Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2450:373–398. doi: 10.1007/978-1-0716-2172-1_20

Studying Stem Cell Biology in Intact and Whole-Body Regenerating Hydra by Flow Cytometry.

Wanda Buzgariu, Jean-Pierre Aubry-Lachainaye, Brigitte Galliot
PMCID: PMC9761490  PMID: 35359319

Abstract

The freshwater Hydra polyp is a versatile model to study whole-body regeneration from a developmental as well as a cellular point of view. The outstanding regenerative capacities of Hydra are based on its three populations of adult stem cells located in the central body column of the animal. There, these three populations, gastrodermal epithelial, epidermal epithelial, and interstitial, continuously cycle in homeostatic conditions, and their activity is locally regulated after mid-gastric bisection. Moreover, they present an unusual cycling behavior with a short G1 phase and a pausing in G2. This particular cell cycle has been studied for a long time with classical microscopic methods. We describe here two flow cytometry methods that provide accurate and reproducible quantitative data to monitor cell cycle regulation in homeostatic and regenerative contexts. We also present a cell sorting procedure based on flow cytometry, whereby stem cells expressing a fluorescent reporter protein in transgenic lines can be enriched for use in applications such as transcriptomic, proteomic, or cell cycle analysis.


Full text of this article can be found in Bookshelf.

References

  1. Steele RE (2002) Developmental signaling in Hydra: what does it take to build a “simple” animal? Dev Biol 248(2):199–219. pii:S001216060290744X doi: 10.1006/dbio.2002.0744. [DOI] [PubMed]
  2. Bosch TC (2007) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 303(2):421–433. https://doi.org/10.1016/j.ydbio.2006.12.012 doi: 10.1016/j.ydbio.2006.12.012. [DOI] [PubMed]
  3. Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77(10):837–855. https://doi.org/10.1002/mrd.21206 doi: 10.1002/mrd.21206. [DOI] [PubMed]
  4. Galliot B (2012) Hydra, a fruitful model system for 270 years. Int J Dev Biol 56(6–8):411–423. https://doi.org/10.1387/ijdb.120086bg doi: 10.1387/ijdb.120086bg. [DOI] [PubMed]
  5. Vogg MC, Galliot B, Tsiairis CD (2019) Model systems for regeneration: Hydra. Development 146(21):dev177212. https://doi.org/10.1242/dev.177212 doi: 10.1242/dev.177212. [DOI] [PubMed]
  6. Buzgariu W, Crescenzi M, Galliot B (2014) Robust G2 pausing of adult stem cells in Hydra. Differentiation 87(1–2):83–99. https://doi.org/10.1016/j.diff.2014.03.001 doi: 10.1016/j.diff.2014.03.001. [DOI] [PubMed]
  7. David CN, Plotnick I (1980) Distribution of interstitial stem cells in Hydra. Dev Biol 76(1):175–184. https://doi.org/10.1016/0012-1606(80)90370-x doi: 10.1016/0012-1606(80)90370-x. [DOI] [PubMed]
  8. Bosch TC (2009) Hydra and the evolution of stem cells. Bioessays 31(4):478–486. https://doi.org/10.1002/bies.200800183 doi: 10.1002/bies.200800183. [DOI] [PubMed]
  9. David CN (2012) Interstitial stem cells in Hydra: multipotency and decision-making. Int J Dev Biol 56(6–8):489–497. https://doi.org/10.1387/ijdb.113476cd doi: 10.1387/ijdb.113476cd. [DOI] [PubMed]
  10. Hobmayer B, Jenewein M, Eder D, Eder MK, Glasauer S, Gufler S, Hartl M, Salvenmoser W (2012) Stemness in Hydra - a current perspective. Int J Dev Biol 56(6–8):509–517. https://doi.org/10.1387/ijdb.113426bh doi: 10.1387/ijdb.113426bh. [DOI] [PubMed]
  11. David CN, Murphy S (1977) Characterization of interstitial stem cells in hydra by cloning. Dev Biol 58(2):372–383. https://doi.org/10.1016/0012-1606(77)90098-7 doi: 10.1016/0012-1606(77)90098-7. [DOI] [PubMed]
  12. Holstein TW, David CN (1990) Putative intermediates in the nerve cell differentiation pathway in hydra have properties of multipotent stem cells. Dev Biol 142(2):401–405. https://doi.org/10.1016/0012-1606(90)90361-l doi: 10.1016/0012-1606(90)90361-l. [DOI] [PubMed]
  13. Bode HR (1996) The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci 109(pt 6):1155–1164. https://jcs.biologists.org/content/joces/109/6/1155.full.pdf doi: 10.1242/jcs.109.6.1155. [DOI] [PubMed]
  14. Campbell RD (1967) Tissue dynamics of steady state growth in Hydra littoralis. II. Patterns of tissue movement. J Morphol 121(1):19–28. https://doi.org/10.1002/jmor.1051210103 doi: 10.1002/jmor.1051210103. [DOI] [PubMed]
  15. David CN, Campbell RD (1972) Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells. J Cell Sci 11(2):557–568. https://jcs.biologists.org/content/joces/11/2/557.full.pdf doi: 10.1242/jcs.11.2.557. [DOI] [PubMed]
  16. Campbell RD, David CN (1974) Cell cycle kinetics and development of Hydra attenuata. II. Interstitial cells. J Cell Sci 16(2):349–358. https://jcs.biologists.org/content/joces/16/2/349.full.pdf doi: 10.1242/jcs.16.2.349. [DOI] [PubMed]
  17. Holstein TW, David CN (1990) Cell cycle length, cell size, and proliferation rate in hydra stem cells. Dev Biol 142(2):392–400. https://doi.org/10.1016/0012-1606(90)90360-u doi: 10.1016/0012-1606(90)90360-u. [DOI] [PubMed]
  18. Bode HR, Flick KM, Smith GS (1976) Regulation of interstitial cell differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell population size. J Cell Sci 20(1):29–46. https://doi.org/10.1007/BF00848421 doi: 10.1007/BF00848421. [DOI] [PubMed]
  19. Marcum BA, Campbell RD (1978) Development of Hydra lacking nerve and interstitial cells. J Cell Sci 29:17–33. https://jcs.biologists.org/content/joces/29/1/17.full.pdf doi: 10.1242/jcs.29.1.17. [DOI] [PubMed]
  20. Buzgariu W, Wenger Y, Tcaciuc N, Catunda-Lemos AP, Galliot B (2018) Impact of cycling cells and cell cycle regulation on Hydra regeneration. Dev Biol 433(2):240–253. https://doi.org/10.1016/j.ydbio.2017.11.003 doi: 10.1016/j.ydbio.2017.11.003. [DOI] [PubMed]
  21. Dubel S, Schaller HC (1990) Terminal differentiation of ectodermal epithelial stem cells of Hydra can occur in G2 without requiring mitosis or S phase. J Cell Biol 110(4):939–945. https://doi.org/10.1083/jcb.110.4.939 doi: 10.1083/jcb.110.4.939. [DOI] [PMC free article] [PubMed]
  22. Passamaneck YJ, Martindale MQ (2012) Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol 12:34. https://doi.org/10.1186/1471-213X-12-34 doi: 10.1186/1471-213X-12-34. [DOI] [PMC free article] [PubMed]
  23. Amiel AR, Johnston HT, Nedoncelle K, Warner JF, Ferreira S, Rottinger E (2015) Characterization of morphological and cellular events underlying oral regeneration in the Sea Anemone, Nematostella vectensis. Int J Mol Sci 16(12):28449–28471. https://doi.org/10.3390/ijms161226100 doi: 10.3390/ijms161226100. [DOI] [PMC free article] [PubMed]
  24. Bradshaw B, Thompson K, Frank U (2015) Distinct mechanisms underlie oral vs aboral regeneration in the cnidarian Hydractinia echinata. Elife 4:e05506. https://doi.org/10.7554/eLife.05506 doi: 10.7554/eLife.05506. [DOI] [PMC free article] [PubMed]
  25. Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17(2):279–289. https://doi.org/10.1016/j.devcel.2009.07.014 doi: 10.1016/j.devcel.2009.07.014. [DOI] [PubMed]
  26. Holstein TW, Hobmayer E, David CN (1991) Pattern of epithelial cell cycling in hydra. Dev Biol 148(2):602–611. https://doi.org/10.1016/0012-1606(91)90277-a doi: 10.1016/0012-1606(91)90277-a. [DOI] [PubMed]
  27. David CN, Gierer A (1974) Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J Cell Sci 16(2):359–375 doi: 10.1242/jcs.16.2.359. [DOI] [PubMed]
  28. Plickert G, Kroiher M (1988) Proliferation kinetics and cell lineages can be studied in whole mounts and macerates by means of BrdU/anti-BrdU technique. Development 103(4):791–794. https://dev.biologists.org/content/develop/103/4/791.full.pdf doi: 10.1242/dev.103.4.791. [DOI] [PubMed]
  29. Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243(1–2):191–210. https://doi.org/10.1016/s0022-1759(00)00234-9 doi: 10.1016/s0022-1759(00)00234-9. [DOI] [PubMed]
  30. Rosental B, Kozhekbaeva Z, Fernhoff N, Tsai JM, Traylor-Knowles N (2017) Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol 18(1):30. https://doi.org/10.1186/s12860-017-0146-8 doi: 10.1186/s12860-017-0146-8. [DOI] [PMC free article] [PubMed]
  31. Hayashi T, Agata K (2018) A subtractive FACS method for isolation of planarian stem cells and neural cells. Methods Mol Biol 1774:467–478. https://doi.org/10.1007/978-1-4939-7802-1_19 doi: 10.1007/978-1-4939-7802-1_19. [DOI] [PubMed]
  32. Dutta D, Buchon N, Xiang J, Edgar BA (2015) Regional cell specific RNA expression profiling of FACS isolated Drosophila intestinal cell populations. Curr Protoc Stem Cell Biol 34:2F.2.1–2F.2.14. https://doi.org/10.1002/9780470151808.sc02f02s34 doi: 10.1002/9780470151808.sc02f02s34. [DOI] [PubMed]
  33. Cossarizza A et al (2019) Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 49(10):1457–1973. https://doi.org/10.1002/eji.201970107 doi: 10.1002/eji.201970107. [DOI] [PMC free article] [PubMed]
  34. Defaye A, Perrin L (2014) Tissue specific RNA isolation in Drosophila embryos: a strategy to analyze context dependent transcriptome landscapes using FACS. Methods Mol Biol 1196:183–195. https://doi.org/10.1007/978-1-4939-1242-1_11 doi: 10.1007/978-1-4939-1242-1_11. [DOI] [PubMed]
  35. Huo X, Li H, Li Z, Yan C, Agrawal I, Mathavan S, Liu J, Gong Z (2019) Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 9(1):1509. https://doi.org/10.1038/s41598-018-36605-8 doi: 10.1038/s41598-018-36605-8. [DOI] [PMC free article] [PubMed]
  36. Ly T, Whigham A, Clarke R, Brenes-Murillo AJ, Estes B, Madhessian D, Lundberg E, Wadsworth P, Lamond AI (2017) Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS. Elife 6:e27574. https://doi.org/10.7554/eLife.27574 doi: 10.7554/eLife.27574. [DOI] [PMC free article] [PubMed]
  37. Anton-Erxleben F, Thomas A, Wittlieb J, Fraune S, Bosch TC (2009) Plasticity of epithelial cell shape in response to upstream signals: a whole-organism study using transgenic Hydra. Zoology 112(3):185–194. https://doi.org/10.1016/j.zool.2008.09.002 doi: 10.1016/j.zool.2008.09.002. [DOI] [PubMed]
  38. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TC (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci U S A 103(16):6208–6211. https://doi.org/10.1073/pnas.0510163103 doi: 10.1073/pnas.0510163103. [DOI] [PMC free article] [PubMed]
  39. Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Loso T, Sugimoto T, Niwa H, Bosch TC (2012) Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 29(11):3267–3280. https://doi.org/10.1093/molbev/mss134 doi: 10.1093/molbev/mss134. [DOI] [PubMed]
  40. Wenger Y, Buzgariu W, Galliot B (2016) Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells. Philos Trans R Soc Lond B Biol Sci 371(1685):20150040. https://doi.org/10.1098/rstb.2015.0040 doi: 10.1098/rstb.2015.0040. [DOI] [PMC free article] [PubMed]
  41. Siebert S, Farrell JA, Cazet JF, Abeykoon Y, Primack AS, Schnitzler CE, Juliano CE (2019) Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. Science 365(6451):eaav9314. https://doi.org/10.1126/science.aav9314 doi: 10.1126/science.aav9314. [DOI] [PMC free article] [PubMed]
  42. Ulrich H, Tarnok A (2005) Quantification of cell-cycle distribution and mitotic index in Hydra by flow cytometry. Cell Prolif 38(2):63–75. https://doi.org/10.1111/j.1365-2184.2005.00331.x doi: 10.1111/j.1365-2184.2005.00331.x. [DOI] [PMC free article] [PubMed]
  43. Colasanti M, Mazzone V, Mancinelli L, Leone S, Venturini G (2009) Involvement of nitric oxide in the head regeneration of Hydra vulgaris. Nitric Oxide 21(3–4):164–170. https://doi.org/10.1016/j.niox.2009.07.003 doi: 10.1016/j.niox.2009.07.003. [DOI] [PubMed]
  44. Zeeshan M, Murugadas A, Ghaskadbi S, Ramaswamy BR, Akbarsha MA (2017) Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environ Pollut 224:54–69. https://doi.org/10.1016/j.envpol.2016.12.042 doi: 10.1016/j.envpol.2016.12.042. [DOI] [PubMed]
  45. Crissman HA, Steinkamp JA (1973) Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol 59(3):766–771. https://doi.org/10.1083/jcb.59.3.766 doi: 10.1083/jcb.59.3.766. [DOI] [PMC free article] [PubMed]
  46. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66(1):188–193. https://doi.org/10.1083/jcb.66.1.188 doi: 10.1083/jcb.66.1.188. [DOI] [PMC free article] [PubMed]
  47. Shcherbata HR, Althauser C, Findley SD, Ruohola-Baker H (2004) The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 131(13):3169–3181. https://doi.org/10.1242/dev.01172 doi: 10.1242/dev.01172. [DOI] [PubMed]
  48. Kang H, Sanchez Alvarado A (2009) Flow cytometry methods for the study of cell-cycle parameters of planarian stem cells. Dev Dyn 238(5):1111–1117. https://doi.org/10.1002/dvdy.21928 doi: 10.1002/dvdy.21928. [DOI] [PubMed]
  49. Gomez M, Mayo I, Torres S (2001) Flow cytometry of cell proliferation through the incorporation of bromodeoxyuridine as an index of growth rate in the water flea, Daphnia magna (Crustacea, Cladocera). Cytometry 44(3):264–271. https://doi.org/10.1002/1097-0320(20010701)44:3<264::aid-cyto1119>3.0.co;2-%23 doi: 10.1002/1097-0320(20010701)44:3&#x0003c;264::aid-cyto1119&#x0003e;3.0.co;2-%23. [DOI] [PubMed]
  50. Vindelov LL, Christensen IJ, Nissen NI (1983) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3(5):323–327. https://doi.org/10.1002/cyto.990030503 doi: 10.1002/cyto.990030503. [DOI] [PubMed]
  51. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415–2420. https://doi.org/10.1073/pnas.0712168105 doi: 10.1073/pnas.0712168105. [DOI] [PMC free article] [PubMed]
  52. Buck SB, Bradford J, Gee KR, Agnew BJ, Clarke ST, Salic A (2008) Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. Biotechniques 44(7):927–929. https://doi.org/10.2144/000112812 doi: 10.2144/000112812. [DOI] [PubMed]
  53. Loomis WF, Lenhoff HM (1956) Growth and sexual differentiation of hydra in mass culture. J Exp Zool 132(3):555–573. https://doi.org/10.1002/jez.1401320309 doi: 10.1002/jez.1401320309. [DOI]
  54. Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nat New Biol 239(91):98–101. https://doi.org/10.1038/newbio239098a0 doi: 10.1038/newbio239098a0. [DOI] [PubMed]
  55. Bolzer A, Melzer RR, Bosch TC (1994) A SEM analysis of DMSO treated hydra polyps. Biol Cell 81(1):83–86. https://doi.org/10.1016/0248-4900(94)90059-0 doi: 10.1016/0248-4900(94)90059-0. [DOI] [PubMed]
  56. Greber MJ, David CN, Holstein TW (1992) A quantitative method for separation of living Hydra cells. Roux Arch Dev Biol 201(5):296–300. https://doi.org/10.1007/BF00592110 doi: 10.1007/BF00592110. [DOI] [PubMed]
  57. Lilly S (1955) Osmoregulation and ionic regulation in Hydra. J Exp Biol 32:423–439. https://jeb.biologists.org/content/jexbio/32/2/423.full.pdf
  58. Prusch RD, Benos DJ, Ritter M (1976) Osmoregulatory control mechanisms in freshwater coelenterates. Comp Biochem Physiol A Comp Physiol 53(2):161–164. https://doi.org/10.1016/s0300-9629(76)80048-5 doi: 10.1016/s0300-9629(76)80048-5. [DOI] [PubMed]
  59. Phelan MC (2007) Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol Chapter 1:Unit 1 1. https://doi.org/10.1002/0471143030.cb0101s36 doi: 10.1002/0471143030.cb0101s36. [DOI] [PubMed]
  60. Ormerod MG (2005) Analysis of DNA - general methods. In: Ormerod MG (ed) Flow cytometry - a practical approach, 3rd edn. Oxford University Press, Oxford
  61. David CN (1973) A quantitative method for maceration of hydra tissue. Wilhelm Roux Arch Dev Biol 171:259–268. https://doi.org/10.1007/BF00577724 doi: 10.1007/BF00577724. [DOI] [PubMed]
  62. FlowJo tutorial. https://www.flowjo.com/learn/flowjo-university/flowjo/getting-started-with-flowjo/58
  63. Janis V. Giorgi Flow Cytometry Laboratory UCLA General Flow Cytometry Glossary and Cell cycle Analysis Terminology. https://web.archive.org/web/20041205055418/http://cyto.mednet.ucla.edu/Protocols/flow.htm

RESOURCES