Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2022;2453:297–316. doi: 10.1007/978-1-0716-2115-8_17

Adaptive Immune Receptor Repertoire (AIRR) Community Guide to Repertoire Analysis.

Susanna Marquez, Lmar Babrak, Victor Greiff, Kenneth B Hoehn, William D Lees, Eline T Luning Prak, Enkelejda Miho, Aaron M Rosenfeld, Chaim A Schramm, Ulrik Stervbo; AIRR Community
PMCID: PMC9761518  PMID: 35622333

Abstract

Adaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each. Along the way, we note some of the many software tools that have been developed for these investigations and link the ideas discussed to chapters on methods provided elsewhere in this volume.


Full text of this article can be found in Bookshelf.

References

  1. Zhang Y, Yang X, Zhang Y, Zhang Y, Wang M, Ou JX et al (2020) Tools for fundamental analysis functions of TCR repertoires: a systematic comparison. Brief Bioinform 21:1706–1716. https://doi.org/10.1093/bib/bbz092 doi: 10.1093/bib/bbz092. [DOI] [PMC free article] [PubMed]
  2. López-Santibáñez-Jácome L, Avendaño-Vázquez SE, Flores-Jasso CF (2019) The pipeline repertoire for Ig-seq analysis. Front Immunol 10:899. https://doi.org/10.3389/fimmu.2019.00899 doi: 10.3389/fimmu.2019.00899. [DOI] [PMC free article] [PubMed]
  3. Lees WD (2020) Tools for adaptive immune receptor repertoire sequencing. Curr Opin Syst Biol 24:86–92. https://doi.org/10.1016/j.coisb.2020.10.003 10.1016/j.coisb.2020.10.003PMC766527033195881 [DOI]
  4. Smakaj E, Babrak L, Ohlin M, Shugay M, Briney B, Tosoni D et al (2020) Benchmarking immunoinformatic tools for the analysis of antibody repertoire sequences. Bioinformatics 36:1731–1739. https://doi.org/10.1093/bioinformatics/btz845 doi: 10.1093/bioinformatics/btz845. [DOI] [PMC free article] [PubMed]
  5. Martin ACR (2010) Protein sequence and structure analysis of antibody variable domains. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Berlin, pp 33–51
  6. Gupta NT, Vander Heiden JA, Uduman M, Gadala-Maria D, Yaari G, Kleinstein SH (2015) Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31:3356–3358. https://doi.org/10.1093/bioinformatics/btv359 doi: 10.1093/bioinformatics/btv359. [DOI] [PMC free article] [PubMed]
  7. Hoehn KB, Pybus OG, Kleinstein SH (2020) Phylogenetic analysis of migration, differentiation, and class switching in B cells. Immunology doi: 10.1371/journal.pcbi.1009885. [DOI] [PMC free article] [PubMed]
  8. Marcou Q, Mora T, Walczak AM (2018) High-throughput immune repertoire analysis with IGoR. Nat Commun 9:561. https://doi.org/10.1038/s41467-018-02832-w doi: 10.1038/s41467-018-02832-w. [DOI] [PMC free article] [PubMed]
  9. Hoehn KB, Lunter G, Pybus OG (2017) A phylogenetic codon substitution model for antibody lineages. Genetics 206:417–427. https://doi.org/10.1534/genetics.116.196303 doi: 10.1534/genetics.116.196303. [DOI] [PMC free article] [PubMed]
  10. Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SH (2019) Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proc Natl Acad Sci U S A 116:22664–22672. https://doi.org/10.1073/pnas.1906020116 doi: 10.1073/pnas.1906020116. [DOI] [PMC free article] [PubMed]
  11. ImmunoMind Team (2019) immunarch: an R Package for painless analysis of large-scale immune repertoire data
  12. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV et al (2015) MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods 12:380–381. https://doi.org/10.1038/nmeth.3364 doi: 10.1038/nmeth.3364. [DOI] [PubMed]
  13. Sethna Z, Elhanati Y, Callan CG, Walczak AM, Mora T (2019) OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics 35:2974–2981. https://doi.org/10.1093/bioinformatics/btz035 doi: 10.1093/bioinformatics/btz035. [DOI] [PMC free article] [PubMed]
  14. Ralph DK, Matsen FA (2016) Likelihood-based inference of B cell clonal families. PLoS Comput Biol 12:e1005086. https://doi.org/10.1371/journal.pcbi.1005086 doi: 10.1371/journal.pcbi.1005086. [DOI] [PMC free article] [PubMed]
  15. Ralph DK, Matsen FA (2020) Using B cell receptor lineage structures to predict affinity. PLoS Comput Biol 16:e1008391. https://doi.org/10.1371/journal.pcbi.1008391 doi: 10.1371/journal.pcbi.1008391. [DOI] [PMC free article] [PubMed]
  16. Gidoni M, Snir O, Peres A, Polak P, Lindeman I, Mikocziova I, IMI test presentation (2019) Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. Nat Commun 10:628. https://doi.org/10.1038/s41467-019-08489-3 doi: 10.1038/s41467-019-08489-3. [DOI] [PMC free article] [PubMed]
  17. Sturm G, Szabo T, Fotakis G, Haider M, Rieder D, Trajanoski Z, IMI test presentation (2020) Scirpy: a Scanpy extension for analyzing single-cell T-cell receptor-sequencing data. Bioinformatics 36:4817–4818. https://doi.org/10.1093/bioinformatics/btaa611 doi: 10.1093/bioinformatics/btaa611. [DOI] [PMC free article] [PubMed]
  18. Nouri N, Kleinstein SH (2018) A spectral clustering-based method for identifying clones from high-throughput B cell repertoire sequencing data. Bioinformatics 34:i341–i349. https://doi.org/10.1093/bioinformatics/bty235 doi: 10.1093/bioinformatics/bty235. [DOI] [PMC free article] [PubMed]
  19. Schramm CA, Sheng Z, Zhang Z, Mascola JR, Kwong PD, Shapiro L (2016) SONAR: a high-throughput pipeline for inferring antibody ontogenies from longitudinal sequencing of B cell transcripts. Front Immunol 7:372. https://doi.org/10.3389/fimmu.2016.00372 doi: 10.3389/fimmu.2016.00372. [DOI] [PMC free article] [PubMed]
  20. Olson BJ, Moghimi P, Schramm CA, Obraztsova A, Ralph D, Vander Heiden JA et al (2019) Sumrep: a summary statistic framework for immune receptor repertoire comparison and model validation. Front Immunol 10:2533. https://doi.org/10.3389/fimmu.2019.02533 doi: 10.3389/fimmu.2019.02533. [DOI] [PMC free article] [PubMed]
  21. Lees WD, Shepherd AJ (2015) Utilities for high-throughput analysis of B-cell clonal lineages. J Immunol Res 2015:1–9. https://doi.org/10.1155/2015/323506 doi: 10.1155/2015/323506. [DOI] [PMC free article] [PubMed]
  22. Giraud M, Salson M, Duez M, Villenet C, Quief S, Caillault A et al (2014) Fast multiclonal clusterization of V(D)J recombinations from high-throughput sequencing. BMC Genomics 15:409. https://doi.org/10.1186/1471-2164-15-409 doi: 10.1186/1471-2164-15-409. [DOI] [PMC free article] [PubMed]
  23. Duez M, Giraud M, Herbert R, Rocher T, Salson M, Thonier F (2016) Vidjil: a web platform for analysis of high-throughput repertoire sequencing. PLoS One 11:e0166126. https://doi.org/10.1371/journal.pone.0166126 doi: 10.1371/journal.pone.0166126. [DOI] [PMC free article] [PubMed]
  24. Christley S, Scarborough W, Salinas E, Rounds WH, Toby IT, Fonner JM, IMI test presentation (2018) VDJServer: a cloud-based analysis portal and data commons for immune repertoire sequences and rearrangements. Front Immunol 9:976. https://doi.org/10.3389/fimmu.2018.00976 doi: 10.3389/fimmu.2018.00976. [DOI] [PMC free article] [PubMed]
  25. Rosenfeld AM, Meng W, Luning Prak ET, Hershberg U (2018) ImmuneDB, a novel tool for the analysis, storage, and dissemination of immune repertoire sequencing data. Front Immunol 9:2107. https://doi.org/10.3389/fimmu.2018.02107 doi: 10.3389/fimmu.2018.02107. [DOI] [PMC free article] [PubMed]
  26. Xu JL, Davis MM (2000) Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity 13:37–45. https://doi.org/10.1016/S1074-7613(00)00006-6 doi: 10.1016/S1074-7613(00)00006-6. [DOI] [PubMed]
  27. Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F et al (2017) Identifying specificity groups in the T cell receptor repertoire. Nature 547:94–98. https://doi.org/10.1038/nature22976 doi: 10.1038/nature22976. [DOI] [PMC free article] [PubMed]
  28. Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A et al (2017) Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547:89–93. https://doi.org/10.1038/nature22383 doi: 10.1038/nature22383. [DOI] [PMC free article] [PubMed]
  29. Atchley WR, Zhao J, Fernandes AD, Druke T (2005) Solving the protein sequence metric problem. Proc Natl Acad Sci U S A 102:6395–6400. https://doi.org/10.1073/pnas.0408677102 doi: 10.1073/pnas.0408677102. [DOI] [PMC free article] [PubMed]
  30. Kidera A, Konishi Y, Oka M, Ooi T, Scheraga HA (1985) Statistical analysis of the physical properties of the 20 naturally occurring amino acids. J Protein Chem 4:23–55. https://doi.org/10.1007/BF01025492 doi: 10.1007/BF01025492. [DOI]
  31. Haigh OL, Grant EJ, Nguyen THO, Kedzierska K, Field MA, Miles JJ (2021) Genetic bias, diversity indices, physiochemical properties and CDR3 motifs divide auto-reactive from Allo-reactive T-cell repertoires. Int J Mol Sci 22:1625. https://doi.org/10.3390/ijms22041625 doi: 10.3390/ijms22041625. [DOI] [PMC free article] [PubMed]
  32. Sankar K, Hoi KH, Hötzel I (2020) Dynamics of heavy chain junctional length biases in antibody repertoires. Commun Biol 3:207. https://doi.org/10.1038/s42003-020-0931-3 doi: 10.1038/s42003-020-0931-3. [DOI] [PMC free article] [PubMed]
  33. Wu X, Zhang Z, Schramm CA, Joyce MG, Kwon YD, Zhou T et al (2015) Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell 161:470–485. https://doi.org/10.1016/j.cell.2015.03.004 doi: 10.1016/j.cell.2015.03.004. [DOI] [PMC free article] [PubMed]
  34. Zhou JQ, Kleinstein SH (2019) Cutting edge: Ig H chains are sufficient to determine most B cell clonal relationships. J Immunol 203:1687–1692. https://doi.org/10.4049/jimmunol.1900666 doi: 10.4049/jimmunol.1900666. [DOI] [PMC free article] [PubMed]
  35. Kotouza MT, Gemenetzi K, Galigalidou C, Vlachonikola E, Pechlivanis N, Agathangelidis A et al (2020) TRIP - T cell receptor/immunoglobulin profiler. BMC Bioinformatics 21:422. https://doi.org/10.1186/s12859-020-03669-1 doi: 10.1186/s12859-020-03669-1. [DOI] [PMC free article] [PubMed]
  36. Lindenbaum O, Nouri N, Kluger Y, Kleinstein SH (2021) Alignment free identification of clones in B cell receptor repertoires. Nucleic Acids Res 49:e21–e21. https://doi.org/10.1093/nar/gkaa1160 doi: 10.1093/nar/gkaa1160. [DOI] [PMC free article] [PubMed]
  37. Bashford-Rogers RJM, Palser AL, Idris SF, Carter L, Epstein M, Callard RE et al (2014) Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol 15:29. https://doi.org/10.1186/s12865-014-0029-0 doi: 10.1186/s12865-014-0029-0. [DOI] [PMC free article] [PubMed]
  38. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x doi: 10.1046/j.1461-0248.2001.00230.x. [DOI]
  39. Greiff V, Menzel U, Haessler U, Cook SC, Friedensohn S, Khan TA et al (2014) Quantitative assessment of the robustness of next-generation sequencing of antibody variable gene repertoires from immunized mice. BMC Immunol 15:40. https://doi.org/10.1186/s12865-014-0040-5 doi: 10.1186/s12865-014-0040-5. [DOI] [PMC free article] [PubMed]
  40. Stern JNH, Yaari G, Vander Heiden JA, Church G, Donahue WF, Hintzen RQ et al (2014) B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med 6:248ra107. https://doi.org/10.1126/scitranslmed.3008879 doi: 10.1126/scitranslmed.3008879. [DOI] [PMC free article] [PubMed]
  41. Greiff V, Bhat P, Cook SC, Menzel U, Kang W, Reddy ST (2015) A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status. Genome Med 7:49. https://doi.org/10.1186/s13073-015-0169-8 doi: 10.1186/s13073-015-0169-8. [DOI] [PMC free article] [PubMed]
  42. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352 doi: 10.2307/1934352. [DOI]
  43. Arora R, Burke HM, Arnaout R (2018) Immunological diversity with similarity. Immunology
  44. Miho E, Yermanos A, Weber CR, Berger CT, Reddy ST, Greiff V (2018) Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires. Front Immunol 9:224. https://doi.org/10.3389/fimmu.2018.00224 doi: 10.3389/fimmu.2018.00224. [DOI] [PMC free article] [PubMed]
  45. Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB, Mora T et al (2019) Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol 17:e3000314. https://doi.org/10.1371/journal.pbio.3000314 doi: 10.1371/journal.pbio.3000314. [DOI] [PMC free article] [PubMed]
  46. Ben-Hamo R, Efroni S (2011) The whole-organism heavy chain B cell repertoire from zebrafish self-organizes into distinct network features. BMC Syst Biol 5:27. https://doi.org/10.1186/1752-0509-5-27 doi: 10.1186/1752-0509-5-27. [DOI] [PMC free article] [PubMed]
  47. Miho E, Roškar R, Greiff V, Reddy ST (2019) Large-scale network analysis reveals the sequence space architecture of antibody repertoires. Nat Commun 10:1321. https://doi.org/10.1038/s41467-019-09278-8 doi: 10.1038/s41467-019-09278-8. [DOI] [PMC free article] [PubMed]
  48. Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I et al (2017) T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife 6:e22057. https://doi.org/10.7554/eLife.22057 doi: 10.7554/eLife.22057. [DOI] [PMC free article] [PubMed]
  49. Madi A, Shifrut E, Reich-Zeliger S, Gal H, Best K, Ndifon W et al (2014) T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity. Genome Res 24:1603–1612. https://doi.org/10.1101/gr.170753.113 doi: 10.1101/gr.170753.113. [DOI] [PMC free article] [PubMed]
  50. Bashford-Rogers RJM, Palser AL, Huntly BJ, Rance R, Vassiliou GS, Follows GA et al (2013) Network properties derived from deep sequencing of human B-cell receptor repertoires delineate B-cell populations. Genome Res 23:1874–1884. https://doi.org/10.1101/gr.154815.113 doi: 10.1101/gr.154815.113. [DOI] [PMC free article] [PubMed]
  51. Valkiers S, Van Houcke M, Laukens K, Meysman P (2021) clusTCR: a python interface for rapid clustering of large sets of CDR3 sequences. Bioinformatics doi: 10.1093/bioinformatics/btab446. [DOI] [PubMed]
  52. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems 1695
  53. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed]
  54. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al (2019) Vegan: community ecology package
  55. Stervbo U, Nienen M, Hecht J, Viebahn R, Amann K, Westhoff TH et al (2020) Differential diagnosis of interstitial allograft rejection and BKV nephropathy by T-cell receptor sequencing. Transplantation 104:e107–e108. https://doi.org/10.1097/TP.0000000000003054 doi: 10.1097/TP.0000000000003054. [DOI] [PubMed]
  56. Nienen M, Stervbo U, Mölder F, Kaliszczyk S, Kuchenbecker L, Gayova L et al (2019) The role of pre-existing cross-reactive central memory CD4 T-cells in vaccination with previously unseen influenza strains. Front Immunol 10:593. https://doi.org/10.3389/fimmu.2019.00593 doi: 10.3389/fimmu.2019.00593. [DOI] [PMC free article] [PubMed]
  57. Bolen CR, Rubelt F, Vander Heiden JA, Davis MM (2017) The repertoire dissimilarity index as a method to compare lymphocyte receptor repertoires. BMC Bioinformatics 18:155. https://doi.org/10.1186/s12859-017-1556-5 doi: 10.1186/s12859-017-1556-5. [DOI] [PMC free article] [PubMed]
  58. Greiff V, Menzel U, Miho E, Weber C, Riedel R, Cook S et al (2017) Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development. Cell Rep 19:1467–1478. https://doi.org/10.1016/j.celrep.2017.04.054 doi: 10.1016/j.celrep.2017.04.054. [DOI] [PubMed]
  59. Bradley P, Thomas PG (2019) Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu Rev Immunol 37:547–570. https://doi.org/10.1146/annurev-immunol-042718-041757 doi: 10.1146/annurev-immunol-042718-041757. [DOI] [PubMed]
  60. Soto C, Bombardi RG, Branchizio A, Kose N, Matta P, Sevy AM et al (2019) High frequency of shared clonotypes in human B cell receptor repertoires. Nature 566:398–402. https://doi.org/10.1038/s41586-019-0934-8 doi: 10.1038/s41586-019-0934-8. [DOI] [PMC free article] [PubMed]
  61. Greiff V, Weber CR, Palme J, Bodenhofer U, Miho E, Menzel U et al (2017) Learning the high-dimensional Immunogenomic features that predict public and private antibody repertoires. J Immunol 199:2985–2997. https://doi.org/10.4049/jimmunol.1700594 doi: 10.4049/jimmunol.1700594. [DOI] [PubMed]
  62. Elhanati Y, Sethna Z, Callan CG, Mora T, Walczak AM (2018) Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunol Rev 284:167–179. https://doi.org/10.1111/imr.12665 doi: 10.1111/imr.12665. [DOI] [PMC free article] [PubMed]
  63. Greiff V, Miho E, Menzel U, Reddy ST (2015) Bioinformatic and statistical analysis of adaptive immune repertoires. Trends Immunol 36:738–749. https://doi.org/10.1016/j.it.2015.09.006 doi: 10.1016/j.it.2015.09.006. [DOI] [PubMed]
  64. Briney B, Inderbitzin A, Joyce C, Burton DR (2019) Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566:393–397. https://doi.org/10.1038/s41586-019-0879-y doi: 10.1038/s41586-019-0879-y. [DOI] [PMC free article] [PubMed]
  65. Soto C, Bombardi RG, Kozhevnikov M, Sinkovits RS, Chen EC, Branchizio A et al (2020) High frequency of shared clonotypes in human T cell receptor repertoires. Cell Rep 32:107882. https://doi.org/10.1016/j.celrep.2020.107882 doi: 10.1016/j.celrep.2020.107882. [DOI] [PMC free article] [PubMed]
  66. Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T et al (2011) A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J Immunol 186:4285–4294. https://doi.org/10.4049/jimmunol.1003898 doi: 10.4049/jimmunol.1003898. [DOI] [PubMed]
  67. Nielsen SCA, Yang F, Hoh RA, Jackson KJL, Roeltgen K, Lee J-Y et al (2020) B cell clonal expansion and convergent antibody responses to SARS-CoV-2. Res Sq doi: 10.1016/j.chom.2020.09.002. [DOI] [PMC free article] [PubMed]
  68. Nielsen SCA, Yang F, Jackson KJL, Hoh RA, Röltgen K, Jean GH (2020) Human B cell clonal expansion and convergent antibody responses to SARS-CoV-2. Cell Host Microbe 28:516–525.e5. https://doi.org/10.1016/j.chom.2020.09.002 doi: 10.1016/j.chom.2020.09.002. [DOI] [PMC free article] [PubMed]
  69. Kim SI, Noh J, Kim S, Choi Y, Yoo DK, Lee Y et al (2021) Stereotypic neutralizing V H antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Sci Transl Med 13:eabd6990. https://doi.org/10.1126/scitranslmed.abd6990 doi: 10.1126/scitranslmed.abd6990. [DOI] [PMC free article] [PubMed]
  70. Galson JD, Schaetzle S, Bashford-Rogers RJM, Raybould MIJ, Kovaltsuk A, Kilpatrick GJ et al (2020) Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures. Front Immunol 11:605170. https://doi.org/10.3389/fimmu.2020.605170 doi: 10.3389/fimmu.2020.605170. [DOI] [PMC free article] [PubMed]
  71. Ohlin M (2014) A new look at a poorly immunogenic neutralization epitope on cytomegalovirus glycoprotein B. Is there cause for antigen redesign? Mol Immunol 60:95–102. https://doi.org/10.1016/j.molimm.2014.03.015 doi: 10.1016/j.molimm.2014.03.015. [DOI] [PubMed]
  72. Japp AS, Meng W, Rosenfeld AM, Perry DJ, Thirawatananond P, Bacher RL et al (2021) TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell 184:827–839.e14. https://doi.org/10.1016/j.cell.2020.11.035 doi: 10.1016/j.cell.2020.11.035. [DOI] [PMC free article] [PubMed]
  73. Costello M, Fleharty M, Abreu J, Farjoun Y, Ferriera S, Holmes L et al (2018) Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19:332. https://doi.org/10.1186/s12864-018-4703-0 doi: 10.1186/s12864-018-4703-0. [DOI] [PMC free article] [PubMed]
  74. Seitz V, Schaper S, Dröge A, Lenze D, Hummel M, Hennig S (2015) A new method to prevent carry-over contaminations in two-step PCR NGS library preparations. Nucleic Acids Res 43(20):e135. https://doi.org/10.1093/nar/gkv694 doi: 10.1093/nar/gkv694. [DOI] [PMC free article] [PubMed]
  75. Methot SP, Di Noia JM (2017) Molecular mechanisms of somatic Hypermutation and class switch recombination. Adv Immunol 133:37–87 doi: 10.1016/bs.ai.2016.11.002. [DOI] [PubMed]
  76. Sheng Z, Schramm CA, Kong R, Comparative Sequencing Program NISC, Mullikin JC, Mascola JR et al (2017) Gene-specific substitution profiles describe the types and frequencies of amino acid changes during antibody somatic Hypermutation. Front Immunol 8:537. https://doi.org/10.3389/fimmu.2017.00537 doi: 10.3389/fimmu.2017.00537. [DOI] [PMC free article] [PubMed]
  77. Schramm CA, Douek DC (2018) Beyond hot spots: biases in antibody somatic hypermutation and implications for vaccine design. Front Immunol 9:1876. https://doi.org/10.3389/fimmu.2018.01876 doi: 10.3389/fimmu.2018.01876. [DOI] [PMC free article] [PubMed]
  78. Kirik U, Persson H, Levander F, Greiff L, Ohlin M (2017) Antibody heavy chain variable domains of different germline gene origins diversify through different paths. Front Immunol 8:1433. https://doi.org/10.3389/fimmu.2017.01433 doi: 10.3389/fimmu.2017.01433. [DOI] [PMC free article] [PubMed]
  79. Zhou JQ, Kleinstein SH (2020) Position-dependent differential targeting of somatic Hypermutation. J Immunol 205:3468–3479. https://doi.org/10.4049/jimmunol.2000496 doi: 10.4049/jimmunol.2000496. [DOI] [PMC free article] [PubMed]
  80. Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A et al (2017) Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics 33:3938–3946. https://doi.org/10.1093/bioinformatics/btx533 doi: 10.1093/bioinformatics/btx533. [DOI] [PubMed]
  81. Yaari G, Uduman M, Kleinstein SH (2012) Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res 40:e134–e134. https://doi.org/10.1093/nar/gks457 doi: 10.1093/nar/gks457. [DOI] [PMC free article] [PubMed]
  82. Gupta NT, Adams KD, Briggs AW, Timberlake SC, Vigneault F, Kleinstein SH (2017) Hierarchical clustering can identify B cell clones with high confidence in Ig repertoire sequencing data. J Immunol 198:2489–2499. https://doi.org/10.4049/jimmunol.1601850 doi: 10.4049/jimmunol.1601850. [DOI] [PMC free article] [PubMed]
  83. Aouinti S, Malouche D, Giudicelli V, Kossida S, Lefranc M-P (2015) IMGT/HighV-QUEST statistical significance of IMGT Clonotype (AA) diversity per gene for standardized comparisons of next generation sequencing immunoprofiles of immunoglobulins and T cell receptors. PLoS One 10:e0142353. https://doi.org/10.1371/journal.pone.0142353 doi: 10.1371/journal.pone.0142353. [DOI] [PMC free article] [PubMed]
  84. Nouri N, Kleinstein SH (2020) Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data. PLoS Comput Biol 16:e1007977. https://doi.org/10.1371/journal.pcbi.1007977 doi: 10.1371/journal.pcbi.1007977. [DOI] [PMC free article] [PubMed]
  85. Briney B, Le K, Zhu J, Burton DR (2016) Clonify: unseeded antibody lineage assignment from next-generation sequencing data. Sci Rep 6:23901. https://doi.org/10.1038/srep23901 doi: 10.1038/srep23901. [DOI] [PMC free article] [PubMed]
  86. Briney BS, Willis JR, Crowe JE (2012) Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes Immun 13:523–529. https://doi.org/10.1038/gene.2012.28 doi: 10.1038/gene.2012.28. [DOI] [PMC free article] [PubMed]
  87. Briney BS, Willis JR, Crowe JE (2012) Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLoS One 7:e36750. https://doi.org/10.1371/journal.pone.0036750 doi: 10.1371/journal.pone.0036750. [DOI] [PMC free article] [PubMed]
  88. Yaari G, Benichou JIC, Vander Heiden JA, Kleinstein SH, Louzoun Y (2015) The mutation patterns in B-cell immunoglobulin receptors reflect the influence of selection acting at multiple time-scales. Philos Trans R Soc B Biol Sci 370:20140242. https://doi.org/10.1098/rstb.2014.0242 doi: 10.1098/rstb.2014.0242. [DOI] [PMC free article] [PubMed]
  89. Wilson PC, de Bouteiller O, Liu Y-J, Potter K, Banchereau J, Capra JD et al (1998) Somatic Hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med 187:59–70. https://doi.org/10.1084/jem.187.1.59 doi: 10.1084/jem.187.1.59. [DOI] [PMC free article] [PubMed]
  90. Ohlin M, Borrebaeck CAK (1998) Insertions and deletions in hypervariable loops of antibody heavy chains contribute to molecular diversity. Mol Immunol 35:233–238. https://doi.org/10.1016/S0161-5890(98)00030-3 doi: 10.1016/S0161-5890(98)00030-3. [DOI] [PubMed]
  91. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–811. https://doi.org/10.1038/328805a0 doi: 10.1038/328805a0. [DOI] [PubMed]
  92. Haynes BF, Kelsoe G, Harrison SC, Kepler TB (2012) B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 30:423–433. https://doi.org/10.1038/nbt.2197 doi: 10.1038/nbt.2197. [DOI] [PMC free article] [PubMed]
  93. Liao H-X, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD et al (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:469–476. https://doi.org/10.1038/nature12053 doi: 10.1038/nature12053. [DOI] [PMC free article] [PubMed]
  94. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359 doi: 10.1007/BF01734359. [DOI] [PubMed]
  95. Davidsen K, Matsen FA (2018) Benchmarking tree and ancestral sequence inference for B cell receptor sequences. Front Immunol 9:2451. https://doi.org/10.3389/fimmu.2018.02451 doi: 10.3389/fimmu.2018.02451. [DOI] [PMC free article] [PubMed]
  96. Kepler TB (2013) Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors. F1000Res 2:103. https://doi.org/10.12688/f1000research.2-103.v1 doi: 10.12688/f1000research.2-103.v1. [DOI] [PMC free article] [PubMed]
  97. Dhar A, Ralph DK, Minin VN, Matsen FA (2020) A Bayesian phylogenetic hidden Markov model for B cell receptor sequence analysis. PLoS Comput Biol 16:e1008030. https://doi.org/10.1371/journal.pcbi.1008030 doi: 10.1371/journal.pcbi.1008030. [DOI] [PMC free article] [PubMed]
  98. Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R (2008) IgTree: creating immunoglobulin variable region gene lineage trees. J Immunol Methods 338:67–74. https://doi.org/10.1016/j.jim.2008.06.006 doi: 10.1016/j.jim.2008.06.006. [DOI] [PubMed]
  99. Horns F, Vollmers C, Croote D, Mackey SF, Swan GE, Dekker CL et al (2016) Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. eLife 5:e16578. https://doi.org/10.7554/eLife.16578 doi: 10.7554/eLife.16578. [DOI] [PMC free article] [PubMed]
  100. Vieira MC, Zinder D, Cobey S (2018) Selection and neutral mutations drive pervasive mutability losses in long-lived anti-HIV B-cell lineages. Mol Biol Evol 35:1135–1146. https://doi.org/10.1093/molbev/msy024 doi: 10.1093/molbev/msy024. [DOI] [PMC free article] [PubMed]
  101. Cui J-H, Lin K-R, Yuan S-H, Jin Y-B, Chen X-P, Su X-K et al (2018) TCR repertoire as a novel indicator for immune monitoring and prognosis assessment of patients with cervical cancer. Front Immunol 9:2729. https://doi.org/10.3389/fimmu.2018.02729 doi: 10.3389/fimmu.2018.02729. [DOI] [PMC free article] [PubMed]
  102. Vollmer T, Schlickeiser S, Amini L, Schulenberg S, Wendering DJ, Banday V et al (2021) The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer. Sci Transl Med 13:eabb3735. https://doi.org/10.1126/scitranslmed.abb3735 doi: 10.1126/scitranslmed.abb3735. [DOI] [PubMed]
  103. Li N, Yuan J, Tian W, Meng L, Liu Y (2020) T-cell receptor repertoire analysis for the diagnosis and treatment of solid tumor: a methodology and clinical applications. Cancer Commun (Lond) 40:473–483. https://doi.org/10.1002/cac2.12074 doi: 10.1002/cac2.12074. [DOI] [PMC free article] [PubMed]
  104. Dziubianau M, Hecht J, Kuchenbecker L, Sattler A, Stervbo U, Rödelsperger C et al (2013) TCR repertoire analysis by next generation sequencing allows complex differential diagnosis of T cell-related pathology: NGS allows complex differential diagnosis. Am J Transplant 13:2842–2854. https://doi.org/10.1111/ajt.12431 doi: 10.1111/ajt.12431. [DOI] [PubMed]
  105. Wolf K, Hether T, Gilchuk P, Kumar A, Rajeh A, Schiebout C et al (2018) Identifying and tracking low-frequency virus-specific TCR Clonotypes using high-throughput sequencing. Cell Rep 25:2369–2378.e4. https://doi.org/10.1016/j.celrep.2018.11.009 doi: 10.1016/j.celrep.2018.11.009. [DOI] [PMC free article] [PubMed]
  106. Pogorelyy MV, Minervina AA, Touzel MP, Sycheva AL, Komech EA, Kovalenko EI et al (2018) Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. Proc Natl Acad Sci U S A 115:12704–12709. https://doi.org/10.1073/pnas.1809642115 doi: 10.1073/pnas.1809642115. [DOI] [PMC free article] [PubMed]
  107. Schober K, Buchholz VR, Busch DH (2018) TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 283:113–128. https://doi.org/10.1111/imr.12654 doi: 10.1111/imr.12654. [DOI] [PubMed]
  108. Gittelman RM, Lavezzo E, Snyder TM, Zahid HJ, Elyanow R, Dalai S, IMI test presentation (2020) Diagnosis and tracking of SARS-CoV-2 infection By T-cell receptor sequencing. Infectious diseases (except HIV/AIDS)
  109. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391. https://doi.org/10.1038/nri3667 doi: 10.1038/nri3667. [DOI] [PMC free article] [PubMed]
  110. Logunova NN, Kriukova VV, Shelyakin PV, Egorov ES, Pereverzeva A, Bozhanova NG, IMI test presentation (2020) MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naïve CD4+ T cells. Proc Natl Acad Sci U S A 117:13659–13669. https://doi.org/10.1073/pnas.2003170117 doi: 10.1073/pnas.2003170117. [DOI] [PMC free article] [PubMed]
  111. Lu J, Van Laethem F, Bhattacharya A, Craveiro M, Saba I, Chu J, IMI test presentation (2019) Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat Commun 10:1019. https://doi.org/10.1038/s41467-019-08906-7 doi: 10.1038/s41467-019-08906-7. [DOI] [PMC free article] [PubMed]
  112. Migalska M, Sebastian A, Radwan J (2019) Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci U S A 116:5021–5026. https://doi.org/10.1073/pnas.1807864116 doi: 10.1073/pnas.1807864116. [DOI] [PMC free article] [PubMed]
  113. Rius C, Attaf M, Tungatt K, Bianchi V, Legut M, Bovay A, IMI test presentation (2018) Peptide-MHC class I tetramers can fail to detect relevant functional T cell clonotypes and underestimate antigen-reactive T cell populations. J Immunol 200:2263–2279. https://doi.org/10.4049/jimmunol.1700242 doi: 10.4049/jimmunol.1700242. [DOI] [PMC free article] [PubMed]
  114. Martin MD, Jensen IJ, Ishizuka AS, Lefebvre M, Shan Q, Xue H-H, IMI test presentation (2019) Bystander responses impact accurate detection of murine and human antigen-specific CD8 T cells. J Clin Invest 129:3894–3908. https://doi.org/10.1172/JCI124443 doi: 10.1172/JCI124443. [DOI] [PMC free article] [PubMed]

RESOURCES