Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2533:25–38. doi: 10.1007/978-1-0716-2501-9_2

Establishment and Maintenance of Open Ribosomal RNA Gene Chromatin States in Eukaryotes.

Christopher Schächner, Philipp E Merkl, Michael Pilsl, Katrin Schwank, Kristin Hergert, Sebastian Kruse, Philipp Milkereit, Herbert Tschochner, Joachim Griesenbeck
PMCID: PMC9761505  PMID: 35796980

Abstract

In growing eukaryotic cells, nuclear ribosomal (r)RNA synthesis by RNA polymerase (RNAP) I accounts for the vast majority of cellular transcription. This high output is achieved by the presence of multiple copies of rRNA genes in eukaryotic genomes transcribed at a high rate. In contrast to most of the other transcribed genomic loci, actively transcribed rRNA genes are largely devoid of nucleosomes adapting a characteristic "open" chromatin state, whereas a significant fraction of rRNA genes resides in a transcriptionally inactive nucleosomal "closed" chromatin state. Here, we review our current knowledge about the nature of open rRNA gene chromatin and discuss how this state may be established.


Full text of this article can be found in Bookshelf.

References

  1. Birch JL, Zomerdijk JCBM (2008) Structure and function of ribosomal RNA gene chromatin. Biochem Soc Trans 36:619–624 doi: 10.1042/BST0360619. [DOI] [PMC free article] [PubMed]
  2. Hamperl S, Wittner M, Babl V, Perez-Fernandez J, Tschochner H, Griesenbeck J (2013) Chromatin states at ribosomal DNA loci. Biochim Biophys Acta 1829:405–417 doi: 10.1016/j.bbagrm.2012.12.007. [DOI] [PubMed]
  3. Moss T, Mars J-C, Tremblay MG, Sabourin-Felix M (2019) The chromatin landscape of the ribosomal RNA genes in mouse and human. Chromosome Res 27(1–2):31–40. https://doi.org/10.1007/s10577-018-09603-9 doi: 10.1007/s10577-018-09603-9. [DOI] [PubMed]
  4. Németh A, Längst G (2008) Chromatin organization of active ribosomal RNA genes. Epigenetics 3:243–245 doi: 10.4161/epi.3.5.6913. [DOI] [PubMed]
  5. Schöfer C, Weipoltshammer K (2018) Nucleolus and chromatin. Histochem Cell Biol 150:209–225 doi: 10.1007/s00418-018-1696-3. [DOI] [PMC free article] [PubMed]
  6. Drygin D, Rice WG, Grummt I (2010) The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50:131–156 doi: 10.1146/annurev.pharmtox.010909.105844. [DOI] [PubMed]
  7. Grummt I, Längst G (2013) Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829:393–404 doi: 10.1016/j.bbagrm.2012.10.004. [DOI] [PubMed]
  8. Srivastava R, Srivastava R, Ahn SH (2016) The epigenetic pathways to ribosomal DNA silencing. Microbiol Mol Biol Rev 80:545–563 doi: 10.1128/MMBR.00005-16. [DOI] [PMC free article] [PubMed]
  9. Sharifi S, Bierhoff H (2018) Regulation of RNA polymerase I transcription in development, disease, and aging. Annu Rev Biochem 87:51–73 doi: 10.1146/annurev-biochem-062917-012612. [DOI] [PubMed]
  10. Andrews AJ, Luger K (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys 40:99–117 doi: 10.1146/annurev-biophys-042910-155329. [DOI] [PubMed]
  11. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294 doi: 10.1016/s0092-8674(00)81958-3. [DOI] [PubMed]
  12. Olins DE, Olins AL (2003) Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol 4:809–814 doi: 10.1038/nrm1225. [DOI] [PubMed]
  13. Lai WKM, Pugh BF (2017) Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 18:548–562 doi: 10.1038/nrm.2017.47. [DOI] [PMC free article] [PubMed]
  14. Rando OJ, Winston F (2012) Chromatin and transcription in yeast. Genetics 190:351–387 doi: 10.1534/genetics.111.132266. [DOI] [PMC free article] [PubMed]
  15. Vannini A, Cramer P (2012) Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 45:439–446 doi: 10.1016/j.molcel.2012.01.023. [DOI] [PubMed]
  16. Günzl A, Bruderer T, Laufer G, Schimanski B, Tu L-C, Chung H-M, Lee P-T, Lee MG-S (2003) RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot Cell 2:542–551 doi: 10.1128/EC.2.3.542-551.2003. [DOI] [PMC free article] [PubMed]
  17. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440 doi: 10.1016/s0968-0004(99)01460-7. [DOI] [PubMed]
  18. Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49 doi: 10.1007/s00018-006-6278-1. [DOI] [PMC free article] [PubMed]
  19. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764 doi: 10.1146/annurev.bi.49.070180.003455. [DOI] [PubMed]
  20. McStay B (2016) Nucleolar organizer regions: genomic “dark matter” requiring illumination. Genes Dev 30:1598–1610 doi: 10.1101/gad.283838.116. [DOI] [PMC free article] [PubMed]
  21. Kedinger C, Gniazdowski M, Mandel JL, Gissinger F, Chambon P (1970) Alpha-amanitin: a specific inhibitor of one of two DNA-pendent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun 38:165–171 doi: 10.1016/0006-291x(70)91099-5. [DOI] [PubMed]
  22. Roeder RG, Rutter WJ (1969) Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:234–237 doi: 10.1038/224234a0. [DOI] [PubMed]
  23. Miller OL, Beatty BR (1969) Extrachromosomal nucleolar genes in amphibian oocytes. Genetics 61(Suppl):133–143 [PubMed]
  24. Miller OL, Beatty BR (1969) Portrait of a gene. J Cell Physiol 74(Suppl 1):225+ doi: 10.1002/jcp.1040740424. [DOI] [PubMed]
  25. Miller OL, Beatty BR (1969) Visualization of nucleolar genes. Science 164:955–957 doi: 10.1126/science.164.3882.955. [DOI] [PubMed]
  26. Mougey EB, O’Reilly M, Osheim Y, Miller OL, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619 doi: 10.1101/gad.7.8.1609. [DOI] [PubMed]
  27. Scheer U (1987) Contributions of electron microscopic spreading preparations (“Miller spreads”) to the analysis of chromosome structure. Results Probl Cell Differ 14:147–171 doi: 10.1007/978-3-540-47783-9_10. [DOI] [PubMed]
  28. Trendelenburg MF, Zatsepina OV, Waschek T, Schlegel W, Tröster H, Rudolph D, Schmahl G, Spring H (1996) Multiparameter microscopic analysis of nucleolar structure and ribosomal gene transcription. Histochem Cell Biol 106:167–192 doi: 10.1007/BF02484399. [DOI] [PubMed]
  29. Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau V-V, Seybert A, Engel C, Scheffer MP, Cramer P, Frangakis AS (2016) Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540(7634):607–610. https://doi.org/10.1038/nature20561 doi: 10.1038/nature20561. [DOI] [PubMed]
  30. Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332 doi: 10.1126/science.183.4122.330. [DOI] [PubMed]
  31. Woodcock CL, Safer JP, Stanchfield JE (1976) Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp Cell Res 97:101–110 doi: 10.1016/0014-4827(76)90659-5. [DOI] [PubMed]
  32. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871 doi: 10.1126/science.184.4139.868. [DOI] [PubMed]
  33. Kornberg RD, Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184:865–868 doi: 10.1126/science.184.4139.865. [DOI] [PubMed]
  34. Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300 doi: 10.1016/0092-8674(75)90149-x. [DOI] [PubMed]
  35. Foe VE, Wilkinson LE, Laird CD (1976) Comparative organization of active transcription units in Oncopeltus fasciatus. Cell 9:131–146 doi: 10.1016/0092-8674(76)90059-3. [DOI] [PubMed]
  36. Laird CD, Chooi WY (1976) Morphology of transcription units in Drosophila melanogaster. Chromosoma 58:193–218 doi: 10.1007/BF00701359. [DOI] [PubMed]
  37. Laird CD, Wilkinson LE, Foe VE, Chooi WY (1976) Analysis of chromatin-associated fiber arrays. Chromosoma 58:169–190 doi: 10.1007/BF00701357. [DOI] [PubMed]
  38. French SL, Osheim YN, Schneider DA, Sikes ML, Fernandez CF, Copela LA, Misra VA, Nomura M, Wolin SL, Beyer AL (2008) Visual analysis of the yeast 5S rRNA gene transcriptome: regulation and role of La protein. Mol Cell Biol 28:4576–4587 doi: 10.1128/MCB.00127-08. [DOI] [PMC free article] [PubMed]
  39. Johnson JM, French SL, Osheim YN, Li M, Hall L, Beyer AL, Smith JS (2013) Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Mol Cell Biol 33:2748–2759 doi: 10.1128/MCB.00112-13. [DOI] [PMC free article] [PubMed]
  40. Scheer U (1978) Changes of nucleosome frequency in nucleolar and non-nucleolar chromatin as a function of transcription: an electron microscopic study. Cell 13:535–549 doi: 10.1016/0092-8674(78)90327-6. [DOI] [PubMed]
  41. Reeves R (1984) Transcriptionally active chromatin. Biochim Biophys Acta 782:343–393 doi: 10.1016/0167-4781(84)90044-7. [DOI] [PubMed]
  42. Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7:33 doi: 10.1186/1756-8935-7-33. [DOI] [PMC free article] [PubMed]
  43. Voong LN, Xi L, Wang J-P, Wang X (2017) genome-wide mapping of the nucleosome landscape by micrococcal nuclease and chemical mapping. Trends Genet 33:495–507 doi: 10.1016/j.tig.2017.05.007. [DOI] [PMC free article] [PubMed]
  44. Reeves R (1978) Nucleosome structure of Xenopus oocyte amplified ribosomal genes. Biochemistry 17:4908–4916 doi: 10.1021/bi00616a008. [DOI] [PubMed]
  45. Reeves R (1978) Structure of Xenopus ribosomal gene chromatin during changes in genomic transcription rates. Cold Spring Harb Symp Quant Biol 42(Pt 2):709–722 doi: 10.1101/sqb.1978.042.01.073. [DOI] [PubMed]
  46. Toussaint M, Levasseur G, Tremblay M, Paquette M, Conconi A (2005) Psoralen photocrosslinking, a tool to study the chromatin structure of RNA polymerase I--transcribed ribosomal genes. Biochem Cell Biol Biochim Biol Cell 83:449–459 doi: 10.1139/o05-141. [DOI] [PubMed]
  47. Hearst JE (1981) Psoralen photochemistry and nucleic acid structure. J Invest Dermatol 77:39–44 doi: 10.1111/1523-1747.ep12479229. [DOI] [PubMed]
  48. Hanson CV, Shen CK, Hearst JE (1976) Cross-linking of DNA in situ as a probe for chromatin structure. Science 193:62–64 doi: 10.1126/science.935855. [DOI] [PubMed]
  49. Wieshahn GP, Hyde JE, Hearst JE (1977) The photoaddition of trimethylpsoralen to Drosophila melanogaster nuclei: a probe for chromatin substructure. Biochemistry 16:925–932 doi: 10.1021/bi00624a018. [DOI] [PubMed]
  50. Sogo JM, Ness PJ, Widmer RM, Parish RW, Koller T (1984) Psoralen-crosslinking of DNA as a probe for the structure of active nucleolar chromatin. J Mol Biol 178:897–919 doi: 10.1016/0022-2836(84)90318-8. [DOI] [PubMed]
  51. Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761 doi: 10.1016/0092-8674(89)90790-3. [DOI] [PubMed]
  52. Dammann R, Lucchini R, Koller T, Sogo JM (1993) Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res 21:2331–2338 doi: 10.1093/nar/21.10.2331. [DOI] [PMC free article] [PubMed]
  53. Cavalli G, Thoma F (1993) Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J 12:4603–4613 doi: 10.1002/j.1460-2075.1993.tb06149.x. [DOI] [PMC free article] [PubMed]
  54. Jones HS, Kawauchi J, Braglia P, Alen CM, Kent NA, Proudfoot NJ (2007) RNA polymerase I in yeast transcribes dynamic nucleosomal rDNA. Nat Struct Mol Biol 14:123–130 doi: 10.1038/nsmb1199. [DOI] [PMC free article] [PubMed]
  55. French SL, Osheim YN, Cioci F, Nomura M, Beyer AL (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23:1558–1568 doi: 10.1128/MCB.23.5.1558-1568.2003. [DOI] [PMC free article] [PubMed]
  56. Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J (2008) Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 22:1190–1204 doi: 10.1101/gad.466908. [DOI] [PMC free article] [PubMed]
  57. Schmid M, Durussel T, Laemmli UK (2004) ChIC and ChEC; genomic mapping of chromatin proteins. Mol Cell 16:147–157 doi: 10.1016/j.molcel.2004.09.007. [DOI] [PubMed]
  58. Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21:379–391 doi: 10.1016/j.molcel.2005.12.012. [DOI] [PubMed]
  59. Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S (2015) ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. Nat Commun 6:8733 doi: 10.1038/ncomms9733. [DOI] [PMC free article] [PubMed]
  60. Griesenbeck J, Wittner M, Charton R, Conconi A (2012) Chromatin endogenous cleavage and psoralen crosslinking assays to analyze rRNA gene chromatin in vivo. Methods Mol Biol Clifton NJ 809:291–301 doi: 10.1007/978-1-61779-376-9_20. [DOI] [PubMed]
  61. Wittner M, Hamperl S, Stöckl U, Seufert W, Tschochner H, Milkereit P, Griesenbeck J (2011) Establishment and maintenance of alternative chromatin states at a multicopy gene locus. Cell 145:543–554 doi: 10.1016/j.cell.2011.03.051. [DOI] [PubMed]
  62. Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39:4949–4960 doi: 10.1093/nar/gkq1326. [DOI] [PMC free article] [PubMed]
  63. Herdman C, Mars J-C, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T (2017) A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PLoS Genet 13:e1006899 doi: 10.1371/journal.pgen.1006899. [DOI] [PMC free article] [PubMed]
  64. Mars J-C, Sabourin-Felix M, Tremblay MG, Moss T (2018) A deconvolution protocol for ChIP-Seq reveals analogous enhancer structures on the mouse and human ribosomal RNA genes. G3 (Bethesda) 8:303–314 doi: 10.1534/g3.117.300225. [DOI] [PMC free article] [PubMed]
  65. Stros M, Launholt D, Grasser KD (2007) The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci 64:2590–2606 doi: 10.1007/s00018-007-7162-3. [DOI] [PMC free article] [PubMed]
  66. Sanij E, Hannan RD (2009) The role of UBF in regulating the structure and dynamics of transcriptionally active rDNA chromatin. Epigenetics 4:374–382 doi: 10.4161/epi.4.6.9449. [DOI] [PubMed]
  67. Wright JE, Mais C, Prieto J-L, McStay B (2006) A role for upstream binding factor in organizing ribosomal gene chromatin. Biochem Soc Symp 73:77–84 doi: 10.1042/bss0730077. [DOI] [PubMed]
  68. Bell SP, Learned RM, Jantzen HM, Tjian R (1988) Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197 doi: 10.1126/science.3413483. [DOI] [PubMed]
  69. Pikaard CS, McStay B, Schultz MC, Bell SP, Reeder RH (1989) The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF. Genes Dev 3:1779–1788 doi: 10.1101/gad.3.11.1779. [DOI] [PubMed]
  70. Pikaard CS, Smith SD, Reeder RH, Rothblum L (1990) rUBF, an RNA polymerase I transcription factor from rats, produces DNase I footprints identical to those produced by xUBF, its homolog from frogs. Mol Cell Biol 10:3810–3812 doi: 10.1128/mcb.10.7.3810. [DOI] [PMC free article] [PubMed]
  71. Moss T, Stefanovsky VY, Pelletier G (1998) The structural and architectural role of upstream binding factor, UBF. In: Paule MR (ed) Transcription of ribosomal RNA genes by eukaryotic RNA polymerase I. Springer, Berlin, pp 75–94
  72. Bazett-Jones DP, Leblanc B, Herfort M, Moss T (1994) Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137 doi: 10.1126/science.8178172. [DOI] [PubMed]
  73. Hamdane N, Stefanovsky VY, Tremblay MG, Németh A, Paquet E, Lessard F, Sanij E, Hannan R, Moss T (2014) Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body. PLoS Genet 10:e1004505 doi: 10.1371/journal.pgen.1004505. [DOI] [PMC free article] [PubMed]
  74. O’Sullivan AC, Sullivan GJ, McStay B (2002) UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol Cell Biol 22:657–668 doi: 10.1128/MCB.22.2.657-668.2002. [DOI] [PMC free article] [PubMed]
  75. Roussel P, André C, Masson C, Géraud G, Hernandez-Verdun D (1993) Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104(Pt 2):327–337 doi: 10.1242/jcs.104.2.327. [DOI] [PubMed]
  76. Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234 doi: 10.1083/jcb.133.2.225. [DOI] [PMC free article] [PubMed]
  77. Roussel P, André C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246 doi: 10.1083/jcb.133.2.235. [DOI] [PMC free article] [PubMed]
  78. Zatsepina OV, Schöfer C, Weipoltshammer K, Mosgoeller W, Almeder M, Stefanova VN, Jordan EG, Wachtler F (1996) The RNA polymerase I transcription factor UBF and rDNA are located at the same major sites in both interphase and mitotic pig embryonic kidney (PK) cells. Cytogenet Cell Genet 73:274–278 doi: 10.1159/000134354. [DOI] [PubMed]
  79. Heitz E (1931) Die Ursache der gesetzmässigen Zahl, Lage, Form und Grösse pflanzlicher Nukleolen. Planta 12:775–844
  80. Heliot L, Kaplan H, Lucas L, Klein C, Beorchia A, Doco-Fenzy M, Menager M, Thiry M, O’Donohue MF, Ploton D (1997) Electron tomography of metaphase nucleolar organizer regions: evidence for a twisted-loop organization. Mol Biol Cell 8:2199–2216 doi: 10.1091/mbc.8.11.2199. [DOI] [PMC free article] [PubMed]
  81. McClintock B (1934) The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Für Zellforsch Mikrosk Anat 21:294–326
  82. Albert B, Colleran C, Léger-Silvestre I, Berger AB, Dez C, Normand C, Perez-Fernandez J, McStay B, Gadal O (2013) Structure-function analysis of Hmo1 unveils an ancestral organization of HMG-Box factors involved in ribosomal DNA transcription from yeast to human. Nucleic Acids Res 41:10135–10149 doi: 10.1093/nar/gkt770. [DOI] [PMC free article] [PubMed]
  83. Gadal O, Labarre S, Boschiero C, Thuriaux P (2002) Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO J 21:5498–5507 doi: 10.1093/emboj/cdf539. [DOI] [PMC free article] [PubMed]
  84. Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O (2007) Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol 27:8015–8026 doi: 10.1128/MCB.01102-07. [DOI] [PMC free article] [PubMed]
  85. Hall DB, Wade JT, Struhl K (2006) An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol 26:3672–3679 doi: 10.1128/MCB.26.9.3672-3679.2006. [DOI] [PMC free article] [PubMed]
  86. Kasahara K, Ohtsuki K, Ki S, Aoyama K, Takahashi H, Kobayashi T, Shirahige K, Kokubo T (2007) Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Mol Cell Biol 27:6686–6705 doi: 10.1128/MCB.00876-07. [DOI] [PMC free article] [PubMed]
  87. Kermekchiev M, Workman JL, Pikaard CS (1997) Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol Cell Biol 17:5833–5842 doi: 10.1128/mcb.17.10.5833. [DOI] [PMC free article] [PubMed]
  88. McCauley MJ, Huo R, Becker N, Holte MN, Muthurajan UM, Rouzina I, Luger K, Maher LJ, Israeloff NE, Williams MC (2019) Single and double box HMGB proteins differentially destabilize nucleosomes. Nucleic Acids Res 47:666–678 doi: 10.1093/nar/gky1119. [DOI] [PMC free article] [PubMed]
  89. Murugesapillai D, McCauley MJ, Huo R, Nelson Holte MH, Stepanyants A, Maher LJ, Israeloff NE, Williams MC (2014) DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin. Nucleic Acids Res 42:8996–9004 doi: 10.1093/nar/gku635. [DOI] [PMC free article] [PubMed]
  90. Hu CH, McStay B, Jeong SW, Reeder RH (1994) xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol Cell Biol 14:2871–2882 doi: 10.1128/mcb.14.5.2871. [DOI] [PMC free article] [PubMed]
  91. Kamau E, Bauerle KT, Grove A (2004) The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J Biol Chem 279:55234–55240 doi: 10.1074/jbc.M409459200. [DOI] [PubMed]
  92. Leblanc B, Read C, Moss T (1993) Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J 12:513–525 doi: 10.1002/j.1460-2075.1993.tb05683.x. [DOI] [PMC free article] [PubMed]
  93. Sanij E, Diesch J, Lesmana A, Poortinga G, Hein N, Lidgerwood G, Cameron DP, Ellul J, Goodall GJ, Wong LH, Dhillon AS, Hamdane N, Rothblum LI, Pearson RB, Haviv I, Moss T, Hannan RD (2015) A novel role for the Pol I transcription factor UBTF in maintaining genome stability through the regulation of highly transcribed Pol II genes. Genome Res 25:201–212 doi: 10.1101/gr.176115.114. [DOI] [PMC free article] [PubMed]
  94. Achar YJ, Adhil M, Choudhary R, Gilbert N, Foiani M (2020) Negative supercoil at gene boundaries modulates gene topology. Nature 577:701–705 doi: 10.1038/s41586-020-1934-4. [DOI] [PubMed]
  95. Mais C, Wright JE, Prieto J-L, Raggett SL, McStay B (2005) UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev 19:50–64 doi: 10.1101/gad.310705. [DOI] [PMC free article] [PubMed]
  96. Prieto J-L, McStay B (2008) Pseudo-NORs: a novel model for studying nucleoli. Biochim Biophys Acta 1783:2116–2123 doi: 10.1016/j.bbamcr.2008.07.004. [DOI] [PubMed]
  97. Prieto J-L, McStay B (2007) Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21:2041–2054 doi: 10.1101/gad.436707. [DOI] [PMC free article] [PubMed]
  98. Lucchini R, Sogo JM (1995) Replication of transcriptionally active chromatin. Nature 374:276–280 doi: 10.1038/374276a0. [DOI] [PubMed]
  99. Scott RS, Truong KY, Vos JM (1997) Replication initiation and elongation fork rates within a differentially expressed human multicopy locus in early S phase. Nucleic Acids Res 25:4505–4512 doi: 10.1093/nar/25.22.4505. [DOI] [PMC free article] [PubMed]
  100. Sandmeier JJ, French S, Osheim Y, Cheung WL, Gallo CM, Beyer AL, Smith JS (2002) RPD3 is required for the inactivation of yeast ribosomal DNA genes in stationary phase. EMBO J 21:4959–4968 doi: 10.1093/emboj/cdf498. [DOI] [PMC free article] [PubMed]
  101. Fahy D, Conconi A, Smerdon MJ (2005) Rapid changes in transcription and chromatin structure of ribosomal genes in yeast during growth phase transitions. Exp Cell Res 305:365–373 doi: 10.1016/j.yexcr.2005.01.016. [DOI] [PubMed]
  102. Tremblay M, Charton R, Wittner M, Levasseur G, Griesenbeck J, Conconi A (2014) UV light-induced DNA lesions cause dissociation of yeast RNA polymerases-I and establishment of a specialized chromatin structure at rRNA genes. Nucleic Acids Res 42:380–395 doi: 10.1093/nar/gkt871. [DOI] [PMC free article] [PubMed]
  103. Conconi A, Paquette M, Fahy D, Bespalov VA, Smerdon MJ (2005) Repair-independent chromatin assembly onto active ribosomal genes in yeast after UV irradiation. Mol Cell Biol 25:9773–9783 doi: 10.1128/MCB.25.22.9773-9783.2005. [DOI] [PMC free article] [PubMed]
  104. Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD (2008) UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 183:1259–1274 doi: 10.1083/jcb.200805146. [DOI] [PMC free article] [PubMed]
  105. Birch JL, Tan BC-M, Panov KI, Panova TB, Andersen JS, Owen-Hughes TA, Russell J, Lee S-C, Zomerdijk JCBM (2009) FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO J 28:854–865 doi: 10.1038/emboj.2009.33. [DOI] [PMC free article] [PubMed]
  106. Cutler S, Lee LJ, Tsukiyama T (2018) Chromatin remodeling factors Isw2 and Ino80 regulate chromatin, replication, and copy number of the Saccharomyces cerevisiae ribosomal DNA locus. Genetics 210:1543–1556 doi: 10.1534/genetics.118.301579. [DOI] [PMC free article] [PubMed]
  107. Hamperl S, Brown CR, Garea AV, Perez-Fernandez J, Bruckmann A, Huber K, Wittner M, Babl V, Stoeckl U, Deutzmann R, Boeger H, Tschochner H, Milkereit P, Griesenbeck J (2014) Compositional and structural analysis of selected chromosomal domains from Saccharomyces cerevisiae. Nucleic Acids Res 42:e2 doi: 10.1093/nar/gkt891. [DOI] [PMC free article] [PubMed]
  108. Zhang Y, Anderson SJ, French SL, Sikes ML, Viktorovskaya OV, Huband J, Holcomb K, Hartman JL, Beyer AL, Schneider DA (2013) The SWI/SNF chromatin remodeling complex influences transcription by RNA polymerase I in Saccharomyces cerevisiae. PloS One 8:e56793 doi: 10.1371/journal.pone.0056793. [DOI] [PMC free article] [PubMed]
  109. Anderson SJ, Sikes ML, Zhang Y, French SL, Salgia S, Beyer AL, Nomura M, Schneider DA (2011) The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively. J Biol Chem 286:18816–18824 doi: 10.1074/jbc.M110.202101. [DOI] [PMC free article] [PubMed]
  110. Engel KL, French SL, Viktorovskaya OV, Beyer AL, Schneider DA (2015) Spt6 is essential for rRNA synthesis by RNA polymerase I. Mol Cell Biol 35:2321–2331 doi: 10.1128/MCB.01499-14. [DOI] [PMC free article] [PubMed]
  111. Iben S, Tschochner H, Bier M, Hoogstraten D, Hozák P, Egly JM, Grummt I (2002) TFIIH plays an essential role in RNA polymerase I transcription. Cell 109:297–306 doi: 10.1016/s0092-8674(02)00729-8. [DOI] [PubMed]
  112. Schneider DA, French SL, Osheim YN, Bailey AO, Vu L, Dodd J, Yates JR, Beyer AL, Nomura M (2006) RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc Natl Acad Sci U S A 103:12707–12712 doi: 10.1073/pnas.0605686103. [DOI] [PMC free article] [PubMed]
  113. Zhang Y, Sikes ML, Beyer AL, Schneider DA (2009) The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc Natl Acad Sci U S A 106:2153–2158 doi: 10.1073/pnas.0812939106. [DOI] [PMC free article] [PubMed]
  114. Zhang Y, French SL, Beyer AL, Schneider DA (2016) The transcription factor THO promotes transcription initiation and elongation by RNA polymerase I. J Biol Chem 291:3010–3018 doi: 10.1074/jbc.M115.673442. [DOI] [PMC free article] [PubMed]
  115. Gallagher JEG, Dunbar DA, Granneman S, Mitchell BM, Osheim Y, Beyer AL, Baserga SJ (2004) RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes Dev 18:2506–2517 doi: 10.1101/gad.1226604. [DOI] [PMC free article] [PubMed]
  116. Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H (2020) RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 295:4782–4795 doi: 10.1074/jbc.RA119.011827. [DOI] [PMC free article] [PubMed]
  117. Hermans N, Huisman JJ, Brouwer TB, Schächner C, van Heusden GPH, Griesenbeck J, van Noort J (2017) Toehold-enhanced LNA probes for selective pull down and single-molecule analysis of native chromatin. Sci Rep 7:16721 doi: 10.1038/s41598-017-16864-7. [DOI] [PMC free article] [PubMed]

RESOURCES