Skip to main content
Frontiers of Optoelectronics logoLink to Frontiers of Optoelectronics
. 2020 Aug 26;13(3):291–302. doi: 10.1007/s12200-020-1045-8

A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam

Yan Zhu 1, Yining Mu 1,, Fanqi Tang 1, Peng Du 1, Hang Ren 1
PMCID: PMC9743908  PMID: 36641578

Abstract

Although laser pumping using electroN beam (EB) has high transient power output and easy modulation based on perovskite quantum dot (PQD) film, its lasing emitting direction is the same as the pumped EB’s direction. Thus, realizing the conventional direct device structure through the film lasing mechanism is extremely difficult. Therefore, using the random lasing principle, herein, we proposed a corona modulation device structure based on PQDs random laser pumped using an EB. We discussed and stimulated the optimized designed method of the device in terms of parameters of the electronic optical device and the utilization ratio of output power and its modulation extinction ratio, respectively. According to the simulation results, this type of device structure can effectively satisfy the new random lasing mechanism in terms of high-speed and high-power modulation.

graphic file with name 12200_2020_1045_Fig1_HTML.jpg

Keywords: corona, modulation, perovskite quantum dot (PQD), random laser, electron beam (EB)

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51602028, 61905026, and 11874091), Jilin Province Science and Technology Development Project (Nos. 20200301065RQ and 20190701024GH), Chinese Academy of Sciences (No. CAS-KLAOT-KF201803), and Changchun University of Science and Technology (No. XJJLG-2017-01).

Footnotes

Yan Zhu is currently a doctoral candidate in Department of Electronic Science and Technology, Changchun University of Science and Technology, China. His main research direction is white optical communication system and optoelectronic devices.

Yining Mu is currently a full professor and doctoral supervisor at Changchun University of Science and Technology, China. His research interests include space optical-communication and optoelectronic devices.

Fanqi Tang is currently a M.S. candidate in Department of Electronic Science and Technology, Changchun University of Science and Technology, China. His research direction is electronic science and technology.

Peng Du is currently a M.S. candidate in Department of Electronic Science and Technology, Changchun University of Science and Technology, China. His research direction is optical communication and optoelectronic devices.

Hang Ren is currently a M.S. candidate in Department of Electronic Science and Technology, Changchun University of Science and Technology, China. Her research direction is optical communication and optoelectronic devices.

Contributor Information

Yan Zhu, Email: zhuyan6338@163.com.

Yining Mu, Email: muyining1985@163.com, Email: myn@cust.edu.cn.

Fanqi Tang, Email: 32506933@qq.com.

Peng Du, Email: 68254899@qq.com.

Hang Ren, Email: 1579945753@qq.com.

References

  • 1.Li C, Zang Z, Han C, Hu Z, Tang X, Du J, Leng Y, Sun K. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nano particles for enhanced random lasing. Nano Energy. 2017;40(8):195–202. doi: 10.1016/j.nanoen.2017.08.013. [DOI] [Google Scholar]
  • 2.Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Advanced Materials. 2015;27(11):1912–1918. doi: 10.1002/adma.201405116. [DOI] [PubMed] [Google Scholar]
  • 3.Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials. 2016;28(32):6804–6834. doi: 10.1002/adma.201600669. [DOI] [PubMed] [Google Scholar]
  • 4.Zhang Q, Yin Y. All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Central Science. 2018;4(6):668–679. doi: 10.1021/acscentsci.8b00201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Wei Y, Cheng Z, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews. 2019;48(1):310–350. doi: 10.1039/C8CS00740C. [DOI] [PubMed] [Google Scholar]
  • 6.Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science. 2015;347(6225):967–970. doi: 10.1126/science.aaa5760. [DOI] [PubMed] [Google Scholar]
  • 7.Ha S T, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge) 2017;8(4):2522–2536. doi: 10.1039/C6SC04474C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang Y, Wu G, Liu F, Ding C, Zou Z, Shen Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews. 2020;49(1):49–84. doi: 10.1039/C9CS00560A. [DOI] [PubMed] [Google Scholar]
  • 9.Kodaimati M S, Wang C, Chapman C, Schatz G C, Weiss E A. Distance-dependence of interparticle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano. 2017;11(5):5041–5050. doi: 10.1021/acsnano.7b01778. [DOI] [PubMed] [Google Scholar]
  • 10.Bergren M R, Palomaki P K B, Neale N R, Furtak T E, Beard M C. Size-dependent exciton formation dynamics in colloidal silicon quantum dots. ACS Nano. 2016;10(2):2316–2323. doi: 10.1021/acsnano.5b07073. [DOI] [PubMed] [Google Scholar]
  • 11.Lee K H, Han C Y, Kang H D, Ko H, Lee C, Lee J, Myoung N, Yim S, Yang H. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano. 2015;9(11):10941–10949. doi: 10.1021/acsnano.5b05513. [DOI] [PubMed] [Google Scholar]
  • 12.Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science. 2014;7(8):2619–2623. doi: 10.1039/C4EE01138D. [DOI] [Google Scholar]
  • 13.Guan H, Zhao S, Wang H, Yan D, Wang M, Zang Z. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes. Nano Energy. 2020;67(1):104279. doi: 10.1016/j.nanoen.2019.104279. [DOI] [Google Scholar]
  • 14.Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y, Yu W W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Advanced Materials. 2016;28(45):10088–10094. doi: 10.1002/adma.201603081. [DOI] [PubMed] [Google Scholar]
  • 15.Tang X, Hu Z, Chen W, Xing X, Zang Z, Hu W, Qiu J, Du J, Leng Y, Jiang X, Mai L. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy. 2016;28(2):462–468. doi: 10.1016/j.nanoen.2016.08.062. [DOI] [Google Scholar]
  • 16.Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition. 2016;55(28):7924–7929. doi: 10.1002/anie.201603698. [DOI] [PubMed] [Google Scholar]
  • 17.Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics. 2016;3(7):1150–1156. doi: 10.1021/acsphotonics.6b00187. [DOI] [Google Scholar]
  • 18.Rainò G, Becker M A, Bodnarchuk M I, Mahrt R F, Kovalenko M V, Stöferle T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature. 2018;563(7733):671–675. doi: 10.1038/s41586-018-0683-0. [DOI] [PubMed] [Google Scholar]
  • 19.Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters. 2017;8(2):489–493. doi: 10.1021/acs.jpclett.6b02800. [DOI] [PubMed] [Google Scholar]
  • 20.Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature. 2018;562(7726):245–248. doi: 10.1038/s41586-018-0575-3. [DOI] [PubMed] [Google Scholar]
  • 21.Pan S, Deka S, Amili A E, Gu Q, Fainman Y. Nanolasers: Second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Progress in Quantum Electronics. 2018;59(3):1–18. [Google Scholar]
  • 22.Fan H, Mu Y, Liu C, Zhu Y, Liu G, Wang S, Li Y, Du P. Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam. Chinese Optics Letters. 2020;18(1):011403. doi: 10.3788/COL202018.011403. [DOI] [Google Scholar]
  • 23.Mu Y, Zhang T, Chen T, Tang F, Yang J, Liu C, Chen Z, Zhao Y, Du P, Fan H, Zhu Y, Liu G, Li P. Manufacturing and characterization on a three-dimensional random resonator of porous silicon/TiO2 nanowires for continuous light pumping lasing of perovskite quantum dots. Nano. 2020;15(02):2050016. doi: 10.1142/S1793292020500162. [DOI] [Google Scholar]
  • 24.Du P, Mu Y, Ren H, Fan H, Zhu Y, Li Y, Idelfonso M. Transient luminescence characteristics of random laser emission based on electron beam pumping perovskite nanocrystals. Acta Photonica Sinica. 2020;49(04):146–152. [Google Scholar]
  • 25.Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small. 2019;23(15):1901173. doi: 10.1002/smll.201901173. [DOI] [PubMed] [Google Scholar]
  • 26.Wang H, Zhang P, Zang Z. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters. 2020;116(16):162103. doi: 10.1063/5.0005464. [DOI] [Google Scholar]

Articles from Frontiers of Optoelectronics are provided here courtesy of Springer

RESOURCES