harbin Institute of Technology, China, and his Doctoral degree from Institute of Physics, Chinese Academy of Sciences, China, in 1994, 1996, and 1999, respectively.

Dr. Zhang is currently a full professor in Department of Physics, Capital Normal University, China. He is the dean of Beijing Key Laboratory for Metamaterials and Devices, China. His research interests include terahertz imaging and spectroscopy, surface plasmonic optics, and optical information processing. He has authored and coauthored more than 240 journal papers. He is a Fellow of The Optical Society (OSA).

Kaixuan Li is a master student of Capital Normal University, China. He received his Bachelor’s degree from Anqing Normal University, China. He is now working in the applications of intense terahertz.

Huan Zhao is a Ph.D. candidate in Capital Normal University, China. She received her Bachelor’s and Master’s degrees from Capital Normal University, China. She is now working in the fields of terahertz metasurface and applications of intense terahertz.

References

  • 1.Tonouchi M. Cutting-edge terahertz technology. Nature Photonics. 2007;1(2):97–105. [Google Scholar]
  • 2.Beard M C, Turner G M, Schmuttenmaer C A. Terahertz spectroscopy. Journal of Physical Chemistry B. 2002;106(29):7146–7159. [Google Scholar]
  • 3.Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics. 2011;83(2):543–586. [Google Scholar]
  • 4.Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews. 2011;5(1):124–166. [Google Scholar]
  • 5.Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics. 2013;7(9):680–690. [Google Scholar]
  • 6.Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters. 2008;33(23):2767–2769. doi: 10.1364/ol.33.002767. [DOI] [PubMed] [Google Scholar]
  • 7.Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics. 2017;11(1):16–18. [Google Scholar]
  • 8.Hirori H, Tanaka K. Dynamical nonlinear interaction of solids with strong terahertz pulses. Journal of the Physical Society of Japan. 2016;85(8):082001. [Google Scholar]
  • 9.Yamaguchi K, Nakajima M, Suemoto T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters. 2010;105(23):237201. doi: 10.1103/PhysRevLett.105.237201. [DOI] [PubMed] [Google Scholar]
  • 10.Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics. 2011;5(1):31–34. [Google Scholar]
  • 11.Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M. Single-cycle terahertz pulses with > 0.2 V/Â field amplitudes via coherent transition radiation. Applied Physics Letters. 2011;99(14):141117. [Google Scholar]
  • 12.Li H T, Lu Y L, He Z G, Jia Q K, Wang L. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train. Journal of Infrared, Millimeter and Terahertz Waves. 2016;37(7):649–657. [Google Scholar]
  • 13.Hou L, Shi W. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices. 2013;60(5):1619–1624. [Google Scholar]
  • 14.Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time resolved terahertz spectroscopy. Journal of Applied Physics. 2001;90(12):5915–5923. [Google Scholar]
  • 15.Buryakov A M, Ivanov M S, Nomoev S A, Khusyainov D I, Mishina E D, Khomchenko V A, Vasilevskii I S, Vinichenko A N, Kozlovskii K I, Chistyakov A A, Paixão J A. An advanced approach to control the electro-optical properties of LT-GaAs based terahertz photoconductive antenna. Materials Research Bulletin. 2020;122:110688. [Google Scholar]
  • 16.Doany F E, Grischkowsky D, Chi C C. Carrier lifetime versus ionimplantation dose in silicon on sapphire. Applied Physics Letters. 1987;50(8):460–462. [Google Scholar]
  • 17.Sarkisov S Y, Safiullin F D, Skakunov M S, Tolbanov O P, Tyazhev A V, Nazarov M M, Shkurinov A P. Dipole antennas based on SI-GaAs:Cr for generation and detection of terahertz radiation. Russian Physics Journal. 2013;55(8):890–898. [Google Scholar]
  • 18.Rode J C, Chiang H W, Choudhary P, Jain V, Thibeault B J, Mitchell W J, Rodwell M J W, Urteaga M, Loubychev D, Snyder A, Wu Y, Fastenau J M, Liu A W K. Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth. IEEE Journal of Transactions on Electron Devices. 2015;62(9):2779–2785. [Google Scholar]
  • 19.Simoens F, Meilhan J, Delplanque B, Gidon S, Lasfargues G, Dera J L, Nguyen D T, Ouvrier-Buffet J L, Pocas S, Maillou T, Cathabard O, Barbieri S. Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays. Proceedings of the Society for Photo-Instrumentation Engineers. 2012;8363:83630D. [Google Scholar]
  • 20.You D, Jones R R, Bucksbaum P H, Dykaar D R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters. 1993;18(4):290–292. doi: 10.1364/ol.18.000290. [DOI] [PubMed] [Google Scholar]
  • 21.Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, Ozaki T. Intense terahertz radiation and their applications. Journal of Optics. 2016;18(9):093004. [Google Scholar]
  • 22.Kasai S, Watanabe M, Ouchi T. Improved terahertz wave intensity in photoconductive antennas formed of annealed low-temperature grown GaAs. Japanese Journal of Applied Physics. 2007;46(7A):4163–4165. [Google Scholar]
  • 23.Yoneda H, Tokuyama K, Nagata H. Proceedings of the 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) San Diego: IEEE; 2001. Generation of high-peak-power THz radiation by using diamond photoconductive antenna array; pp. 644–645. [Google Scholar]
  • 24.Ono S, Murakami H, Quema A, Diwa G, Sarukura N, Nagasaka R, Ichikawa Y, Ogino H, Ohshima E, Yoshikawa A, Fukuda T. Generation of terahertz radiation using zinc oxide as photo-conductive material excited by ultraviolet pulses. Applied Physics Letters. 2005;87(26):261112. [Google Scholar]
  • 25.Ahi K. Review of GaN-based devices for terahertz operation. Optical Engineering (Redondo Beach, Calif.) 2017;56(09):090901. [Google Scholar]
  • 26.Cho P S, Ho P T, Goldhar J, Lee C H. Photoconductivity in ZnSe under high electric fields. IEEE Journal of Quantum Electronics. 1994;30(6):1489–1497. [Google Scholar]
  • 27.Kikuma I, Matsuo M, Komuro T. In situ annealing of melt-Grown ZnSe crystals under Zn partial pressure. Japanese Journal of Applied Physics. 1992;31(5A):L531–L534. [Google Scholar]
  • 28.Ropagnol X, Bouvier M, Reid M, Ozaki T. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics. 2014;116(4):043107. [Google Scholar]
  • 29.Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters. 2007;91(7):071112. [Google Scholar]
  • 30.Xu M, Mittendorff M, Dietz R J B, Künzel H, Sartorius B, Göbel T, Schneider H, Helm M, Winnerl S. Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 m. Applied Physics Letters. 2013;103(25):251114. [Google Scholar]
  • 31.Salem B, Morris D, Aimez V, Beerens J, Beauvais J, Houde D. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter. 2005;17(46):7327–7333. [Google Scholar]
  • 32.Dreyhaupt A, Winnerl S, Dekorsy T, Helm M. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters. 2005;86(12):121114. [Google Scholar]
  • 33.Ropagnol X, Morandotti R, Ozaki T, Reid M. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Journal of Photonics. 2011;3(2):174–186. [Google Scholar]
  • 34.Hattori T, Egawa K, Ookuma S I, Itatani T. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics. 2006;45(15):L422–L424. [Google Scholar]
  • 35.Beck M, Schäfer H, Klatt G, Demsar J, Winnerl S, Helm M, Dekorsy T. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express. 2010;18(9):9251–9257. doi: 10.1364/OE.18.009251. [DOI] [PubMed] [Google Scholar]
  • 36.Yardimci N T, Yang S H, Berry C W, Jarrahi M. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology. 2015;5(2):223–229. [Google Scholar]
  • 37.Madéo J, Jukam N, Oustinov D, Rosticher M, Rungsawang R, Tignon J, Dhillon S S. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters. 2010;46(9):611–613. [Google Scholar]
  • 38.Ropagnol X, Morandotti R, Ozaki T, Reid M. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters. 2011;36(14):2662–2664. doi: 10.1364/OL.36.002662. [DOI] [PubMed] [Google Scholar]
  • 39.Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Côté C Y, Laramée A, Reid M, Gauthier M A, Ozaki T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express. 2016;24(11):11299–11311. doi: 10.1364/OE.24.011299. [DOI] [PubMed] [Google Scholar]
  • 40.Ropagnol X, Chai X, Raeis-Zadeh S M, Safavi-Naeini S, Kirouac-Turmel M, Bouvier M, Côté C Y, Reid M, Gauthier M A, Ozaki T. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics. 2017;23(4):1–8. [Google Scholar]
  • 41.Shi W, Hou L, Wang X M. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics. 2011;110(2):023111. [Google Scholar]
  • 42.Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pules by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics. 2008;25(7):B6–B19. [Google Scholar]
  • 43.Blanchard F, Sharma G, Razzari L, Ropagnol X, Bandulet H C, Vidal F, Morandotti R, Kieffer J C, Ozaki T, Tiedje H, Haugen H, Reid M, Hegmann F. Generation of intense terahertz radiation via optical methods. IEEE Journal of Selected Topics in Quantum Electronics. 2011;17(1):5–16. [Google Scholar]
  • 44.Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express. 2007;15(20):13212–13220. doi: 10.1364/oe.15.013212. [DOI] [PubMed] [Google Scholar]
  • 45.Löffler T, Hahn T, Thomson M, Jacob F, Roskos H. Large-area electro-optic ZnTe terahertz emitters. Optics Express. 2005;13(14):5353–5362. doi: 10.1364/opex.13.005353. [DOI] [PubMed] [Google Scholar]
  • 46.Fülöp J A, Pâlfalvi L, Klingebiel S, Almâsi G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters. 2012;37(4):557–559. doi: 10.1364/OL.37.000557. [DOI] [PubMed] [Google Scholar]
  • 47.Blanchard F, Ropagnol X, Hafez H, Razavipour H, Bolduc M, Morandotti R, Ozaki T, Cooke D G. Effect ofextreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Optics Letters. 2014;39(15):4333–4336. doi: 10.1364/OL.39.004333. [DOI] [PubMed] [Google Scholar]
  • 48.Pâlfalvi L, Hebling J, Almasi G, Peter A, Polgar K, Lengyel K, Szipocs R. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. Journal of Applied Physics. 2004;95(3):902–908. [Google Scholar]
  • 49.Huang S W, Granados E, Huang W R, Hong K H, Zapata L E, Kärtner F X. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters. 2013;38(5):796–798. doi: 10.1364/OL.38.000796. [DOI] [PubMed] [Google Scholar]
  • 50.Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, Wang X, Ruan C J, Li Y T. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses. Optics Express. 2018;26(6):7107–7116. doi: 10.1364/OE.26.007107. [DOI] [PubMed] [Google Scholar]
  • 51.Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters. 2014;105(4):041103. [Google Scholar]
  • 52.Jazbinsek M, Puc U, Abina A, Zidansek A. Organic crystal for THz photonics. Applied Sciences (Basel, Switzerland) 2019;9(5):882. [Google Scholar]
  • 53.Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters. 2011;99(16):161116. [Google Scholar]
  • 54.Shalaby M, Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications. 2015;6(1):5976. doi: 10.1038/ncomms6976. [DOI] [PubMed] [Google Scholar]
  • 55.Liu B, Bromberger H, Cartella A, Gebert T, Först M, Cavalleri A. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Optics Letters. 2017;42(1):129–131. doi: 10.1364/OL.42.000129. [DOI] [PubMed] [Google Scholar]
  • 56.Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C L, Zhang L L, Shalaby M. Efficient broadband terahertz generation from organic crystal BNA using near infrared pump. Applied Physics Letters. 2019;114(24):241101. [Google Scholar]
  • 57.Kaindl R A, Eickemeyer F, Woerner M, Elsaesser T. Broadband phase-matched difference frequency mixing offemtosecond pulses in GaSe: experiment and theory. Applied Physics Letters. 1999;75(8):1060–1062. [Google Scholar]
  • 58.Junginger F, Sell A, Schubert O, Mayer B, Brida D, Marangoni M, Cerullo G, Leitenstorfer A, Huber R. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Optics Letters. 2010;35(15):2645–2647. doi: 10.1364/OL.35.002645. [DOI] [PubMed] [Google Scholar]
  • 59.Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters. 1993;71(17):2725–2728. doi: 10.1103/PhysRevLett.71.2725. [DOI] [PubMed] [Google Scholar]
  • 60.Sun W F, Zhou Y S, Wang X K, Zhang Y. External electric field control of THz pulse generation in ambient air. Optics Express. 2008;16(21):16573–16580. [PubMed] [Google Scholar]
  • 61.Bakhtiari F, Esmaeilzadeh M, Ghafary B. Terahertz radiation with high power and high efficiency in a magnetized plasma. Physics of Plasmas. 2017;24(7):073112. [Google Scholar]
  • 62.Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters. 2006;96(7):075005. doi: 10.1103/PhysRevLett.96.075005. [DOI] [PubMed] [Google Scholar]
  • 63.Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugzlys A, Baltuška A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nature Communications. 2020;11(1):292. doi: 10.1038/s41467-019-14206-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics. 2008;2(10):605–609. [Google Scholar]
  • 65.Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters. 2000;25(16):1210–1212. doi: 10.1364/ol.25.001210. [DOI] [PubMed] [Google Scholar]
  • 66.Dai J M, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters. 2009;94(2):021117. [Google Scholar]
  • 67.Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M, Zhang X C. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Physical Review Letters. 2017;119(23):235001. doi: 10.1103/PhysRevLett.119.235001. [DOI] [PubMed] [Google Scholar]
  • 68.Peng X Y, Li C, Chen M, Toncian T, Jung R, Willi O, Li Y T, Wang W M, Wang S J, Liu F, Pukhov A, Sheng Z M, Zhang J. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam. Applied Physics Letters. 2009;94(10):101502. [Google Scholar]
  • 69.Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express. 2007;15(8):4577–4584. doi: 10.1364/oe.15.004577. [DOI] [PubMed] [Google Scholar]
  • 70.Liao G Q, Li Y T, Zhang Y H, Liu H, Ge X L, Yang S, Wei W Q, Yuan X H, Deng Y Q, Zhu B J, Zhang Z, Wang W M, Sheng Z M, Chen L M, Lu X, Ma J L, Wang X, Zhang J. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Physical Review Letters. 2016;116(20):205003. doi: 10.1103/PhysRevLett.116.205003. [DOI] [PubMed] [Google Scholar]
  • 71.Tian Y, Liu J S, Bai Y F, Zhou S Y, Sun H Y, Liu W W, Zhao J Y, Li R X, Xu Z Z. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nature Photonics. 2017;11(4):242–246. [Google Scholar]
  • 72.Jin Q E Y, Williams K, Dai J, Zhang X C. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters. 2017;111(7):071103. [Google Scholar]
  • 73.Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications. 2017;8(1):1184. doi: 10.1038/s41467-017-01382-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Zhang L L, Wang W M, Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M, Zhang X C. Strong terahertz radiation from a liquid-water line. Physical Review Applied. 2019;12(1):014005. [Google Scholar]
  • 75.Zhu L G, Kubera B, Fai Mak K, Shan J. Effect ofsurface states on terahertz emission from the Bi2Se3 surface. Scientific Reports. 2015;5(1):10308. doi: 10.1038/srep10308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Luo C W, Chen H J, Tu C M, Lee C C, Ku S A, Tzeng W Y, Yeh T T, Chiang M C, Wang H J, Chu W C, Lin J Y, Wu K H, Juang J Y, Kobayashi T, Cheng C M, Chen C H, Tsuei K D, Berger H, Sankar R, Chou F C, Yang H D. THz generation and detection on Dirac Fermions in topological insulators. Advanced Optical Materials. 2013;1(11):804–808. [Google Scholar]
  • 77.Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics. 2016;10(7):483–488. [Google Scholar]
  • 78.Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S N, Wu Y Z, Qi J B. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Advanced Optical Materials. 2016;4(12):1944–1949. [Google Scholar]
  • 79.Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV·cm−1 from a metallic spintronic emitter. Applied Physics Letters. 2017;110:252402. [Google Scholar]
  • 80.Luo L, Chatzakis I, Wang J, Niesler F B P, Wegener M, Koschny T, Soukoulis C M. Broadband terahertz generation from metamaterials. Nature Communications. 2014;5(1):3055. doi: 10.1038/ncomms4055. [DOI] [PubMed] [Google Scholar]
  • 81.Keren-Zur S, Tal M, Fleischer S, Mittleman D M, Ellenbogen T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nature Communications. 2019;10(1):1778. doi: 10.1038/s41467-019-09811-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Ropagnol X, Blanchard F, Ozaki T, Reid M. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters. 2013;103(16):161108. [Google Scholar]
  • 83.Hirori H, Doi A A, Blanchard F, Tanaka K. Single cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters. 2011;98(9):091106. [Google Scholar]
  • 84.Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics. 1988;24(2):255–260. [Google Scholar]
  • 85.Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters. 1995;67(24):3523–3525. [Google Scholar]
  • 86.Fattinger C, Grischkowsky D R. Terahertz beams. Applied Physics Letters. 1989;54(6):490–492. [Google Scholar]
  • 87.van Exter M, Grischkowsky D R. Characterization of an optoelectronic terahertz beam system. IEEE Transactions on Microwave Theory and Techniques. 1990;38(11):1684–1691. [Google Scholar]
  • 88.Lee Y S. Principles of Terahertz Science and Technology. Berlin: Springer; 2008. [Google Scholar]
  • 89.Singh A, Pal S, Surdi H, Prabhu S S, Mathimalar S, Nanal V, Pillay R G, Döhler G H. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Optics Express. 2015;23(5):6656–6661. doi: 10.1364/OE.23.006656. [DOI] [PubMed] [Google Scholar]
  • 90.Liu T A, Tani M, Nakajima M, Hangyo M, Pan C L. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters. 2003;83(7):1322–1324. [Google Scholar]
  • 91.Hattori T, Tukamoto K, Nakatsuka H. Time-resolved study of intense terahertz pulses generated by a large aperture photoconductive antenna. Japanese Journal of Applied Physics. 2001;40(8):4907–4912. [Google Scholar]
  • 92.Jepsen P U, Jacobsen R H, Keiding S R. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B, Optical Physics. 1996;13(11):2424–2436. [Google Scholar]
  • 93.Sharma G, Al-Naib I, Hafez H, Morandotti R, Cooke D G, Ozaki T. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Optics Express. 2012;20(16):18016–18024. doi: 10.1364/OE.20.018016. [DOI] [PubMed] [Google Scholar]
  • 94.Gallot G, Zhang J, McGowan R, Jeon T, Grischkowsky D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Applied Physics Letters. 1999;74(23):3450–3452. [Google Scholar]
  • 95.Kübler C, Huber R, Tübel S, Leitenstorfer A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters. 2004;85(16):3360–3362. [Google Scholar]
  • 96.Reimann K, Smith R P, Weiner A M, Elsaesser T, Woerner M. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Optics Letters. 2003;28(6):471–473. doi: 10.1364/ol.28.000471. [DOI] [PubMed] [Google Scholar]
  • 97.Schall M, Helm H, Keiding S R. Far infrared properties of electrooptic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves. 1999;20(4):595–604. [Google Scholar]
  • 98.Sharma G, Singh K, Al-Naib I, Morandotti R, Ozaki T. Terahertz detection using spectral domain interferometry. Optics Letters. 2012;37(20):4338–4340. doi: 10.1364/OL.37.004338. [DOI] [PubMed] [Google Scholar]
  • 99.Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters. 2006;97(10):103903. doi: 10.1103/PhysRevLett.97.103903. [DOI] [PubMed] [Google Scholar]
  • 100.Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters. 2008;92(1):011131. [Google Scholar]
  • 101.Ho I C, Guo X, Zhang X C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express. 2010;18(3):2872–2883. doi: 10.1364/OE.18.002872. [DOI] [PubMed] [Google Scholar]
  • 102.Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters. 2009;103(23):235002. doi: 10.1103/PhysRevLett.103.235002. [DOI] [PubMed] [Google Scholar]
  • 103.Liu J L, Zhang X C. Plasma characterization using terahertz-wave-enhanced fluorescence. Applied Physics Letters. 2010;96(4):041505. [Google Scholar]
  • 104.Liu J L, Dai J M, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics. 2010;4(9):627–631. [Google Scholar]
  • 105.Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters. 2010;35(21):3544–3546. doi: 10.1364/OL.35.003544. [DOI] [PubMed] [Google Scholar]
  • 106.Turchinovich D, Hvam J M, Hoffmann M C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B. 2012;85(20):201304. [Google Scholar]
  • 107.Paul M, Chang Y, Thompson Z, Stickel A, Wardini J, Choi H, Minot E, Hou B, Nees J, Norris T, Lee Y. High-field terahertz response of graphene. New Journal of Physics. 2013;15(8):085019. [Google Scholar]
  • 108.Bowlan P, Martinez-Moreno E, Reimann K, Elsaesser T, Woerner M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Physical Review B. 2014;89(4):041408. [Google Scholar]
  • 109.Melnik M, Vorontsova I, Putilin S, Tcypkin A, Kozlov S. Methodical inaccuracy of the Z-scan method for few-cycle terahertz pulses. Scientific Reports. 2019;9(1):9146. doi: 10.1038/s41598-019-45735-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S, Huber R. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics. 2014;8(2):119–123. [Google Scholar]
  • 111.Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J, Wang Z, Tielrooij K J, Liu Z, Chen Z, Narita A, Müllen K, Bonn M, Gensch M, Turchinovich D. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature. 2018;561(7724):507–511. doi: 10.1038/s41586-018-0508-1. [DOI] [PubMed] [Google Scholar]
  • 112.Bahk Y M, Kang B J, Kim Y S, Kim J Y, Kim W T, Kim T Y, Kang T, Rhie J, Han S, Park C H, Rotermund F, Kim D S. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Physical Review Letters. 2015;115(12):125501. doi: 10.1103/PhysRevLett.115.125501. [DOI] [PubMed] [Google Scholar]
  • 113.Jadidi M M, König-Otto J C, Winnerl S, Sushkov A B, Drew H D, Murphy T E, Mittendorff M. Nonlinear terahertz absorption of graphene plasmons. Nano Letters. 2016;16(4):2734–2738. doi: 10.1021/acs.nanolett.6b00405. [DOI] [PubMed] [Google Scholar]
  • 114.Giorgianni F, Chiadroni E, Rovere A, Cestelli-Guidi M, Perucchi A, Bellaveglia M, Castellano M, Di Giovenale D, Di Pirro G, Ferrario M, Pompili R, Vaccarezza C, Villa F, Cianchi A, Mostacci A, Petrarca M, Brahlek M, Koirala N, Oh S, Lupi S. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications. 2016;7(1):11421. doi: 10.1038/ncomms11421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Vicario C, Shalaby M, Hauri C P. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Physical Review Letters. 2017;118(8):083901. doi: 10.1103/PhysRevLett.118.083901. [DOI] [PubMed] [Google Scholar]
  • 116.Chefonov O V, Ovchinnikov A V, Agranat M B, Fortov V E, Efimenko E S, Stepanov A N, Savel’ev A B. Nonlinear transfer of an intense few-cycle terahertz pulse through opaque n-doped Si. Physical Review B. 2018;98(16):165206. [Google Scholar]
  • 117.Pashkin A, Sell A, Kampfrath T, Huber R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics. 2013;15(6):065003. [Google Scholar]
  • 118.Yamaguchi K, Nakajima M, Suemoto T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters. 2010;105(23):237201. doi: 10.1103/PhysRevLett.105.237201. [DOI] [PubMed] [Google Scholar]
  • 119.Wang Z, Pietz M, Walowski J, Förster A, Lepsa M I, Münzenberg M. Spin dynamics triggered by subterahertz magnetic field pulses. Journal of Applied Physics. 2008;103(12):123905. [Google Scholar]
  • 120.Beaurepaire E, Merle J, Daunois A, Bigot J. Ultrafast spin dynamics in ferromagnetic nickel. Physical Review Letters. 1996;76(22):4250–4253. doi: 10.1103/PhysRevLett.76.4250. [DOI] [PubMed] [Google Scholar]
  • 121.Li X, Qiu T, Zhang J, Baldini E, Lu J, Rappe A M, Nelson K A. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science. 2019;364(6445):1079–1082. doi: 10.1126/science.aaw4913. [DOI] [PubMed] [Google Scholar]
  • 122.Razzari L, Su F, Sharma G, Blanchard F, Ayesheshim A, Bandulet H, Morandotti H, Kieffer J, Ozaki T, Reid M, Hegmann F. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B. 2009;79(19):193204. [Google Scholar]
  • 123.Kaur G, Han P, Zhang X. Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome: IEEE; 2010. Terahertz induced nonlinear effects in doped Silicon observed by open-aperture Z-scan; p. 5613068. [Google Scholar]
  • 124.Strait J H, Wang H, Shivaraman S, Shields V, Spencer M, Rana F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Letters. 2011;11(11):4902–4906. doi: 10.1021/nl202800h. [DOI] [PubMed] [Google Scholar]
  • 125.Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Physical Review B. 2012;85(3):035443. [Google Scholar]
  • 126.Docherty C J, Lin C T, Joyce H J, Nicholas R J, Herz L M, Li L J, Johnston M B. Extreme sensitivity ofgraphene photoconductivity to environmental gases. Nature Communications. 2012;3(1):1228. doi: 10.1038/ncomms2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Jnawali G, Rao Y, Yan H, Heinz T F. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters. 2013;13(2):524–530. doi: 10.1021/nl303988q. [DOI] [PubMed] [Google Scholar]
  • 128.Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics. 2013;9(4):248–252. [Google Scholar]
  • 129.Wright A, Xu X, Cao J, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters. 2009;95(7):072101. [Google Scholar]
  • 130.Ishikawa K. Nonlinear optical response of graphene in time domain. Physical Review B. 2012;85:035443. [Google Scholar]
  • 131.Shareef S, Ang Y, Zhang C. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics. 2012;29(3):274–279. [Google Scholar]
  • 132.Hafez H A, Al-Naib I, Oguri K, Sekine Y, Dignam M M, Ibrahim A, Cooke D G, Tanaka S, Komori F, Hibino H, Ozaki T. Nonlinear transmission of an intense terahertz field through monolayer graphene. AIP Advances. 2014;4(11):117118. [Google Scholar]
  • 133.Su F H, Blanchard F, Sharma G, Razzari L, Ayesheshim A, Cocker T L, Titova L V, Ozaki T, Kieffer J C, Morandotti R, Reid M, Hegmann F A. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express. 2009;17(12):9620–9629. doi: 10.1364/oe.17.009620. [DOI] [PubMed] [Google Scholar]
  • 134.Hafez H, Al-Naib I, Dignam M, Sekine Y, Oguri K, Blanchard F, Cooke D, Tanaka S, Komori F, Hibino H, Ozaki T. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Physical Review B. 2015;91(3):035422. [Google Scholar]
  • 135.Hoffmann M, Hebling J, Hwang H, Yeh K, Nelson K. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. Journal of the Optical Society of America B, Optical Physics. 2009;26(9):A29–A34. [Google Scholar]
  • 136.Hebling J, Hoffmann M, Hwang H, Yeh K, Nelson K. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump-terahertz probe measurements. Physical Review B. 2010;81(3):035201. [Google Scholar]
  • 137.Hoffmann M, Hebling J, Hwang H, Yeh K, Nelson K. Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy. Physical Review B. 2009;79(16):161201. [Google Scholar]
  • 138.Hwang H Y, Brandt N C, Farhat H, Hsu A L, Kong J, Nelson K A. Nonlinear THz conductivity dynamics in P-type CVD-grown graphene. Journal of Physical Chemistry B. 2013;117(49):15819–15824. doi: 10.1021/jp407548a. [DOI] [PubMed] [Google Scholar]
  • 139.Sá J, Fernandes D L A, Pavliuk M V, Szlachetko J. Controlling dark catalysis with quasi half-cycle terahertz pulses. Catalysis Science & Technology. 2017;7(5):1050–1054. [Google Scholar]
  • 140.Tani S, Blanchard F, Tanaka K. Ultrafast carrier dynamics in graphene under a high electric field. Physical Review Letters. 2012;109(16):166603. doi: 10.1103/PhysRevLett.109.166603. [DOI] [PubMed] [Google Scholar]
  • 141.Reyna A S, de Araújo C B. High-order optical nonlinearities in plasmonic nanocomposites—a review. Advances in Optics and Photonics. 2017;9(4):720–724. [Google Scholar]
  • 142.Reshef O, Giese E, Zahirul Alam M, De Leon I, Upham J, Boyd R W. Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters. 2017;42(16):3225–3228. doi: 10.1364/OL.42.003225. [DOI] [PubMed] [Google Scholar]
  • 143.Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X. Terahertz magnetic field induced coherent spin precession in YFeO3. Applied Physics Letters. 2012;100(6):061102. [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES